
Device Independent Representation of
Web-based Dialogs and Contents
Steffen Göbel, Sven Buchholz, Thomas Ziegert, Alexander Schill

Department of Computer Science
Dresden University of Technology

D-01062 Dresden, Germany.
E-mail: {goebel, sb15, ziegert, schill}@rn.inf.tu-dresden.de

AbstractMulti device service provision is a
challenging problem for information service
providers. To support the diverse set of existing
and future devices services have to adapt the
contents to the capabilities of the different devices.

In this paper we present research efforts aiming
at the development of system support for
automated content adaptation to different devices.
We especially target the generic description and
automated adaptation of web-based dialogs.

We introduce an XML-based Dialog Description
Language (DDL) enabling device independent
description of dialogs. It makes up the basis for the
automated adaptation. A fragmentation algorithm
provides for automated decomposition of dialogs
into dialog fragments that fit device specific
resource limits. The feasability of our approach is
proven by our Java-based adaptation framework,
presented at the end of this paper.

KeywordsMulti device platform, Adaptation
framework, XML.

I. INTRODUCTION

The diversity of devices for mobile and stationary
information access available today and expected for the
future results in new challenges for web-based services.
The heterogeneity in memory size, computing power
and network connectivity as well as different content
description languages must be taken into account by
future information services. Unfortunately, the efforts
and expenses involved in the manual adaptation of
services to different devices are unreasonably high.
Therefore system support for automated content
adaptation is required.

Today’s devices mainly support the following content
description languages: HTML, WML, cHTML.

HTML has been developed for desktop computers
and has evolved to different versions partly even with
browser specific enhancements. Mobile devices, such
as PDAs, mostly support a subset of the current
HTML4 standard [1] only or limit its support to an
older HTML version. Frames, Cascading Style Sheets
(CSS) or active contents, such as JavaScript or Java, are
fully supported by state-of-the-art desktop computer
browsers, such as MS Internet Explorer or Netscape
Navigator, only. The HTML subset supported by PDAs
is also called tinyHTML due to its functional
limitations.

WML [2] is an XML-based markup language. It is
part of the WAP specification mainly supporting
mobile phones or PDAs with small displays and
restricted memory. Each WML page, also referred to as
deck, may contain several cards. The browser supports
navigation between those cards. Thereby server
accesses are reduced.

cHTML has been deployed for the proprietary i-mode
system [3] by NTT DoCoMo. Currently i-mode is
solely deployed in Japan but there are plans to roll out
i-mode service in Europe. cHTML is based on
HTML 2.0 including some additional features. cHTML
is not considered in our adaptation framework
(cf. section V).

Automated content adaptation requires mapping the
elements of a device independent content representation
to the device specific content description languages.
One approach to allow non-ambiguous mapping is
restricting the features of the device independent
markup language to those supported by all devices. The
intersection of the features of all device specific markup
languages makes the basis of the device independent
format. With this intersection approach, the mapping to
a device specific format is rather trivial because every
feature of the device independent description can
simply be translated into its device specific counterpart.
However, a significant disadvantage of this approach is
that the features of the device specific languages, and
accordingly the capabilities of the devices, are not fully
exploited. Furthermore, evolutions of a device specific
markup language may need to trigger alterations to the
device independent format.

As an alternative to the intersection approach a
generic device independent format may support
capabilities not featured by all device specific
languages. Accordingly, the mappings of such a device
independent language to device specific formats may be
lossy because a complete and non-ambiguous mapping
does not necessarily exist. The major advantage of such
an approach is that the features of the generic language
are not constrained by the device specific language with
the least capabilities.

Each approach applying more than the intersection of
device specific languages requires meta information
about the semantics of language elements that cannot be
mapped non-ambiguously. For example, meta
information may indicate alternative representation of
semantically one element. Furthermore, elements can

be declared to be optional and may be omitted on
devices with insufficient resources. Just omitting or
reducing contents can be very powerful for adapting to
mobile devices with resource restrictions.

After a short survey about existing approaches for
device independent description of dialogs (section II)
this paper describes efforts in several fields of system
support for automated content adaptation to different
devices: a generic XML-based language (Dialog
Description Language, DDL) for the device
independent description of web-based dialogs
(section III), a fragmentation algorithm to split complex
dialogs into dialog fragments fitting the resource
restrictions of the particular client (section IV) and a
software architecture for automated adaptation of DDL
dialogs to different devices (section V). The paper is
concluded with an evaluation of our approach
(section VI) and future directions (section VII).

II. RELATED WORK

This section introduces existing solutions for device
independent description of dialogs and discusses their
advantages and disadvantages. This analysis was the
starting point for the development of DDL.

A. UIML

The User Interface Markup Language [4] is an XML-
based language for the description of complete user
interfaces. Beside a header with meta information (for
example author, creation time) a UIML document
consists of: an interface description section, a peer
information section, and an optional template section.
The interface description contains information about the
structure, style, content, and behavior of the user
interface.

A great advantage of UIML is the strict separation of
content, structure and style. By means of inheritance
and inclusion of other UIML documents libraries of
user interface components can be developed
contributing to the reuse of code. Furthermore, UIML
can be extended almost arbitrarily since UIML is a
meta model.

UIML was designed for the modeling of complete
user interfaces including mechanisms for event
handling. Even parts of the application logic can be
described in UIML. In consequence, even simple
dialogs have a very complex UIML representation. This
is a notable disadvantage of this approach. Furthermore,
the currently available UIML renderers are not
applicable for device independent description: Too
many device dependent attributes are required forcing a
developer to be aware of the different devices during
the development process. Finally, UIML lacks of means
to express constraints on valid user input.

B. XForms

XForms [5] are the W3C’s response to the increasing
demands for highly functional and portable web-based
user interfaces. Just as UIML, XForms is built upon
XML. It is intended to be integrated in future XML-
based markup languages, such as successors of HTML,

XHTML, SMIL etc. XForms is characterized by the
separation of content, presentation, and logic, similar to
UIML. The content is the fundamental data model, the
presentation describes the appearance on different
platforms, and the logic defines dependencies between
form elements and additional functionality. This allows
flexible presentation options (including classic XHTML
forms) to be attached to an XML form definition.

XForms enables the validation of user input at the
client within the browser. This reduces client-server
interactions and server load. For that purpose XForms
allows the specification of validity constraints on input
data within the data model. Furthermore, XForms
provides means to calculate values from user input at
the client.

However, these XForms features require support by
the browser software. This is not provided by the
majority of today’s browsers thereby preventing a rapid
introduction of XForms. XForms is still under
development and some parts have not been completely
specified, yet.

C. Oracle9i Application Server Wireless Edition

The Oracle9i Application Server Wireless Edition [6]
is a product supporting personalized services for
different devices. However, it is a representative of the
intersection approach (cf. section I).

Therefore the possibilities to design dialogs are very
limited. Only a few elements have been defined (text,
menus, forms, tables, containers, images). Besides the
general disadvantages of the intersection approach there
are some other drawbacks: There is no strict separation
of content and style. Container elements cannot be
nested complicating the structuring of dialogs. Tables
are restricted to text and cannot held images, for
example.

III. DIALOG DESCRIPTION LANGUAGE

Our experiences from the analysis of existing
approaches for device independent description of
dialogs have led to the definition of a new markup
language unifying the identified required and desirable
properties. The language is supposed to be simple and
compact, but also functional, powerful and extensible.
The Dialog Description Language (DDL), introduced in
the following, fulfils these requirements. It follows the
concept of decoupling of structure, representation and
content, and the concept of inheritance. Constraints on
user input can be specified. They allow automated input
validation by the adaptation software.

DDL is an XML-based meta language. It describes a
structure of abstract elements. Each of the elements can
be assigned properties. In the following the syntax of
DDL is described (cf. fig. 1). The root element of all
DDL documents is <ddl>. A <ddl>-element may have
the following descendants elements:

<include>: enables the integration of external DDL-
source code into the current document. Therewith
libraries of DDL code can be created and reused
simply. By means of an optional “test”-attribute
conditional inclusion can be realized. A condition is

defined by an XPath-expression applied to the client
profile.

<head>: enables the inclusion of additional meta
information into the DDL document, e.g. author and
creation date. This information is bracketed by a
<meta>-element, a child element of <head>. There is at
most one <head>-Element per DDL document.

<DataTypeDef>: defines data types used to validate
user input in web forms. Each data type is assigned a
unique name. Type inheritance is applied to express
generalization and specialization relationships. There
are basic data types (integer, float, date, string) as well
as complex data types (structures, arrays).

Several restrictions (e.g. min and max value for
integer data) can be assigned to each built-in basic data
type allowing precise specification of valid inputs.

Type information can also be used to optimize the
presentation of input elements. For instance, a calendar
could be displayed to prompt for a date.

<DataInstance>: is used to specify data instances
that are prompted for by the dialog. Each form input
element has an associated data instance. By this means
the user interface and the data is separated. Each
<DataInstance>-element is assigned a unique name and
a specific data type. The binding between a form input
element and a data instance is realized via the data
instance name.

 <dialog>: starts the definition of the dialog structure.
There is at most one <dialog>-Element per DDL
document. It comprises all elements forming the actual
dialog. Only those <part>-elements (see below)
residing within the <dialog>-element are used for the
output dialog. All other <part>-elements are library
elements that can be used to inherit from.

<part>: <part>-elements are used to model the
abstract structures of a dialog. They can be nested and
may have properties (cf. <property>-element) assigned
to them.

The optional “test”-attribute allows conditional
inclusion of the part into the dialog analogously to the
“test”-attribute of the <include>-element.

The optional “extends”-attribute refers to another part
to inherit properties from. The referred part must be
assigned a non-ambiguous name by a “name”-attribute.
If properties are repeatedly specified in the inherited
and the inheriting part, the properties of the inheriting
part override the ones of the inherited part.

By means of an optional “class”-attribute a class (cf.
<class>-element) can be assigned to a part. If a part
belongs to a class and additionally inherits from another
part, properties of the class have higher priority than
those inherited from another part and therefore override
them.

<class>: defines a class of parts. A class comprises a
set of properties. All properties of a class are adopted
by its instance parts. Analogously to parts, the optional
“extends”-attribute can be used to define class
inheritance.

By means of classes decoupling of structure and
presentation is enabled. Perfect decoupling would mean
that no properties are assigned directly to a part but to
the class of the part only.

<property>: is used to assign properties (styles for
the presentation or abstract properties) to parts or
classes.

<content>: defines the contents of DDL dialogs. By
means of <content>-elements DDL realizes decoupling
of structure and contents.

The <content>-element comprises a set of data items
(cf. <constant>-element) that can be referenced by
<property>-elements or other <content>-elements.

<constant>: defines a data item as a literal
(#PCDATA) or a reference (cf. <reference>-element).

<reference>: is a reference to a data item
(<constant>) or property (<property>). It can be used as
the value of a property or data item. A reference is
expressed by the name of the referenced element as the
value of the “constant”- or the “property”-attribute.

The semantics of the properties is defined separately
and is not part of DDL. By this means future extensions
may be developed without the need to change the

ddl

include
src
test

head dialog class
name
extends
test

content
name
extends
test

meta
name
content

property
name
part
test

part
class
name
extends
test

constant
name
test

reference
constant
property
part
test

#PCDATA

DataType
Def

Data-
Instance

usetype
name

Definition
of

Data types

FIGURE 1
DDL SYNTAX

syntax (DTD) of DDL. Only the DDL renderers, for the
adaptation to device specific languages, must be
extended or adapted to be able to interpret new
properties.

In the following we introduce a semantics for DDL to
be applied by renderers for multi device dialogs.

Parts are assigned semantic types specifying the
interpretation of the particular <part>-element by the
renderer. Possible types and their properties are defined
in the following (cf. fig. 2):

 container – serves for grouping of arbitrary parts.
By means of the “layout”-property the placement of
the elements within the container is specified. Possible
values are “horizontal”, “vertical”, “border” (analogous
to the Java Layout Manager java.awt.BorderLayout),
and “grid:n” (grid with n columns). The property
“atom” labels indivisibly coherent elements. This
property is interpreted by the fragmentation algorithm
(cf. section IV). Atomic containers should contain as
few elements as possible because a reasonable
fragmentation is not feasible otherwise.

label – provides for presentation of text or links. By
means of additional attributes the appearance (font,
bold, italic) can be influenced.

image – enables the inclusion of images by
specifying their URL. Devices that do not support
images show an alternative textual description specified
by the “alt”-attribute.

source – enables the inclusion of non-interpreted,
device specific source code, e.g. HTML or WML. In
conjunction with a “test”-attribute device specific code
can be selected.

form – enables the definition of forms for user input.
A form may have all properties of a container. After
completing the form the user inputs are sent to the URL
of the server (“action”-attribute) by the specified
method (“method”-attributes) to be further processed by
the server.

textinput – enables the input of text, values, and
passwords within a form. Constraints on the input data
can be defined by “match”-attributes, comprising
regular expressions (similar to Perl5). Validation is
executed at the server because a scripting language
support at the client browser should not be presumed.

radiogroup – performs a one-out-of-many choice.
Each option is placed by means of a radiobutton-part
within the radiogroup.

checkbox – enables the input of a boolean value. The
combination of several checkbox-parts allows for a
many-out-of-many choice.

select – performs a single or multiple choice
(depending on the attribute “multiple”) by means of a
selection list. Possible selections are defined by option-
parts within the select part.

submit – shows a button to finish a form and submit
it to the server. Forms without a submit part implicitly
get a submit button labeled “OK”.

frameset-parts and frame-parts can be used
analogously to HTML frames.

In case the specified types are not sufficient for an
application new part types can be easily added. Solely
renderers (usually in the form of XSLT style sheets)
have to be adapted.

The semantic type of a part is indicated by a
<property>-element with the “name”-attribute=”type”.
The type specific properties are assigned to parts by
means of <property>-elements, too. For example, a link
to another web site can be described by a label part in
the following way:

<part>
<property name=“type“>label</property>
<property name=“content“>

TU-Dresden
</property>
<property name=“link“>

http://www.tu-dresden.de
</property>

</part>

<dialog>
title
bgcolor
bgimage
render

frameset
border
split
size

container
<container>

label
content
<style>

image
src
alt
link
target
valign

source
content

form
method
action
enctype
target
<container>

frame
padding
scrollable
resizeable
size
src

radiogroup
default
visible
match
matcherrmsg
<container>

option
value
description

submit
image
valign
<input>
<style>

select
multiple
vsize
<input>
<style>

radiobutton
value
description
<style>

checkbox
value
<input>
<style>

textinput
hsize
vsize
password
<input>
<style>

<input> : default, visible, description, match, matcherrmsg
<style> : link, target, fontsize, font, color, bold, italic,
 underline, align
<container> : title, border, layout, align, atom, padding,
 valign, bgcolor, bgimage

FIGURE 2
SEMANTICS OF DDL

An example for a complete simple login dialog is
depicted in figure 3.

IV. FRAGMENTATION

Two major problems in presenting dialogs on
multiple heterogeneous devices are differences in
display and memory size. A desktop computer can
usually display a complex dialog all at once but a PDA
or WAP phone may require the fragmentation of the
dialog.

Fragmentation must not be performed arbitrarily not
to brake the logical structure of the dialog. Atomic parts
of a dialog, that are placed in a container with the
“atom”-property=“true” (cf. section III), must not be
partitioned by the fragmentation algorithm. For
instance, an input element should not be separated from
its description label.

Furthermore, the fragmentation algorithm should be
as simple as possible to preserve computing power. We
apply the following fragmentation heuristics:

1. A dialog is considered as a tree with container
parts (atomic or non-atomic) as inner nodes and
non-container parts as leaves.

2. Every leaf is assigned a specific weight
indicating resource requirements (memory,
display size etc.).

3. For every leaf that has an atomic container
among its ancestors the node A is determined to
be the one atomic ancestor that is the closest to
the root (cf. fig. 4a).

4. All leaves with the same A node establish a
group. Each leave without an atomic container

among its ancestors is element of a group with a
single element (cf. fig. 4b).

5. If there is just one group the dialog cannot be
fragmented at all.

6. Dialogs with multiple groups can be fragmented
in such a way that groups are not split and the
sums of the leaves’ weights within each
fragment are balanced (cf. fig. 4c, for the sake of
simplicity the example assume all leaves to have
a weight of 1).

Currently we are further investigating optimization of
the fragmentation algorithm. Especially the display size
of a device should be considered more precisely. This
includes taking image sizes into account.

Processing DDL dialogs implies some additional
problems, that are solved by the adaptation framework
introduced in the following section:

• Dialog fragmentation should be transparent to
the application. To avoid inconsistencies a
dynamic dialog has to be generated only once,
not by fetching fragment by fragment.

• User input has to be cached until the whole
dialog is completed and all dialog input is sent
to the application at once.

• The user should be able to navigate between
dialog fragments. Therefore appropriate
navigation elements (e.g. links or buttons) have
to be added to the fragments.

• If possible, user input should be validated
fragment by fragment to allow immediate
feedback and correction. In the other case the
user must be prompted for correction after
completing the dialog. In either case a feedback
dialog is required to be generated automatically.

V. SOFTWARE ARCHITECTURE FOR ADAPTATION

To evaluate the applicability of DDL for the
automated adaptation to different devices we developed
an adaptation framework. It is based on Java servlets

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE ddl SYSTEM "ddl.dtd">
 <ddl>

 <dialog>
 <property name="title">User Login</property>
 <property name="bgcolor">FFFFFF</property>
 <part>

 <property name="type">form</property>
 <property name="method">GET</property>
 <property name="action">login.jsp</property>
 <property name="layout">vertical</property>
 <part class="container">

 <part class="label" name="nameLabel">
 <property name="content">User name:</property>

 </part>
 <part class="textinput" name="userInput"/>

 </part>
 <part class="container">

 <part class="label" name="passwordLabel">
 <property name="content">Password:</property>

 </part>
 <part class="textinput" name="passwordInput">

 <property name="password">true</property>
 </part>

 </part>
 <part class="okButton" name="okButton"/>

 </part>
 </dialog>
 <class name="container">

 <property name="type">container</property>
 <property name="atom">true</property>
 <property name="layout">horizontal</property>

 </class>
 <class name="label">

 <property name="type">label</property>
 </class>
 <class name="textinput">

 <property name="type">textinput</property>
 </class>
 <class name="okButton">

 <property name="type">submit</property>
 <property name="default">Ok</property>

 </class>
 </ddl>

FIGURE 3

SAMPLE DDL DIALOG

container

container

container container

atom

partpartpart part part part part partpart

atom

b)

container

container

container container

atom

partpartpart part part part part partpart

atom

a)

container

container

container container

atom

partpartpart part part part part partpart

atom

c)

FIGURE 4
FRAGMENTATION ALGORITHM FOR DIALOGS

and makes use of the Xalan-XSLT-processor [7] as well
as the Xerces-XML-parser [8] by the Apache-Group.

The adaptation is performed via a chain of filters
(fig. 5). The IBM WebSphere Transcoding Publisher
[9] and the Brazil Project of Sun Microsystems [10] use
similar architectures based on filters.

A filter is implemented as a Java class with a simple
interface (TranscodingFilter) consisting of two
methods: init() and start(). Additional filters can be
implemented easily. We distinguish four different types
of filters depending on their functionality:

• Request Modifiers – alter a HTTP request, e.g.
include additional HTTP headers. Request
Modifiers are processed at first.

• Generators – supply the requested contents. The
simplest way to do this is to read a file from the
hard disk. A more sophisticated solution may
retrieve the contents from a DBMS, another
servlet or an arbitrary URL. Basically there is
exactly one Generator invoked during the
processing of a single HTTP-request.

• Response Modifiers – adapt the retrieved
contents to the capabilities of a particular
device. They are linked in the filter chain after
the Generator.

• Monitors – are primarily used to observe or
debug an application and do not perform any
modification. They may be linked at any
position within the filter chain.

Filters are distinguished semantically only. The
interface syntax of all filters is the same.

The sequence of filters in the request processing
chain is determined by a configuration file. A single
servlet running in the servlet container of a web server
(e.g. Apache server with Tomcat) processes the
configuration information and controls the successive
execution of the filters.

The configuration file contains a mandatory sequence
control attribute and an optional test attribute for each

filter. The sequence control attribute sets the sequence
of the filter invocation.

The test attribute, that contains an XPath expression
about the client profile, provides conditional invocation
of a particular filter. For instance, only requests from
WML clients require the invocation of the
WMLCompilerFilter (cf. fig. 5).

The transcoding process may include iterations, i.e.
loop in the filter chain. To allow for loops a filter may
optionally determine its successor. An example of a
loop is the iterative fragmentation of a dialogs by
DDLFragmentationFilter2 and DDLFragmentation-
Filter3 (cf. fig. 5).

Currently we have implemented a number of filters
empowering the adaptation framework to support the
transformation of a DDL dialog into a device specific
dialog representation. Additional functionality can be
easily added by implementing extra filters.

In the following we give a brief overview about the
filter classes and their functionality. All filter classes
inherit some common functionality from the abstract
superclass TranscodingFilterSupport and implement the
common interface TranscodingFilter.

ClientRecognizerFilter (RequestModifier)
This filter is responsible for the client recognition and

passes the device information as a client profile to the
subsequent filters. In the current implementation device
recognition is based on the User Agent String, which is
part of each HTTP request. However, we are currently
developing a subsequent version, that will use CC/PP
[11] and a more general device classification. The
adaptation process will rely on a particular device class
rather than on a specific device. Hence, new devices
will be supported without any modification of the
system configuration.

URLGetterFilter (Generator)
This filter retrieves a file from the local file system

or from the internet based on the URL in the HTTP
request.

Adaptation Framework

Transcoding
Servlet

ClientRecognizer-
Filter

DDLFragmentation-
Filter2

XSLTProcessor-
Filter

URLGetter-
Filter

XMLParser-
Filter

DDLFragmentation-
Filter3

HTTP-
Response

HTTP-
Request

Filter
Configuration

File system

Style
Sheets

DDL-Documents

Device Profils

DDLFragmentation-
Filter1

DDLPreprocessor-
Filter

Request
Modifier

Response
Modifier

Generator

Iterations during fragmentation

WMLCompiler-
Filter

access from non-WML client

Client

FIGURE 5
ADAPTATION FRAMEWORK

ServletRunnerFilter (Generator)
This entity invokes an external servlet on the

application server. By this means the system is able to
generate dynamic contents in DDL.

XMLParserFilter (Response Modifier)
This filter converts an XML document (e.g. a DDL

document) into an org.w3c.dom.Document object
(Document Object Model, DOM [12]). A DTD can be
specified to validate the document. Subsequent filters
work on the DOM instance of the document.

DDLPreprocessorFilter (Response Modifier)
This filter preprocesses a DDL document to resolve

all external references and inheritance hierarchies. This
results in a simplified DDL document with single
<dialog>-block (cf. fig. 6). By this means the
style sheet-based transformation is eased. Even the
preprocessing may be style sheet-based. However, as
this process is very time consuming, we decided to use
a DOM-based transformation.

XSLTProcessorFilter (Response Modifier)
This filter transforms a preprocessed DDL document

into a device specific format (HTML, WML). The
transformation is based on XSLT style sheets. The style
sheets have access to the information in the HTTP
request and the context of the processing environment.
The information are presented to the style sheets as
XSLT parameters.

There is a style sheet for each device (or device
class). Currently we have implemented style sheets for
HTML, tinyHTML and WML. The selection of the
style sheet is based on the client profile generated by
the ClientRecognizerFilter.

ImageTranscodingFilter (Response Modifier)
The image transcoder converts images, e.g. BMP into

JPEG or WBMP, high resolution into low resolution, or
full color into grayscale. Several format specific
parameters can be specified, e.g. the “quality”-
parameter for JPEG images or the “interlaced”-
parameter for PNG images.

DDL fragmentation filters
These filters perform the dialog fragmentation in case

the client’s restrictions forbid the particular dialog to be
displayed as a whole. Besides the actual fragmentation
they are responsible for the user input validation and
they store input data until the final dialog part is
completed. The filters must appear in the following
order:

DDLFragmentationFilter1 (Generator)
The first fragmentation filter manages the caching of

dialog fragments and the fragment by fragment delivery
to the clients. Furthermore it stores input data until the
dialog is completed. Therefore input data is transferred
to the filter by the query component of the URL of the
HTTP request for the next dialog fragment.
FragmentationFilter2 (Response Modifier)

This component fragments dialogs by the
fragmentation algorithm presented in section IV.
Furthermore it validates user input.
FragmentationFilter3 (Response Modifier)

This component checks, if the size of the rendered
document exceeds the resource restrictions of a
particular device. If this is true, the filter invokes
FragmentationFilter2 again to trigger another
fragmentation.

WMLCompilerFilter (Response Modifier)
WAP devices do not process a textual WML

document, but a compact binary representation (binary
WML). Therefore a WAP gateway, an intermediary
between the server and the WAP device, compiles the
textual into the binary representation. However, this
means the memory restrictions of the device do not
apply to the size of the textual WML document but to
the size of the compacted version.

To check if a WML document fits the resource
restrictions of the client, a WMLCompilerFilter is
interposed between the XSLTProcessorFilter and the
FragmentationFilter3 to perform the conversion to
binary WML.

VI. EVALUATION

To validate the functionality and applicability of
DDL and our adaptation framework we have developed
several sample documents. Figures 7 and 8 show a
DDL sample dialog rendered on a WAP phone (WML)

ddl

dialog

part
name

property
name

#PCDATA

FIGURE 6
SIMPLIFIED DDL

Products
Fragment 2

Katalog 2001

Products
Fragment 1

Katalog 2001

Subcategories

Katalog 2001

Main
categories

Katalog 2001

FIGURE 7
DDL DIALOG RENDERED ON A WAP PHONE

and a desktop computer (HTML).
On a desktop computer there is just one frameset

comprising three frames (fig. 8). On a WAP phone
there are no frames but the frameset is split into
separate dialogs (fig. 7). The entry point to the dialog
flow is a list of main categories. The list of products is
fragmented into two dialog fragments. A user can
navigate between the fragments by means of “back”
and “next” links inserted by the adaptation framework.

In order to evaluate our adaptation framework we
have measured the performance for processing a
complex DDL dialog. The total processing time is
about 840 ms. Thereby the major share of the
processing time is consumed by the
XSLTProcessorFilter and the DDLPreprocessorFilter
(cf. fig. 9).

VII. CONCLUSION

In this paper we have presented DDL, a device
independent description language for web-based
dialogs and contents. DDL is an extensible XML-based
meta language that allows the description of dialog
structures, content elements and constraints on user
input. DDL documents are decomposable and reusable.

Furthermore we have introduced an adaptation
framework that processes DDL descriptions to generate

device specific dialogs.
The evaluation of the framework has proven the

XSLT-based transcoding performs rather poor.
Therefore we are investigating optimization for the
transcoding. Caching of transcoded contents is one
conceivable approach. Another one may be to use
compiled XSLT style sheets. This may lead to a
significant speed-up and preserves the advantages of
XSLT transcoding, such as flexibility.

In the future we plan to integrate personalization into
the adaptation framework, e.g. personal settings
regarding the adaptation process. Integrating those
mechanisms into the existing architecture should be
easily done by introducing new filters.

ACKNOWLEDGMENT

The authors want to acknowledge the contribution by
Sebastian Weber to the design of DDL and the
implementation of the adaptation framework.

REFERENCES

[1] D. Raggett, et al, HTML 4.01 Specification, W3C
Recommendation, 1999. (http://www.w3.org/TR/html4/)

[2] Wireless Application Protocol: Wireless Markup Language
Specification 1.2, WAP Forum Ltd., 1999. (http://www1.
wapforum.org/tech/documents/SPEC-WML-19991104.pdf)

[3] What's i-mode?, NTT DoCoMo,Inc.
(http://www.nttdocomo.com/i/service/home.html)

[4] User Interface Markup Language (UIML) v2.0 Draft
Specification, Harmonia, Inc., 2000. (http://www.uiml.org/)

[5] M. Dubinko, et al, XForms 1.0, W3C Working Draft, 2001.
(http://www.w3.org/TR/xforms/)

[6] Oracle9iAS Wireless, Oracle Corp. (http://www.oracle.com/
ip/deploy/ias/index.html?wireless.html)

[7] Xalan-Java version 2.2.D9, The Apache Software Foundation.
(http://xml.apache.org/xalan-j/)

[8] Xerces Java Parser Readme, The Apache Software
Foundation. (http://xml.apache.org/xerces-j/)

[9] WebSphere Transcoding Publisher, IBM Corp.
(http://www-4.ibm.com/software/webservers/transcoding/)

[10] Brazil Project: Home. Sun Microsystems, Inc.
(http://www.sun.com/research/brazil/)

[11] G. Klyne, et al, Composite Capability/Preference Profiles (CC/
PP): Structure and Vocabularies, W3C Working Draft, 2001.
(http://www.w3.org/TR/CCPP-struct-vocab/)

[12] A. Le Hors, Document Object Model (DOM) Level 2 Core
Specification, W3C Recommendation, 2000.
(http://www.w3.org/TR/DOM-Level-2-Core/)

0 100 200 300 400 500

DDLFragmentationFilter3

DDLFragmentationFilter2

DDLFragmentationFilter1

XSLTProcessorFilter

DDLPreprocessorFilter

XMLParserFilter

URLGetterFilter

ClientRecognizerFilter

processing time (ms)

FIGURE 9
PROCESSING TIME FOR A COMPLEX DDL DIALOG

Main
categories

Sub-
categories Products

FIGURE 8
DDL DIALOG RENDERED ON A DESKTOP COMPUTER

