
Faculty of Computer Science Institute of System Architecture, Chair of Computer Networks

Minor Thesis

REAL-TIME COLLABORATION
SUPPORT FOR JAVASCRIPT
FRAMEWORKS
Franz Josef Grüneberger
Matrikel-Nr.: 3385643

Supervised by:

Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill
and:
Dipl.-Medieninf. Matthias Heinrich, Dr. Thomas Springer
Submitted on July 14, 2012

CONFIRMATION

I confirm that I independently prepared the thesis and that I used only the references and auxiliary
means indicated in the thesis.

Dresden, July 14, 2012

CONTENTS

1 Introduction 1

1.1 Motivation and Objectives . 2

1.2 Introductory Application Example . 3

1.3 Structure of the Thesis . 3

2 The Web as Application Platform 5

2.1 Evolution of the Web . 5

2.1.1 The Web as Document Environment . 6

2.1.2 The Web as Application Environment . 6

2.1.3 The Web as Desktop-Like Application Environment 7

2.2 Classification of Web Applications . 8

2.2.1 Classification Based on Application Domain 8

2.2.2 Classification Based on Implementation Technology 9

2.2.3 Classification of Current Web Applications 10

2.3 Development Approaches for Collaborative Web Applications 11

2.3.1 Operational Transformation Libraries . 11

2.3.2 Collaborative Widget Libraries . 12

2.3.3 Transparent Adaptation . 13

2.3.4 Code Injection . 14

2.4 Conclusion . 14

I

3 Conception of a Collaboration Extension for JavaScript Frameworks 17

3.1 Requirements for a Collaboration Extension . 18

3.2 Architectural Patterns of JavaScript Frameworks 19

3.2.1 Model-View-Controller (MVC) . 20

3.2.2 Presentation Model (PM) . 20

3.3 Classification of JavaScript Frameworks . 21

3.3.1 Architectural Pattern . 22

3.3.2 Programming Language . 22

3.3.3 Framework Integration . 23

3.3.4 User Interface Specification . 23

3.3.5 User Interface Update . 24

3.3.6 Data Model Structure . 26

3.3.7 Listener Registration . 27

3.4 Conceptual Architecture of a Collaboration Extension 29

3.4.1 Architecture Overview . 29

3.4.2 Synchronization Service . 30

3.4.3 Collaboration Adapter . 31

3.4.4 Discussion of Requirements . 33

3.5 Conclusion . 34

4 Prototypical Implementation of Collaboration Extensions 35

4.1 Framework Selection . 35

4.1.1 Framework Selection Characteristics . 35

4.1.2 Survey of Existing Frameworks . 36

4.1.3 Selected Frameworks . 38

4.2 Implementation Structure . 39

4.3 SAP Gravity . 39

4.3.1 Architecture . 40

4.3.2 Data Model . 40

II Contents

4.3.3 Primitive and Complex Operations . 41

4.3.4 Client API . 42

4.3.5 Synchronization Workflow . 44

4.4 Shared JSON . 46

4.4.1 JavaScript Object Notation . 46

4.4.2 JSONPath . 46

4.4.3 JSON to Gravity Mapping . 47

4.4.4 Client API . 50

4.4.5 Shared JSON Events . 53

4.4.6 Synchronization Workflow . 54

4.5 SAPUI5 Collaboration Adapter . 55

4.5.1 Implementation Structure . 55

4.5.2 Application Integration . 57

4.5.3 Synchronization Workflow . 58

4.6 Knockout.js Collaboration Adapter . 59

4.6.1 Knockout.js View Model Structure . 59

4.6.2 Knockout.js Synchronization Extension . 61

4.6.3 Annotations . 62

4.6.4 Property Exclusion Mechanism . 65

4.6.5 Application Integration . 66

4.6.6 Synchronization Workflow . 67

4.7 Conclusion . 68

5 Evaluation 69

5.1 Software Quality Models . 69

5.1.1 Product Quality Model . 70

5.1.2 Quality in Use Model . 72

5.2 Evaluation Process . 73

5.3 Minimal Application . 74

Contents III

5.3.1 Functional Requirements . 74

5.3.2 Data Collection Techniques . 75

5.3.3 Results . 75

5.4 Developer Study . 76

5.4.1 Participants . 76

5.4.2 Task Description . 76

5.4.3 Schedule . 77

5.4.4 Data Collection Techniques . 78

5.4.5 Results . 79

5.5 Limitations . 83

5.5.1 Observable Properties . 83

5.5.2 Dynamic Property Additions . 83

5.5.3 Class Constructor Parameters . 84

5.5.4 Manual Subscriptions . 84

5.5.5 Tree Structure . 84

5.6 Conclusion . 86

6 Conclusion 87

A JavaScript Object Notation (JSON) 101

B Developer Evaluation: Questionnaire 103

C Developer Evaluation: Results 107

IV Contents

1 INTRODUCTION

Gutwin et al. stated in 2011 [GLG11] that the "standard web browser is increasingly becoming
a platform for delivering rich interactive applications." This development is driven among other
things by the instant application consumption and device-agnostic provisioning appreciated by
application users as well as the inherent scalability of the web. Due to the increased use of
the web browser as runtime environment, the application stack has moved from the server to
the client during the last decade. Potentially encompassing the user interface description, the
business logic and an in-memory data representation, it is challenging for developers to handle
the application stack in the browser. Low-level JavaScript libraries like jQuery1, Prototype2, Un-
derscore.js3, etc., provide a convenient API for manipulating the Document Object Model (DOM)
in a uniform way across different browser implementations. However no means to structure
the application code are provided, usually resulting in lots of DOM element selector and callback
code. This "spaghetti code of the 21st century" [MT08] is reminiscent of software development in
the 1970s and leads to poor maintainability of applications. That’s where web application frame-
works come into play. Besides disburden developers from writing boilerplate code, frameworks
can structure web applications enforcing the separation of different application parts. According
to the Model-View-Controller design pattern [Ree79b, Ree79a] frameworks usually separate user
interface definition, application data, and business logic. Due to this modularization, frameworks
support the fast development of applications and promote reuse as well as maintainability. As of
today, several frameworks are available.

Moreover, in today’s competitive environment geographically dispersed teams have to work to-
gether in joint projects in an effective and efficient manner. Creating, sharing, discussing and
managing information together is called collaboration and if supported by computer software
referred to as Computer Supported Collaborative Work (CSCW). CSCW systems can support dif-
ferent kinds of collaboration that are summarized in the time-space matrix introduced by Robert
Johansen in 1988 [Joh88]. The matrix, shown in Figure 1.1, has two dimensions with two differ-
ent values. First, the geographical distribution of the collaborating persons which can be located
at the same or at different sites. Second, the timing between the interactions, which is called
synchronous if there are short timeframes between the interactions of users and asynchronous
if there are long periods in between.

The thesis will concentrate on the synchronous interaction of distributed users, referred to as
(real-time) collaboration in the following. One crucial characteristic of applications supporting this
collaboration type is the synchronization of different document copies among several participants

1http://jquery.com/
2http://www.prototypejs.org/
3http://documentcloud.github.com/underscore/

1

Use at

Same Time

Use at

Different Times

Users at

Same Site

Users at

Different Sites

Face-to-Face

Interaction

Synchronous

Distributed

Interaction

Asynchronous

Interaction

Asynchronous

Distributed

Interaction

Figure 1.1: Time-Space Matrix of Collaboration (cf. [Joh88])

in a timely manner. An example of a web application supporting this interaction paradigm is
Google Docs4, which supports the shared editing of rich text documents.

While Section 1.1 will motivate and explain the main contributions of the thesis, Section 1.2
introduces a simple use case of a collaborative application serving for demonstration purposes
during the whole thesis. Finally, Section 1.3 outlines the organization of the thesis.

1.1 MOTIVATION AND OBJECTIVES

Although real-time collaboration is useful in several areas, e. g. in the collaborative authoring
of documents or in distance learning, only few web applications are developed with integrated
collaboration features in mind. As of today, a great deal of web applications lack collaboration
support. This is caused by the synchronization and conflict resolution service required by all col-
laborative applications. Synchronization services are in charge of reconciling different document
copies, while conflict resolution services handle conflicts raised by simultaneous changes of mul-
tiple users at the very same document.

Existing web application frameworks streamline the development of single-user web applications,
but do not strive to ease the development of collaborative applications. Consequently applica-
tion developers have to become familiar with additional techniques for the development of real-
time applications. Synchronization and conflict resolution libraries like for example OpenCoWeb5,
ShareJS6, etc., are one possible technique. Since developers have to become familiar with the ad-
ditional techniques, and in most cases major source code changes are required, the development
of real-time applications is a complex, cumbersome and error-prone endeavor.

To disburden the programmer from getting familiar with additional techniques, this thesis
proposes the incorporation of collaboration support into existing web application frameworks.
Collaboration-enabled frameworks shall promote the efficient development of collaborative web
applications. The main contributions of the thesis are:

• Existing development approaches for the incorporation of real-time features into applications
are assessed regarding challenges and drawbacks.

• Web application frameworks are analyzed with respect to their structure and concepts im-
portant for the integration of a collaboration extension. Examples comprise the enforced
encapsulation and structure of application data.

• Based on the framework analysis, a collaboration extension is devised on a conceptual level
enabling the integration of collaboration capabilities into framework-based applications in a
lightweight fashion.

• To validate the concept, prototypes are implemented for two specific frameworks.

• The implemented prototypes are evaluated in an application developer study.
4http://docs.google.com/
5http://opencoweb.org/
6http://sharejs.org/

2 Chapter 1 Introduction

1.2 INTRODUCTORY APPLICATION EXAMPLE

A small collaborative web application might enable the concurrent editing of a task list by multiple
users. One user might add tasks to the task list, whereas another user assigns priorities to the
tasks. A third one starts to fulfill the tasks and marks them as done. Moreover, an arbitrary
number of users might watch the progress and make changes or corrections and every user is
aware of others’ changes in real-time. Figure 1.2 shows a mockup of such an application.

Task List Application

Name: Priority: Done:

Enter Task Name Add Task

Recruit Participants 100

Develop Questionnaire 70

Figure 1.2: Simple Task List Application

From a more technical point of view, the task list is a one-dimensional array containing task items
with a name, priority and done flag. The task items are in the same order for all participants. The
task items’ names are simple editable texts, the priorities are integer values between 0 and 100
and the done flag is Boolean. Since the task list application supports real-time collaboration,
multiple users can modify list items at the very same time.

Typically user edits cause conflicts due to concurrent modifications. Thus, consistency has to be
ensured eventually. Assume two users Alice and Bob that want to make a plan for conducting
a user study. So far, they agreed on the fact that it is required to recruit participants and to
develop a questionnaire. Alice now suggests to evaluate the questionnaire and therefore she
adds a new task to the list. In the meantime Bob concludes that a source code analysis would
be fine. He adds his suggestion to the task list too. The underlying synchronization mechanism
has to reconcile the document copies, i. e. the conflict that arose from the concurrent inserts at
the end of the task list has to be resolved. For example, since Alice is before Bob in the lexical
order, Alice’s task might appear before Bob’s at all sites. Note that if there would be no conflict
resolution, this conflict would lead to different orders for the task items at different sites.

1.3 STRUCTURE OF THE THESIS

The rest of the thesis is organized as follows:

• Chapter 2 outlines the evolution of the web from a simple document sharing environment
to an almost full-fledged runtime environment for applications. Furthermore currently ex-
isting web applications belonging to several domains are classified and their capabilities in
terms of real-time collaboration are assessed. Finally, existing development approaches for
collaborative web applications are analyzed with respect to their challenges and drawbacks.

• Chapter 3 describes the design of a collaboration extension for web application frameworks
based on JavaScript from a conceptual point of view.

• The prototypical implementation of collaboration extensions for two selected frameworks
is delineated in Chapter 4. In addition to the selection process of frameworks serving
as foundation for the prototypes, the different implementation layers of the collaboration
extensions are described.

1.2 Introductory Application Example 3

• In Chapter 5 the results of a developer study assessing several software quality charac-
teristics for one of the implemented collaboration extensions are reported. Furthermore
limitations of the current implementation are carved out.

• Chapter 6 concludes the work and emphasizes major contributions. Moreover an outlook
to future research is exposed.

4 Chapter 1 Introduction

2 THE WEB AS APPLICATION
PLATFORM

As of today, the web is well on the way to become the predominant application runtime environ-
ment. To underpin the importance, Section 2.1 sketches the evolution of the web during the last
decades. Because the thesis targets web-based applications enabling synchronous collaboration,
selected applications are investigated in Section 2.2 with respect to their real-time collaboration
capabilities. To ensure that applications with different scopes are analyzed classifications of web
applications regarding their primary application domain as well as their implementation technique
are devised before. Due to the fact that only one third of the explored applications provides built-
in collaboration capabilities, existing development approaches for collaborative applications are
analyzed in Section 2.3 to carve out the major obstacles for application developers. Eventually
Section 2.4 sums up the major findings of this chapter.

2.1 EVOLUTION OF THE WEB

Since 1990, when the first web browser prototype called "WorldWideWeb" [BL12] was released
by Tim Berners-Lee, the web has evolved from a simple document sharing system to a multime-
dia content distribution and application runtime environment. The evolution, which is depicted in
Figure 2.1, took place in three major steps [TM11].

Document Environment

Classic Web

- text, images

- simple navigation by means of

 hyperlinks

Hybrid Web

- animations

- early scripting capabilities

- plugins (flash, …)

Application Environment

Rich Internet Applications (RIAs)

- development leveraging non-web

 technologies (Java, C#, …)

- require additional plugins

Desktop-Style Application Environment

HTML5

- offline application support

- local storage

- canvas API

- built-in audio and video support

- asynchronous script loading

- drag-and-drop support

- customizable context menus

- editable web pages

AJAX

- combination of HTML, CSS, DOM,

 XML, JavaScript

- decoupling UI interaction from

 network communication

Figure 2.1: Major Evolution Steps of the Web (cf. [TM11])

In the first period (see Section 2.1.1) the web served only as document environment facilitating
the distribution of documents among people. During that time the programming capabilities of

5

the web were very limited. Due to emerging software development capabilities, the web was
used increasingly as application platform in the second period (see Section 2.1.2). To enable
rich and interactive web applications, plug-in technologies were used, which demand explicit in-
stallation. Today the web is used, besides document sharing, for different purposes like online
banking, stock trading, e-commerce, etc. Because of its instant availability, i. e. no explicit in-
stallation is required, and on-demand usage of applications, the web will become the leading
application runtime environment during the third period [TM11] (see Section 2.1.3). Conventional
binary programs will be confined to system software, whereas end-user software will shift from
binary programs to web-based programs [TM11].

2.1.1 The Web as Document Environment

Starting from the early 1990s, the web was used primarily as a simple document viewing envi-
ronment.

In the era of the Classic Web (early 1990s) web pages were simple page-structured documents
containing nothing but text with images. Users could navigate between different pages leveraging
hyperlinks. Every time the user clicked on a link, a new page was obtained synchronously from
the web server. Therefore every page navigation on the user interface caused an HTTP request
from the client to the server, some server-side processing and finally the return of a new HTML
page to the client. Because the interaction with the user interface was blocked until the new
page arrived at the browser, this interaction model between client and server is referred to as
synchronous interaction scheme [Gar05].

Due to the introduction of Dynamic HTML (DTHML) [Goo07] in the late 1990s, the web started to
move in directions that were not foreseen by the original designers, referred to as Hybrid Web.
DHTML is a combination of HTML with Cascading Style Sheets (CSS), the Document Object
Model (DOM) and the JavaScript programming language. Leveraging these additional technolo-
gies, web pages became increasingly interactive, containing richer content like animated graphics.
Audio and video contents could be embedded using plug-in technologies like Adobe Flash1, Ap-
ple QuickTime2 and Macromedia Shockwave3. Furthermore business logic started to move from
the server to the client. However, the interaction scheme between client and server was still
synchronous.

2.1.2 The Web as Application Environment

Asynchronous JavaScript and XML (AJAX), coined by Jesse James Garret in 2005 [Gar05],
changed the primary interaction model of the web and therefore increased its use as an appli-
cation environment. AJAX is rather a combination of existing technologies used together in a
particular way than a dedicated technology. HTML and CSS for standards-based presentation,
the DOM to enable dynamic user interface manipulations, data interchange and manipulation by
means of XML and XSLT, XMLHttpRequests for asynchronous data retrieval and JavaScript [Fla11]
linking everything, are the major building parts of an AJAX-based application. Leveraging these
technologies decouples user interface interaction from client-server communication and elimi-
nates the click-wait-response interaction scheme, which was inherent to the web before. AJAX
enables asynchronous communication with the web server, i. e. every user interaction corre-
sponds only to a JavaScript function call, which is handled locally by the JavaScript engine of the
browser. Therefore simple data validation can be carried out on the client without any server com-
munication. More complex modifications use XMLHttpRequests to retrieve data from the server.

1http://www.adobe.com/de/products/flash.html
2http://www.apple.com/de/quicktime/
3http://get.adobe.com/de/shockwave/

6 Chapter 2 The Web as Application Platform

However, the browser could not be treated as full-fledged application runtime environment during
this time, since it lacked a comprehensive set of APIs and sophisticated graphics capabilities.

To provide a rich set of APIs, similar to those for desktop application development, the web
moved towards Rich Internet Applications (RIAs). RIAs are built upon a development platform
providing specific development tools and a dedicated runtime environment in form of a browser
plug-in. Thereby the programming capabilities of the web (HTML, CSS, JavaScript) are hidden
from the application developer, e. g. by programming languages like Java. Examples for RIA
platforms are Adobe Flash4, Java FX5 and Microsoft Silverlight6. The major advantage of these
platforms are the powerful APIs available to the application developer, whereas the drawback is
the necessity to install and update a dedicated browser plug-in to run the applications.

2.1.3 The Web as Desktop-Like Application Environment

The increasing utilization of the web browser as runtime environment for desktop-style applica-
tions is driven by several emerging World Wide Web Consortium (W3C) standards since 2010.
Earlier standardization efforts can be tracked back to the Web Hypertext Application Technology
Working Group (WHATWG)7, which has published first drafts already in 2008.

The HTML5 standards landscape [Hic12a, Hic12c, Hic12b, Mar11] complements existing HTML
standards with numerous new features. The following list contains some examples:

• Asynchronous Script Loading allows to load scripts asynchronously using the async at-
tribute of the <script> tag.

• Drag-and-Drop Support provides an event-based drag-and-drop mechanism.

• Customizable Context Menus enable the adaptation of the web browser’s context menus
according to the application.

• Canvas API describes the <canvas> element providing a 2D drawing canvas, which can be
used to create graphical shapes procedurally.

• Built-in Audio and Video Support describes <audio> and <video> elements facilitating
the playback of audio and video files in the browser without requiring additional plugins.

• Editable Web Pages make client-side, rich text page edits possible leveraging the attribute
contentEditable.

• Web Storage provides an API to a key-value store in the browser persisting application data
as string values.

• Web Messaging allows the communication in HTML documents between different brows-
ing contexts (e. g. iframes).

• WebGL enables the native rendering of 3D graphics in the web browser without requiring
any plug-in components.

4http://www.adobe.com/products/flash.html
5http://www.javafx.com/
6http://www.microsoft.com/silverlight/
7http://www.whatwg.org/

2.1 Evolution of the Web 7

2.2 CLASSIFICATION OF WEB APPLICATIONS

As outlined in the previous section, these days the web is becoming the predominant runtime
environment for end-user applications. A myriad of web applications serving different purposes
and adopting different implementation technologies is available. To structure the landscape, we
devised possible classifications of web applications based on both application domain (see Sec-
tion 2.2.1) and implementation technology (see Section 2.2.2).

2.2.1 Classification Based on Application Domain

The classification based on application domain categorizes web applications with respect to their
primary use case. Figure 2.2 depicts six main usage scenarios each with further subordinated
use cases. Be aware that the classification shall provide an overview about possible use cases
without intending to be exhaustive. Furthermore some of the categories might be rearranged.

Web Applications

Multimedia Editing

Computer Aided

Software

Engineering

Office

Graphics Editing Visualization

Information

Management

Spreadsheet

Processing

Word

Processing

Presentation

Support

E-Mail

VideoAudio

Vector

Graphics

Pixel

Graphics

Application

Development

Project

Management

Process

Management

Contact

Management
Scheduling

SketchingMind Mapping

Diagramming

Figure 2.2: Web Application Classification Based on Application Domain

Web applications belonging to the Graphics Editing domain provide tools to edit vector or pixel
graphics. Accordingly, typical drawing operations like the creation of lines, ellipses, rectangles,
text, etc., are supported. Furthermore the filling of shapes or stroke styles might be modified.
Graphics editing applications can be divided further with respect to their used data format. Vector
Graphics tools use geometrical primitives such as points, lines, polygons, etc., based on mathe-
matical expressions to represent the image. Pixel Graphics tools use a dot matrix data structure
representing a grid of pixels, i. e. points with a specific color. Besides the typical drawing opera-
tions pixel graphics tools support the correction of under- and overexposure, blurring as well as
noise reduction of images.

Multimedia Editing applications support the modification of audio and video data. Audio Editing
applications enable the modification of audio clips by means of trimming, looping as well as
adding effects like reverb, delay, etc. The seamless integration of video, audio, images and
text, as well as the insertion of transitions and titles between different video clips is fostered by
applications belonging to the Video Editing domain.

Frequent tasks at work might be supported by Office applications. Communication can be simpli-
fied using E-Mail applications to create and send (HTML) e-mails, as well as to browse through
previous conversations. Presentation Support tools enable the creation of slide sets comprising
texts, graphics and diagrams joined by transitions. Creating spreadsheets as well as conducting

8 Chapter 2 The Web as Application Platform

calculations or data analysis is supported by Spreadsheet Processing applications. Word Process-
ing applications aim at the creation of rich text documents. Therefore they allow modifying the
style of text, the font size as well as the creation of tables and the insertion of images.

The category Computer Aided Software Engineering encompasses applications supporting the
whole development process of software. Web-based integrated development environments, clas-
sified as Application Development tools, offer syntax highlighting and syntax checking for several
programming languages. Features like automatic code completion as well as test and debug sup-
port are provided too. Project Management applications help organizing projects throughout their
whole lifecycle supporting for example Gantt diagrams.

Information Management applications organize business-related and personal information. Al-
lowing for the management and prioritization of tasks, the adding of due dates and notes, Schedul-
ing tools help employees to keep track about their next action items. The organization of large
contact databases can be achieved leveraging Contact Management applications, offering for ex-
ample categorization of contacts and sophisticated searching capabilities. Process Management
applications aim at the design, documentation and monitoring of business processes.

Visualization tools support the visual representation of varying objects. Mind Mapping applica-
tions enable the creation of tree-based visualizations, referred to as mind maps, to structure ideas
carved out for example during a brainstorming session. Whiteboards are often used to visualize
and communicate thoughts. Therefore Sketching applications usually provide a collaboration-
enabled real-time whiteboard in the browser. Multi-purpose Diagramming tools support the cre-
ation of several kinds of diagrams like UML diagrams, organization charts, flow charts, networking
diagrams, sitemaps, Venn diagrams, etc.

2.2.2 Classification Based on Implementation Technology

Because web applications can be implemented using different technologies, another possible
classification is based on the used technologies. Figure 2.3 illustrates the different categories of
such a technology-based classification out of the developers’ perspective.

Web Applications

Plug-In Based

JavaScript

Plug-In Free

Non JavaScript

Trans-

compiled
Interpreted

Plug-In Free

Figure 2.3: Web Application Classification Based on Implementation Technology

Currently JavaScript is the predominant implementation technique for plug-in free applications
in the web. JavaScript applications can be built by means of pure JavaScript, leveraging low-level
libraries like jQuery8 or high-level frameworks like Knockout.js [San12]. Since applications built by
means of JavaScript use standardized web technologies, they do not require a dedicated plug-in
as runtime environment.

Non JavaScript, but plug-in based applications require the installation of additional browser
plug-ins serving as runtime environment. Example technologies belonging to this category are

8http://jquery.com/

2.2 Classification of Web Applications 9

Adobe Flash9, Java FX10 and Microsoft Silverlight11. Because of the slipping importance of
browser plug-ins, these technologies and the resulting applications are neglected in the following.
Some non JavaScript, but plug-in free implementation techniques are available too. Some of them
enable the developer to write the application’s code in a language abstracting from concrete web
technologies like HTML, CSS, etc. Therefore a transcompilation step is required to transform the
code into pure JavaScript after development. Two example technologies are Google Web Toolkit12

enabling web application development in Java, and CoffeeScript13. CoffeeScript improves the
readability of JavaScript and enriches the language for example with list comprehension and pat-
tern matching. In contrast to transcompiled languages, interpreted ones are evaluated at runtime
leveraging an interpreter. Because the interpreter itself can be written in JavaScript, no plug-in is
necessary. An example for this approach is Objective-J14.

2.2.3 Classification of Current Web Applications

To corroborate the classifications, Table 2.1 provides application examples for each of the classifi-
cation categories. Because some applications comprise features relevant for different application
domains, the assignment might be ambiguous. Moreover, the table contains information about
the applications’ real-time collaboration support and provides URLs pointing to the applications’
web pages. The support was judged adopting two application instances and provides a first im-
pression of the application share supporting real-time collaboration. Be aware that the provided
list is not necessarily exhaustive.

Plug-In Plug-In Free

Graphics Editing Vector Graphics SVG-edit no JavaScript http://code.google.com/p/svg-edit/
Aviary Raven no Flash http://advanced.aviary.com/tools/vector-editor

Pixel Graphics Splashup no Flash http://www.splashup.com/
Pixenate no JavaScript http://pixenate.com/

Multimedia Editing Audio Aviary Myna no Flash http://advanced.aviary.com/tools/audio-editor
Video Movie Masher no Flash http://www.moviemasher.com/

Office E-Mail Roundcube no JavaScript http://www.roundcube.net/
Presentation Support Prezi yes Flash http://prezi.com/

SlideRocket yes Flash http://www.sliderocket.com/product/
Spreadsheet Processing EditGrit yes JavaScript http://www.editgrid.com/

GelSheet no JavaScript http://sourceforge.net/projects/gelsheet/
Word Processing CKEditor no JavaScript http://ckeditor.com/

TinyMCE no JavaScript http://www.tinymce.com/
Application Development Cloud9 IDE no JavaScript http://c9.io/

CodeRun Studio no JavaScript http://www.coderun.com/studio/
TeamGantt no JavaScript https://teamgantt.com/
Redmine no JavaScript http://www.redmine.org/

Scheduling Sandglaz yes JavaScript http://www.sandglaz.com/
Contact Management BigContacts no JavaScript http://www.bigcontacts.com/

Relenta no JavaScript http://www.relenta.com/
Process Management Process Maker no JavaScript http://www.processmaker.com/

IYOPRO no Silverlight http://www.iyopro.com/
Visualization Mind Mapping MindMeister yes Flash http://www.mindmeister.com/

MinDomo yes Flash http://www.mindomo.com/
Sketching Twiddla yes JavaScript http://www.twiddla.com/

Dabbleboard yes Flash http://www.dabbleboard.com/
Diagramming LucidChart yes JavaScript http://www.lucidchart.com/

Creately yes Flash http://creately.com/
GENi Family Tree no Flash http://www.geni.com/

URL

Computer Aided
Software
Engineering

Real-Time
Collaboration

Implementation Technology

Information
Management

Domain Subdomain Application

Project Management

Table 2.1: Classification of Available Web Applications

Table 2.1 shows 29 applications belonging to different application domains. The utilized implemen-
tation technique is usually JavaScript or Flash. Other technologies like Silverlight play only a sec-
ondary role. Due to this finding and the HTML5 standardization movements (see Section 2.1.3),
a trend towards JavaScript applications might be assumed. Moreover only one-third of the ap-
plications provide real-time collaboration functionality. While almost all visualization tools provide
collaboration functionalities, graphics editing, multimedia editing, office, as well as computer
aided software engineering and information management tools usually lack collaboration support.

9http://www.adobe.com/products/flash.html
10http://www.javafx.com/
11http://www.microsoft.com/silverlight/
12https://developers.google.com/web-toolkit/
13http://coffeescript.org/
14http://cappuccino.org/

10 Chapter 2 The Web as Application Platform

2.3 DEVELOPMENT APPROACHES FOR COLLABORATIVEWEB AP-
PLICATIONS

Although several approaches for the incorporation of real-time collaboration features into applica-
tions are available, about two-thirds of the inspected web applications provide no possibilities to
work together in real-time (cf. Table 2.1). To bring the reasons to light, different development
approaches are analyzed regarding their impact on the source code of existing applications as
well as imposed challenges on developers.

2.3.1 Operational Transformation Libraries

Operational transformation libraries implement a synchronization algorithm for documents subject
to concurrent changes by different users named operational transformation (OT). The underlying
idea of the algorithm is the representation of every document modification as operation. Oper-
ations are generated locally by a user and broadcasted to all other users afterwards. Incoming
operations of remote users are checked locally, whether they are referring to an application state
different from the current one. In the case of discrepancies, the OT algorithm transforms the
incoming operations to be responsive to the differences. Afterwards incoming operations are
treated as they were created locally based on the current application state. Details about the
OT algorithm are exposed in Section 3.4.2. In the following some examples of OT implementa-
tions are introduced and assessed.

The Open Cooperative Web Framework (OpenCoWeb)15 provides an OT implementation for
the synchronization of shared strings and arrays. OpenCoWeb conforms to a client-server ar-
chitecture. The client is implemented in JavaScript, whereas server implementations in Python
based on the Tornado web server16 as well as in Java using the CometD library17 are available.
Operations are called CoWeb events and can be created and received via a JavaScript API. Open-
CoWeb is managed as open source project under the BSD license on GitHub.

ShareJS18 provides collaborative editing capabilities for plain text and JSON data [Int11]. ShareJS
follows also a client-server architecture. Both client and server are implemented in CoffeeScript,
which can be transcompiled to JavaScript. The server runs on Node.js19, whereas the client can
run either on Node.js or the web browser. Node.js is built on Chrome’s V8 JavaScript engine,
providing an event-driven non-blocking I/O model for the development of applications written in
JavaScript. The API visible to the developer exposes methods to manipulate shared data and to
react on changes to the data due to incoming operations.

SAP Gravity implements a context-based operational transformation algorithm similar to the algo-
rithm introduced by David and Chengzheng Sun in [SS06]. During the last decade OT has evolved
continuously and was used for several data structures including tree structures [DSL02]. SAP
Gravity takes a step forward and brings OT to directed, labeled and attributed graph structures.
Because SAP Gravity will be used as foundation for the prototypes in this thesis, further details
are explained in Section 4.3.

Formerly known as Google Wave, Apache Wave20 is a full-fledged real-time collaboration plat-
form. Synchronization and conflict resolution is done by an operational transformation imple-
mentation, which supports the collaborative editing of XML documents. A special feature of

15http://opencoweb.org/
16http://www.tornadoweb.org/
17http://cometd.org/
18http://sharejs.org/
19http://nodejs.org/
20http://incubator.apache.org/wave/

2.3 Development Approaches for Collaborative Web Applications 11

Apache Wave is an operation composer reducing the amount of operations transmitted to the
server by means of subsumption of operations. Implemented in a client-server fashion, Apache
Wave consists of a stand-alone server which is based on Java, and skeletons for Google Web
Toolkit (GWT)21 client applications. GWT applications are implemented in Java and transcompiled
to JavaScript afterwards.

Although OT libraries are used by almost all collaborative applications today, they impose some
challenges to the developer. First, the application developer has to become familiar with the
API provided by the OT library. Second, the OT library has to be connected with the application
under development or with an already existing single-user application. This requires cumbersome
and scattered source code changes. Moreover, most of the libraries restrict the choice of the
development language. In case of Apache Wave all programming tasks have to be accomplished
in Java, i. e. the utilization of JavaScript frameworks or libraries is not possible.

2.3.2 Collaborative Widget Libraries

Widget libraries, also known as widget toolkits or GUI toolkits, consist of several widgets used
to create graphical user interfaces. Examples for such widgets are buttons, menus, scrollbars,
editable text areas, etc. The widgets provided by a toolkit usually have the same look-and-feel,
which is either hard-coded or exchangeable. While all toolkits procure an API for developers,
some of them provide visual tools for constructing application UIs. Collaborative widget libraries
accommodate widgets enriched with real-time synchronization and conflict resolution capabilities
useful for the construction of collaborative applications. In the following, libraries targeting the
desktop as well as the mobile application domain are introduced and assessed.

The Multi-User Awareness UI Toolkit (MAUI Toolkit) [HG04] developed by Hill and Gutwin is a
collaborative UI widget library. MAUI is based on the Java runtime environment and supports the
development of desktop applications primarily. Standard Swing widgets like buttons, menus, text
boxes, etc., are enriched with functionality for synchronization and conflict resolution. Multi-user
versions of the UI widgets provide the same publically accessible methods as the correspond-
ing single-user widgets. Therefore single-user widgets can be replaced in a manner transparent
to application and developer. Groupware specific widgets like a participant list are supplied too.
Moreover all widgets are packaged as JavaBeans, which enables their reuse and ensures a good
integration with existing integrated development environments (IDEs). One of the major draw-
backs of the MAUI toolkit is, that in case of the conversion of an existing single-user application
UI widgets have to be replaced with their collaborative counterparts. This leads to cumbersome
source code changes, but provides the ability to mix single-user with multi-user UI elements to
synchronize only parts of the application. The development of new applications is restricted to the
use of Java. Furthermore MAUI is only applicable for the desktop landscape, i. e. standards-based
web applications are neglected.

Flexible Java Applets Made Multiuser (Flexible JAMM) [BRS99, BSSS01] is a widget library
dedicated to Swing-based Java applications running in a desktop runtime environment or as applet
in the web browser. To achieve synchronization, Flexible JAMM uses an OT algorithm. Advanta-
geous compared to the MAUI toolkit is the dynamic replacement of single-user UI components
with their multi-user counterparts. The major disadvantage of the Flexible JAMM idea is its limita-
tion to platforms providing runtime replacement mechanisms for classes. The used platform has
to provide dynamic binding, i. e. the resolution of a function invocation or data property access
at runtime. Furthermore, due to the replacement of widget classes at runtime with collabora-
tive counterparts, no selective replacement as with the MAUI toolkit is possible. For example
all instances of an editable text box are replaced. The current Flexible JAMM implementation is
also restricted to Swing-based applications and therefore neglects the domain of standards-based
web applications.

21https://developers.google.com/web-toolkit/

12 Chapter 2 The Web as Application Platform

WatchMyPhone22 provides a reusable set of collaboration-enabled UI components for the An-
droid mobile platform23. The library of widgets encompasses common ones like editable text
boxes, buttons, etc., as well as several groupware-specific widgets. Groupware widgets are for
example a buddy list showing all the local user’s friends, or a chat enabling communication via
text messages in a collaboration session. Real-time synchronization is achieved using the CEFX
operational transformation library24. Because mobile devices often have to deal with phases of
disconnection, a message queue is available ensuring reliable data transfer. Because WatchMy-
Phone as well as the MAUI toolkit rely on a tight coupling between UI controls and synchronization
features, both approaches have the same disadvantages regarding their usability for developers.
Furthermore WatchMyPhone can only be used for applications built on the Android platform,
which narrows the potential use cases substantially.

2.3.3 Transparent Adaptation

Transparent Adaptation (TA) enables the conversion of single-user applications into collaborative
ones. It is neither a low-level solution like the OT libraries (see Section 2.3.1), nor targeted to ap-
plications built upon a special UI widget library (see Section 2.3.2). The term transparent adaption
was coined, since the transformation of a single-user application into a collaborative multi-user
application does not require any source code changes in the original application. Instead an al-
ready existing API provided by the application is used. Therefore the conversion of off-the-shelf
applications developed with no collaboration support in mind is fostered.

The Transparent Adaptation approach was pioneered by Sun et al. [XSS+04, SXS+06]. Initially
two commercial single-user applications (Microsoft Word and Microsoft PowerPoint) were trans-
formed into collaborative applications, named CoWord and CoPowerPoint. Word was chosen for
transformation due its comprehensive data types and operations, its sophisticated API as well
as its prevalent adoption. PowerPoint has been subject to investigation, because slide authoring
tools make use of different data types and operations compared to word processors. In the mean-
time several other applications were transformed. Examples comprise Microsoft Visio [LCSD07],
OpenOffice Writer [SSZ07], Autodesk Maya [ALX+08], AutoCAD [ZSS09] and Eclipse [FS12].

Document synchronization and conflict resolution is achieved by an operational transformation
algorithm. To bridge the gap between application data model and collaborative data model of the
OT implementation a collaboration adapter is used. This adapter utilizes the API of the single-user
application as well as the OT API. Because of the transformation via the application API, function-
alities as well as look-and-feel of the single-user applications are retained. Therefore no additional
trainings concerning the single-user features for end-users working with transformed applications
are necessary. However the TA approach is only suitable, if an application API is already available
and this API provides comprehensive access to the application’s data and operations. Moreover
the devised collaboration adapter is only suitable for a specific application or a set of applications
providing the very same API.

Developed by Heinrich et al., the Generic Transformation Approach [HLSG12] enables the trans-
formation of existing single-user web applications into collaborative applications. The conversion
is achieved by means of a JavaScript file import and a simple configuration. Standardized World
Wide Web Consortium (W3C) APIs, available in almost all browser implementations, are used
to synchronize different application instances using a collaboration adapter based on SAP Grav-
ity (see Section 4.3). Since W3C APIs are application-agnostic, the adapter can be reused for
almost all applications built upon web standards. This reuse supports the cost-efficient transfor-
mation of existing and the development of new collaborative web applications. However, only

22https://github.com/ubuntudroid/WatchMyPhone
23http://www.android.com/
24http://sourceforge.net/projects/cefx/

2.3 Development Approaches for Collaborative Web Applications 13

application state changes reflected in the DOM are synchronized. Therefore the generic transfor-
mation approach is only suitable for applications storing their whole application state in the DOM.
If an application uses for example a JavaScript array containing DOM elements to maintain the
application state, a transformation is not possible. Moreover the generic transformation approach
suffers from cross-browser issues, because DOM representations of a specific application state
might be different among several browsers. For instance, adding and afterwards removing line
breaks in text nodes is handled differently in browsers. While in Chrome and Safari a text node is
still split into two parts after a line break is removed, in Firefox the two parts are merged again.

2.3.4 Code Injection

Code injection approaches leverage miscellaneous mechanisms to inject additional source code
into existing application code. Aspect-oriented programming [KLM+97] enables the addition of
source code at special points in the application code referred to as join points. Therefore appli-
cation concerns that were intermingled with and scattered over the whole source code before,
can now be specified separately. Thus, collaboration functionality can be defined as aspect and
injected into existing application code. Annotation-based code injection provides the possibility
to augment original source code with annotations. These annotations can also be used to inject
collaboration functionality into existing single-user applications.

The Zipper system [RP05] leverages aspect-oriented programming to inject collaboration func-
tionality into applications. Zipper is delivered as Eclipse feature accommodating several Eclipse
plugins. Relying on the Eclipse platform is advantageous because the platform abstracts operat-
ing system dependencies, provides graphics and widgets libraries and is open source. Because
of the open, human-readable source code, the identification of join points to inject collaboration
functionality via aspect oriented programming techniques is possible. Collaborative applications
using Zipper comply with a synchronized state architecture [Pat95] where multiple copies of the
entire application are distributed within the network. The mandatory state synchronization and
conflict resolution is done by means of an OT algorithm. Even if this approach enables the injec-
tion of collaboration code into existing application without touching the original source code, it is
quite hard to use. Because join points have to be identified by the developer, familiarity with the
application’s source code in detail is necessary. In case of large application this is a big challenge.

To the best of our knowledge no approach using annotation-based code injection to incorporate
real-time collaboration functionality into applications is available currently.

2.4 CONCLUSION

Today the web is a real application runtime environment with desktop-style user interaction capa-
bilities, persistence mechanisms, etc. Due to the HTML5 movement, the web is well on the way
to become the predominant runtime environment for web applications.

To provide a structured overview about available web applications, two possible classifications
were introduced. The classification based on application domain as well as on the used imple-
mentation technology. Typical application domains comprise graphics editing, multimedia editing,
office, computer aided software engineering, information management as well as visualization.
Application implementations use JavaScript or non JavaScript technologies that either require
browser plug-ins or not. Because plug-ins are not available on each and every browser, plug-in
based applications are of slipping importance. Therefore we assume that JavaScript will be the
predominant client-side implementation technique for future web applications.

14 Chapter 2 The Web as Application Platform

Although several development approaches for collaborative web applications are available, about
two-third of the analyzed web applications lack real-time collaboration features. Even though real-
time collaboration might not be of crucial importance in some use cases (for example contact
management), other application domains like office applications could profit substantially from
the introduction of collaboration support. The small amount of collaboration-enabled applications
may be due to current implementation techniques for real-time support requiring too much ef-
fort. Using OT libraries requires the familiarity with the OT API as well as major source code
changes in the whole application. Widget libraries abstract the low-level OT API but still require
scattered source code changes in the application. Furthermore they force developers to use a
special UI toolkit. Transparent Adaptation techniques were designed to enable the transforma-
tion of existing single-user applications without source code changes. Because TA approaches
communicate with the application only via its API, the API has to provide comprehensive access
to the application. Aspect-oriented programming techniques require the analysis of the applica-
tion’s source code to specify join points. This can be a challenge in large applications. Furthermore
the reuse of predefined aspects is limited due to their dependency on concrete identifiers in the
source code. Due to the necessity for major source code changes or the availability of compre-
hensive APIs, it can be concluded that current development approaches are hard to handle for
developers.

Because of the findings in this chapter, the following ones will concentrate on JavaScript-based
web applications. To ease the development of collaborative web applications a novel develop-
ment approach for collaborative real-time applications will be introduced. This approach tries to
eliminate some of the shortcomings of existing development approaches.

2.4 Conclusion 15

16 Chapter 2 The Web as Application Platform

3 CONCEPTION OF A
COLLABORATION EXTENSION
FOR JAVASCRIPT FRAMEWORKS

Changing the source code of an application at various points to integrate collaboration features
is an error-prone and cumbersome task. Therefore, we aim to enhance existing web application
frameworks with collaboration extensions. These extensions shall enable a lightweight and rapid
integration of collaboration features into framework-based applications.

The basic structure of a framework-based application running two instances enriched with a col-
laboration extension is depicted in Figure 3.1. Each instance is a separate copy of the whole
application and comprises different application parts according to the Model-View-Controller de-
sign pattern (see Section 3.2.1). Thus, multiple copies of the application data exist, which might
become inconsistent between the instances. Therefore consistency management for the shared
application, i. e. synchronization and conflict resolution, has to be ensured via the integrated
collaboration extension.

View

ControllerModel

Application Instance 1 Application Instance 2

View

Controller Model Model

View

ControllerSynchronization

Collaboration

Extension

Collaboration

Extension

Figure 3.1: Application Running on Multiple Sites with a Collaboration Extension

Section 3.1 introduces important requirements for collaboration extensions to circumvent the
issues of current development approaches for collaborative applications (see Section 2.3).

Since a collaboration extension ideally shall be applicable to several framework-based applications,
frameworks have to be evaluated to find common characteristics that enable the specification of
a reusable collaboration extension. Frameworks usually share structural blueprints provided by
design patterns. Those structural constraints might be suitable for the integration of a reusable
collaboration extension. Thus, the most important structural patterns are described in Section 3.2.

Even though design patterns fix the general structure of frameworks and thus framework-based
applications, the actual implementation can differ in several ways. As a result, no collaboration

17

extension suitable for all framework-based applications adhering to a specific design pattern can
be devised. Fortunately, groups of frameworks provide similar implementations of the patterns.
These similarities enable the conception of collaboration extensions applicable to a group of
frameworks having comparable properties.

To distinguish frameworks, facets like the framework architecture, programming language, frame-
work integration, UI specification, UI update as well as data model structure and listener regis-
tration are important. While some of the facets crucially influence the design of collaboration
extensions, others are only important in terms of the overall development effiency. Section 3.3
gives a structured overview of the different facets. Moreover, conceptual architectures of collab-
oration extensions compliant with frameworks adhering to a specific set of characteristics are
introduced in Section 3.4. Section 3.5 summarizes the findings of this chapter.

3.1 REQUIREMENTS FOR A COLLABORATION EXTENSION

The existing development approaches for collaborative real-time applications introduced in Sec-
tion 2.3 suffer from several issues leading to an error-prone and dull development process and/or
a steep learning curve for the application developer. Therefore a novel framework extension is de-
vised that eliminates most of the existing shortcomings. In the following the major requirements
to tackle this challenge successfully are explained.

Investigations on the history of the web [TM11] showed that the web browser will become the
predominant runtime environment for applications in the future. In addition the survey of existing
web applications (see Section 2.2) revealed JavaScript as the predominant programming language
for web applications. Therefore the framework extension shall enrich a framework that supports
JavaScript and uses the web browser as target runtime environment.

Since real-time collaboration helps geographically dispersed talents to work together efficiently,
the framework extension has to support concurrent work in a shared workspace by multiple
participants. Because it is convenient for end-users to use the very same application in both
single-user as well as collaborative scenarios, the user interface and functionality shall remain
unchanged in the collaborative case. This requirement is referred to as application compati-
bility [SXS+06]. Furthermore unconstraint collaboration shall be supported. Especially relaxed
What You See Is What I See (WYSIWIS) [SBF+87] shall be supported, enabling the participants
to have completely different views on the shared data.

Out of the developers’ perspective the framework extension shall have a flat learning curve. Ide-
ally development skills already acquired during the development of single-user applications shall
be applicable in the collaborative case. Moreover, the integration of collaboration functionality
shall happen without major source code changes. Additionally, the application shall not be forced
to expose a dedicated API.

Because the web browser runtime environment differs slightly among different implementations,
i. e. various browsers, cross-browser scenarios shall be supported.

The following list summarizes the challenges and requirements explained in detail before:

• R01: The target runtime platform shall be the web browser.

• R02: The framework extension shall be based on JavaScript.

• R03: Concurrent work in a shared workspace shall be enabled by the extension.

• R04: Application compatibility shall to be ensured.

18 Chapter 3 Conception of a Collaboration Extension for JavaScript Frameworks

• R05: Users shall be able to perform arbitrary operations on any data object at any time.

• R06: The framework extension shall provide a simple API.

• R07: The framework extension shall have a flat learning curve so that developers can get
started almost immediately.

• R08: The integration of collaboration functionality into an application should not require
major source code changes.

• R09: The selective sharing of application parts shall be possible.

• R10: No specific application API providing comprehensive access to the application shall be
required to use the framework extension.

• R11: The framework extension shall be reusable for several framework-based applications.

• R12: An application state reflecting not the whole JavaScript application state in the DOM,
i. e. a scattered application state, shall be supported.

• R13: Cross-browser scenarios shall be supported.

3.2 ARCHITECTURAL PATTERNS OF JAVASCRIPT FRAMEWORKS

To disburden programmers from writing boilerplate code, well-known software engineering prin-
ciples are supported by today’s web application frameworks. Separation of Concerns [Dij82] is
one representative. Introduced by Edsger W. Dijkstra in 1974, it requires different aspects of an
application to be kept separate, i. e. the whole system shall be decomposed into subsystems
with almost distinct functionality.

Another popular metaphor to structure applications is Tools and Materials established by Dirk
Riehle and Heinz Züllighoven in 1995 [RZ95]. Materials are things the user can work on using
different tools. Tools are necessary to modify the materials during work, because users are not
allowed to access the materials directly. Providing efficient means of work, tools enable users
to work with the material under a certain perspective. However, materials can be processed
adopting different tools, all of them having different perspectives on the material.

Structuring applications according to the mentioned design principles is assisted by frameworks
implementing design patterns that aim at a clean separation of different application facets [MT08].
The following application facets are kept separate in general:

• The user interface enabling the user to communicate with the application,

• application data representing the application’s state, and

• the interaction of the user with the application triggering particular actions.

In the following sections two concrete examples for design patterns will be presented. The
Model-View-Controller (see Section 3.2.1) and the Presentation Model pattern (see Section 3.2.2).
Those patterns represent the basis for the derivation of a conceptual architecture for web applica-
tion framework collaboration extensions.

3.2 Architectural Patterns of JavaScript Frameworks 19

3.2.1 Model-View-Controller (MVC)

The Model-View-Controller (MVC) pattern was developed by Trygve Reenskaug in 1979 [Ree79a,
Ree79b], when he was visiting scientist at Xerox Palo Alto Research Laboratory. After Reen-
skaug left Xerox, Jim Althoff and others did the first implementation for Smalltalk 80, which is
described in [KP88]. Later on, the pattern has been adopted to varying degrees in GUI libraries
and application frameworks.

Focusing on the inspection and manipulation of data displayed via multiple views, the pattern
describes the encapsulation of data with related methods in a data model isolated from its pre-
sentation and manipulation by the user. A schematic overview of the pattern structure is depicted
in Figure 3.2.

data

manipulation

data access

change notificationus
er

 e
ve

nt
s

Controller

View

Model

Figure 3.2: Model-View-Controller (MVC) Pattern

The MVC pattern comprises three major building parts:

The Model represents a collection of data with associated manipulation methods. Since the
model contains no details about data representation on the screen, the views are immediately
notified on any changes. Because views access the model only via a specific interface, the model
can hide how the data is actually stored, i. e. whether it is using an in-memory data structure, a
local file or a relational database.

A View serves as visual representation of one model, i. e. it determines how the model is
displayed on the screen. Due to the fact that one model might have several views focusing on
different aspects, a view can be envisioned as filter extracting certain aspects of the underlying
model and neglecting others. To stay in sync with their underlying model, views subscribe to
model changes and request updates whenever changes have occurred. Moreover views are in
charge of delegating user events to the controller.

Formerly the Controller was treated as container for views, determining where they are placed
on the user interface. During the last decades the role of the controller has changed to a container
encapsulating the application’s business logic. Therefore the controller has to update the model
on behalf of user interactions with the view, i. e. the controller maps user actions to model
updates. Because the MVC pattern envisages no direct reference between view and controller,
both of them can be used interchangeably. A view might exchange its associated controller to
behave differently, or a controller might be reused among multiple views.

3.2.2 Presentation Model (PM)

Nowadays user interfaces are often created by UI designers. However the state of the view, the
user of an application is interacting with, is often represented only implicitly by the UI controls.
This intermixture of UI representation with application state impedes the maintanence of both UI
and business logic. Therefore the Presentation Model (PM) pattern, published by Martin Fowler
in 2004 [Fow04], pulls state and behavior out of the controls. Providing an explicit representation
of the UI state and behavior in an additional layer independent of concrete controls in the user

20 Chapter 3 Conception of a Collaboration Extension for JavaScript Frameworks

data access

ch
an

ge

no
tif

ic
at

io
n

da
ta

 m
an

ip
ul
at

io
n

data manipulation
Presentation

Model

View

Model

Figure 3.3: Presentation Model (PM) Pattern

interface, the presentation model has to synchronize its state with the UI continuously. Figure 3.3
illustrates the general structure of the pattern.

The View comprises different visual elements like graphics, buttons, input fields, etc., visualizing
the presentation model on the screen. Almost always defined declaratively, a view does not
store any state. Instead every view has assigned exactly one presentation model serving as
data store for the view’s state. Therefore the view and its assigned presentation model have
to be synchronized anytime. Every time the presentation model changes, the view is updated
accordingly and vice versa.

Abstracting a view, the Presentation Model is a self-contained pure code representation of the
view’s data and behavior. Because the presentation model does not have any information about
the controls that render its data on the UI, it is not dependent on any specific UI framework.
Presentation models contain data fields for all dynamic information of the view, i. e. not only for
the content of the view, but also for all properties indicating for example whether some control
is currently enabled or not. In case of HTML-based views any text node, style attribute, etc., can
be mapped to a corresponding data structure. Due to the fact that views often require the data
to be displayed in a special format, the presentation model contains value converters for their
properties. Besides simple transformation functions, the presentation model contains complex
operations to manipulate the application’s data on behalf of the user.

The Model persists application data for example leveraging a XML data structure or a relational
database. Being completely UI independent, the model communicates only with different presen-
tation models that can be treated as a specialization of the model focusing on different aspects.

John Gossman picked up the Presentation Model pattern in conjunction with the Windows Pre-
sentation Foundation1 in one of his blog posts in 2005 [Gos05]. Because presentation models
serve as models of views he renamed the pattern to Model-View-ViewModel (MVVM) being the
more popular term today. In the MVVM pattern the view model corresponds to the presenta-
tion model in the PM pattern. Gossmann focuses on the connection between the view and its
corresponding view model. Synchronization between those two layers can be achieved either pro-
cedurally registering manually written callback functions or declaratively leveraging data bindings
handled by a framework. To disburden developers from writing synchronization code, the use
of a two-way data binding mechanism is recommended. Usually handled by a framework, this
mechanism ensures that view and view model are synchronized on any changes, i. e. changes
to the view model are reflected in the view immediately and vice versa. If referring to the PM
pattern in the following, we will use the term MVVM.

3.3 CLASSIFICATION OF JAVASCRIPT FRAMEWORKS

The design patterns introduced in Section 3.2 specify only abstract archetypes for application
structures enforced by frameworks. Therefore frameworks can implement the patterns differ-
ently resulting in different application structures. Because there is a plentitude of different imple-
mentations available in the web, in the following different facets that might be used to classify

1http://windowsclient.net/wpf/

3.3 Classification of JavaScript Frameworks 21

frameworks are introduced. Based on this classification different collaboration extensions suitable
for a group of frameworks with specific properties are derived in Section 3.4. In the following,
frameworks implementing the MVC (see Section 3.2.1) or MVVM (see Section 3.2.2) pattern are
referred to as MV* frameworks.

The classification facets for MV* frameworks can be grouped into three major classification di-
mensions as depicted in Figure 3.4.

Framework Classification

Dimensions

Framework

Architecture

Development

Process

Implementation

Details

Architectural Pattern Programming Language

Framework Integration

User Interface

Specification

User Interface Update

Data Model Structure

Listener Registration

Figure 3.4: MV* Framework Classification Dimensions

The Framework Architecture dimension encompasses the architectural pattern the framework
implements. This facet is of crucial importance for the conception of collaboration extensions,
since its values determine the application part which is target for synchronization. Differences in
the programming language and the steps to incorporate a framework successfully into an applica-
tion are the subject matter of the Development Process dimension. This classification dimension
is of importance when selecting frameworks for the actual implementation of a collaboration ex-
tension, because the accommodated facets influence the overall development efficiency. Several
technical aspects distinguishing MV* frameworks are subsumed by the Implementation Details

dimension. Especially the facet dealing with the data model structure impairs the design of col-
laboration extensions.

3.3.1 Architectural Pattern

MV* frameworks might be classified with respect to the architectural pattern they adhere to.
Currently the most popular patterns are MVC (see Section 3.2.1) and MVVM (see Section 3.2.2).

3.3.2 Programming Language

Developers using a framework are obliged to write their programs in a particular programming
language. Which language is fostered by a framework is of crucial importance, since getting
familiar with a new language is challenging and time consuming. Moreover languages differ in
the supported programming paradigms and expressiveness.

Nowadays JavaScript is the most prevalent language for developing the client-side of web appli-
cations. Being developed since 1995, it was standardized for the first time in June 1997 by ECMA
International in the "Standard ECMA-262" [Int97]. In June 2011 version 5.1 of the standard was re-
leased [Int11]. JavaScript is a dynamically typed, class-free and prototypal language [Cro08] able
to mimic the object oriented, procedural as well as functional programming style. The popularity
of JavaScript is nurtured by the runtime environment included in every up to date web browser.

CoffeeScript2 is developed since 2009 by Jeremy Ashkenas and currently released in ver-
sion 1.3.1 under the MIT license. Based on JavaScript it adds some syntactic sugar inspired

2http://coffeescript.org/

22 Chapter 3 Conception of a Collaboration Extension for JavaScript Frameworks

by Ruby, Python and Haskell. Compared to JavaScript it uses for example line breaks to termi-
nate expressions and indentation instead of curly braces. Moreover pattern matching as well
as list comprehension is supported. Since CoffeeScript is transcompiled to JavaScript, existing
JavaScript libraries can be used seamlessly.

Appeared for the first time in 2008, Objective-J3 is today an inherent part of the Cappuccino
framework. Having a syntax comparable to Objective-C, Objective-J adds for example class-based
programming capabilities to JavaScript. Programs written in Objective-J can be transcompiled to
JavaScript or interpreted at runtime leveraging a dedicated interpreter.

3.3.3 Framework Integration

Classification in terms of the framework integration targets the question, what steps have to be
accomplished to make use of a framework.

Using a single JavaScript include is the simplest way to incorporate a framework into an appli-
cation. In this case only a single JavaScript file has to be included in the application. Listing 3.1
depicts a simple application leveraging the Knockout.js framework [San12]. Notice the <script>
tag including the JavaScript file named knockout-2.0.0.js that contains the framework code.

<html>
<head>

<script type="text/javascript" src="knockout-2.0.0.js"></script>
</head>
<body>

<h1 data-bind="text: heading"/>
<script type="text/javascript">
viewModel = {

heading: "My Task Application"
};
ko.applyBindings(viewModel);

</script>
</body>

</html>

Listing 3.1: Single JavaScript Include of Knockout.js framework

Frameworks leveraging a programming language aside from JavaScript often require a prepro-

cessor to transcompile the application code into pure JavaScript. If the language cannot be
transcompiled, often the integration and configuration of a dedicated runtime interpreter written
in JavaScript is necessary.

3.3.4 User Interface Specification

Another classification dimension for MV* frameworks is the way the developer can create the
application’s user interface.

Frameworks using templates to create the user interface usually allow the developer to specify
HTML templates, i. e. simple HTML pages with placeholders for dynamic content filled at runtime.
Revisiting the introductory example (see Section 1.2) Listing 3.2 shows the template definition
for a single task item with name and priority leveraging Handlebars4 semantic templates. Note
the placeholders embraced by double curly brackets ({{...}}).

3http://cappuccino.org/
4http://handlebarsjs.com/

3.3 Classification of JavaScript Frameworks 23

<div class="taskItem">
{{title}}
 -
{{priority}}

</div>

Listing 3.2: Template-Based UI Specification by means of Handlebars

Frameworks can also provide predefined UI widgets that might be used by the application devel-
oper to construct the application’s user interface. Listing 3.3 shows once again the specification
of a single task item having a name and priority, but this time by means of SproutCore5 leveraging
predefined UI widgets. Notice the valueBinding properties specifying placeholders with links
to their corresponding dynamic content.

SC.View.design({
childViews: ["labelView0", "labelView1", "labelView2"],
labelView0: SC.LabelView.design({

tagName: "span",
valueBinding: ".title"

}),
labelView1: SC.LabelView.design({

tagName: "span",
value: " - "

}),
labelView2: SC.LabelView.design({

tagName: "span",
valueBinding: ".priority"

})
});

Listing 3.3: Widget-Based UI Specification by means of SproutCore

3.3.5 User Interface Update

Application user interfaces have to be updated to represent the current state of the application.
Because the way frameworks support the UI update differs, MV* frameworks might be classified
according to their UI update technique.

Usually used by MVVM frameworks (see Section 3.2.2), data binding enables the declarative
specification of links between placeholders in the UI and dynamic content in the view model. On
the basis of these links, synchronization code is automatically inserted in the application ensuring
the automatic update of the view whenever the underlying view model changes, as well as the
update of the underlying view model whenever the UI changes. Leveraging the Knockout.js
framework [San12], Listing 3.4 shows the UI template and its corresponding data binding to the
view model for a simple list of task items having only a name.

The viewModel variable encapsulates the view model of the application. In case of the example
it only comprises an array containing tasks. This array is created as observableArray to enable
the use of data bindings to the UI. The UI specification is template-based and binds an
element to the tasks array. Therefore the element contained in the element is
rendered for each of the tasks array items. The text binding in the element specifies
that the element shall be filled with the string of the corresponding array item. Since the used
data-bind attributes are not native to HTML, the browser is not able to interprete the attributes.
Therefore the invocation of ko.applyBindings(viewModel) triggers the evaluation explicitly.

Another possibility to update the UI of an application is the procedural view update. In this
case, code manipulating DOM elements as a consequence of model changes and vice versa, has

5http://sproutcore.com/

24 Chapter 3 Conception of a Collaboration Extension for JavaScript Frameworks

<html>
<head>

<script type="text/javascript" src="knockout-2.0.0.js"></script>
</head>
<body>

<ul data-bind="foreach: tasks">
<li data-bind="text: $data"/>

<script type="text/javascript">
viewModel = {

tasks: ko.observableArray([
"Task One",
"Task Two"

])
};
ko.applyBindings(viewModel);

</script>
</body>

</html>

Listing 3.4: Data Binding by means of Knockout.js

to be written by the developer. Listing 3.5 shows the model definition and a UI update function
triggered due to model changes on the basis of Backbone.js6.

<html>
<head>

<script type="text/javascript" src="backbone.js"></script>
</head>
<body>

<ul id="taskList"/>

<script type="text/javascript">
Task = Backbone.Model.extend({});
TaskList = Backbone.Collection.extend({

model: Task
});
tasks = new TaskList;

tasks.on("add", function(element) {
var ul = document.getElementById("taskList");
var li = document.createElement("li");
var text = document.createTextNode(element.get("name"));
li.appendChild(text);
ul.appendChild(li);

});

tasks.create({name: "Task One"});
tasks.create({name: "Task Two"});

</script>
</body>

</html>

Listing 3.5: Procedural View Update by means of Backbone.js

The variable tasks references an instance of an observable collection, i. e. a collection that
allows listeners to be notified upon the addition or removal of elements. In the example the
collection contains simple task items having only a name. Every time a task is added to this
collection the registered callback function is called. This function first obtains the root element
of the task list from the DOM by means of its unique identifier. Afterwards it creates DOM
elements representing the newly added task item. Finally the new elements are added to the list
of task items in the DOM. Note that this function only captures the addition of new task items.
To support the removal of task items another callback function has to be written.

6http://documentcloud.github.com/backbone/

3.3 Classification of JavaScript Frameworks 25

3.3.6 Data Model Structure

Besides eliminating boilerplate code, MV* frameworks help to structure the application. Be-
cause data models are structured differently among frameworks, classification with respect to
the model structure is possible.

Access object-based frameworks use the concepts of the data access object pattern [Mic02] to
encapsulate their data. A typical resulting application structure is depicted in Figure 3.5.

Application

Namespace
Application

Business Logic

Data Objects

Application

Data Access

Object

Data Reference

(Direct vs. Indirect)

Figure 3.5: Application Structure of an Access Object-based Data Model

The application references the root object of the data model serving as data access object. Acting
as intermediary between the business logic and the data, the root object provides methods
to retrieve and store data. Because no direct access to the data objects in the data model is
possible, the root object encapsulates the whole data model. To specify data objects that should
be retrieved, a query language like XPath [CD99] might be used. The major advantage of this
approach is the clean separation between application data and business logic. The interface
provided by the data access object serves as single interaction point between business logic
and application data. Therefore the abstraction from different storage mechanisms, for example
file-based storage, a relational database system, an object-oriented database, etc., is possible.

Remote proxy-based frameworks can be treated as a specialization of access object based
frameworks. A common application structure using a remote proxy data model is illustrated in
Figure 3.6.

Application

Namespace
Application

Business Logic

Data Objects

Data Access

Proxy

Application

Data Reference

(Direct vs. Indirect)

Figure 3.6: Application Structure of a Remote Proxy-based Data Model

Encapsulating the application data, the remote proxy can be seen as reification of the proxy
design pattern [GHJV95]. The application has only a reference to the proxy object, acting as data
access object that hides a remotely stored data structure. Data objects that shall be retrieved are
specified by means of a query language like XPath [CD99] too. Besides abstracting from the data
storage mechanism used, the proxy hides also the location where the data is stored.

26 Chapter 3 Conception of a Collaboration Extension for JavaScript Frameworks

Frameworks complying with a subgraph-based data model structure provide an encapsulation
of the data model from the application’s business logic not as strict as access object-based or
remote proxy-based data models. Figure 3.7 depicts a common application structure possessing
a subgraph-based data model structure.

Application

Namespace
Application

Business Logic

Data Objects

Application

Data Reference

(Direct)

Figure 3.7: Application Structure of a Subgraph-based Data Model

The application has a reference to a root object of all data objects. Compared to access object-
based and remote proxy-based frameworks, the root object serves not as interface for data ac-
cess, i. e. even though being an entry point to the application data it is not a separating interface
between the data and the application logic. Therefore the business logic has to traverse the data
model itself, resulting in explicit references to the data objects within the data model subgraph.
Storing data is not only done via the root object, but instead by means of functions provided by
the data objects in the data model itself.

The weakest data model encapsulation concept frameworks can obey is referred to as scattered

data model. Figure 3.8 outlines a possible application structure.

Application Application

Namespace
Application

Business Logic

Data Objects

Data Reference

(Direct)

Figure 3.8: Application Structure of a Scattered Data Model

Compared to the three already discussed data model encapsulation possibilities, no central ac-
cess point to the application data is available. Data is scattered over the whole application, i. e. it
is interwoven with business logic that contains direct references to the data. The major disadvan-
tage of this data model type is the intermixture of business logic with application data and the
resulting break with the separation of concerns [Dij82] design principle.

3.3.7 Listener Registration

MV* frameworks provide abilities to observe changes of the application state. To accomplish the
notification every time the application state has changed, the registration of listener functions is
possible. Handling the registration of listener functions differs in the place where the listener
functions are registered.

In frameworks compliant with model-based listener registration all listeners are registered at the
root object of the data model. This approach is not possible for subtree-based or scattered data
models, because no access object encapsulating the whole data model is available. Revisiting the
introductory example, Listing 3.6 shows a model based listener registration by means of SAPUI5
assuming that a task’s name property shall be observed.

3.3 Classification of JavaScript Frameworks 27

var model = new sap.ui.model.json.JSONModel();
model.setData({tasks: [{name: "Task One"}, {name: "Task Two"}]});

var binding = model.bindProperty("/tasks/0/name");
binding.attachChange(function(name) {
window.console.log("The new task name: " + name);

});

Listing 3.6: Model-based Listener Registration using SAPUI5

First a new data model containing JSON data is created. Afterwards the model is filled with an
object having a property tasks that references an array. This array contains several objects repre-
senting task items, each of them having a name property. To register the listener, a binding object
is created accommodating all listeners to the property addressed by the path /tasks/0/name.
The syntax of the addressing language is reminiscent of the XPath language [CD99]. Finally the
concrete listener function is registered.

In frameworks using a class instance-based listener registration, listeners for single properties
are registered at the surrounding class instance of the property. For data access object-based
or remote proxy-based data models this registration pattern is not suitable, because no direct
access to the class instances is possible. Listing 3.7 depicts the class instance-based listener
registration for observing the name property of a simple task item using Backbone.js7.

Task = Backbone.Model.extend({});
var task = new Task({name: "Task One"});

task.on("change:name", function(task, name) {
window.console.log("The new task name: " + name);

});

Listing 3.7: Class Instance-based Listener Registration using Backbone.js

First a class Task representing task items is created. Afterwards the Task class is instanti-
ated for a task named Task One. Finally a listener is registered by means of the function with
the name on(event, callback, [context]). The event parameter specifies the event to
which the callback function provided in callback shall be registered. In our case change:name
indicates, that all changes to the name property shall be tracked. The optional context param-
eter determines the value of the special JavaScript variable this during the callback execution.
Eventually the registered listener function prints out the new value of the task’s name property
whenever it was changed.

Frameworks adhering to a property-based listener registration allow for the direct registration of
listeners on single JavaScript object properties. Listing 3.8 shows the registration of a listener to
a task item’s name property using the API provided by the Knockout.js framework [San12].

var Task = function(data) {
this.name = ko.observable(data.name || "default name");

}
var task = new Task({name: "Task One"});

task.name.subscribe(function(newValue) {
window.console.log("The new task name: " + newValue);

}

Listing 3.8: Property-based Listener Registration using Knockout.js

First a Task class is created using a JavaScript object constructor function. Every task has an
instance property name that is observable, i. e. listeners can be notified upon changes. The lis-
tener registration is accomplished by means of subscribe(callback), where the callback
parameter specifies the callback function executed on any changes to the property. The simple
listener registered in the example always prints out the new value of the property on the browser
console.

7http://documentcloud.github.com/backbone/

28 Chapter 3 Conception of a Collaboration Extension for JavaScript Frameworks

3.4 CONCEPTUAL ARCHITECTURE OF A COLLABORATION EXTEN-
SION

An important milestone in the evolution of software engineering was the NATO Software Engi-
neering Conference in 1968. At this conference McIlroy introduced the idea of mass-produced
and reusable software components [McI68]. Because today reuse belongs to the established
software engineering principles, existing MV* frameworks shall be reused and enriched with real-
time collaboration capabilities via a collaboration extension. The advantages of this approach are
three-fold:

• First, because the mature and stable code base of a framework is reused, the software
quality of applications is improved.

• Second, the utilization of existing frameworks leads to a flat learning curve for developers,
because experiences with the development of single-user applications can be reused in the
collaborative case. This leads to improved efficiency when developing multi-user applica-
tions.

• Third, improved software quality and higher development efficiency lead to cost-savings.

In the following, the devised collaboration extension for MV* frameworks is presented on a con-
ceptual level. Section 3.4.1 provides an architectural overview of the collaboration extension.
While the underlying synchronization service is explained in detail in Section 3.4.2, the integration
of the collaboration extension into a framework-based application is discussed in Section 3.4.3.
Finally in Section 3.4.4 the devised architecture is discussed with respect to the established re-
quirements from Section 3.1.

3.4.1 Architecture Overview

Applications built with a collaboration-enabled MV* framework adhere to a synchronized state
architecture [Pat95]. Every application instance holds a complete copy of the application stack.
To ensure consistency of the application data, the synchronization mechanism has to synchronize
the parts of the application maintaining the application data. Figure 3.9(a) depicts two instances
of an application complying with a MVC architecture. Since we assume all application data en-
capsulated and maintained in the model, the model is target for synchronization. Note that this
assumption is not valid for all available MVC frameworks and/or depends on the specific use case
of the framework. But what about updating the application’s UI according to model changes? Ac-
cording to the MVC pattern (see Section 3.2.1) the model is in charge of notifying the view about
changes. Hence, the view is updated on any model changes properly even if only the model is
synchronized.

Figure 3.9(b) shows two MVVM applications. Even though the model part of the application
encapsulates data, it is not the target for synchronization. Model data is only updated at special
points in time, especially when application data shall be saved persistently. Therefore changes to
the application data could be tracked on the model only insufficiently. In contrast the view model
comprises the transient data the application is currently working with. Since all changes to the
application data are reflected immediately in the view model, it is the target for synchronization
in MVVM frameworks.

Model as well as view model are reconciled via a synchronization service. The service provides
a dedicated sync service API (see Figure 3.9) enabling concurrent modifications on a shared data
model. Therefore the data model of the application, i. e. the model or view model, has to be
mapped to the collaborative data model of the sync service. All modifications on the application
models have to be propagated to the collaborative data model and vice versa. Mapping as well
as change propagation is ensured by a collaboration adapter bridging the gap between application
data model and collaborative data model.

3.4 Conceptual Architecture of a Collaboration Extension 29

View

ControllerModel

Application Instance 2

Sync Service API Sync Service API

Sync

Service

Collab. Adapter Collab. Adapter

Application Instance 1

View

Controller Model Model

View

Controller

(a) Collaborative MVC Application

Model

Application Instance 2

Sync Service API Sync Service API

Sync

Service

Collab. Adapter Collab. Adapter

Application Instance 1

View

ViewModel Model

View

ViewModelModel

(b) Collaborative MVVM Application

Figure 3.9: Conceptual Architecture of Collaborative MV* Applications

3.4.2 Synchronization Service

The synchronization service depicted in Figure 3.9 is in charge of synchronizing different docu-
ment copies and resolving conflicts in case of concurrent changes. Synchronization and conflict
resolution can be achieved via different algorithms. Two prominent examples are the differential
sync algorithm [Fra09] and operational transformation (OT) [EG89]. Because OT was enhanced
during the last decades and is prevalent today, some insights are provided.

Operational Transformation

Operational transformation (OT) is a technique to maintain consistency of distributed documents
that are subject to concurrent changes. Developed by Ellis and Gibbs in 1989 [EG89] for simple
text documents, during the last decades several extensions of the original algorithm were devel-
oped to support for instance XML documents [DSL02]. The basic idea of OT is the representation
of every document modification as operation. After beeing created, operations are applied to the
document. If parallel modifications take place, concurrent operations are created that have to be
transformed against each other before their application on the document to preserve the users’
intention. Figure 3.10 emphasizes the necessity of transformations using a simple example.

insStr('x',1)

ABC ABC

AxBC AByC

insStr('y',2)

insStr('x',1) insSt
r('y',2

)

[AxByC][AxyBC]

insStr*('x',1)insStr*('y',3)

AxByC AxByC

Alice Bob

Operation

Application

Operation

Transformation

and Application

Inconsistent

Document

State

[…]

Figure 3.10: Synchronization Example Based on Operational Transformation for Two Participants
Editing a Simple Text Document

30 Chapter 3 Conception of a Collaboration Extension for JavaScript Frameworks

The Figure shows two participants: Alice and Bob. Both of them have an own copy of the shared
document "ABC" and manipulate it at the same time. Thus, simultaneous modifications on the
shared document are possible. Alice inserts the character "x" at position 1. The generated in-
sert operation insStr("x", 1) changes Alice’s document to "AxBC". In the meantime Bob
inserts the character "y" at position 2 in his document. Therefore his document is updated by an
insert operation insStr("y", 2) and contains now the string "AByC". To notify the other par-
ticipant about the changes, the participants exchange their operations. Based on this information
the other participant can update its local document copy. If the incoming operations would be
applied without any transformation, Alice’s document would change to "AxyBC", whereas Bob’s
document copy would be "AxByC". Thus, the document copies would be inconsistent. There-
fore the OT implementation transforms incoming remote operations against the local operations
so that the different document copies become consistent and the users’ intentions are preserved.
How the operations are transformed against each other is defined by a transformation function
T : Op x Op -> Op where Op is the set of supported operations by the OT implementation.
The following equation shows the partial transformation function definition for the transforma-
tion of two insert string (insStr) operations. C(insStr(...)) indicates the creation time of the
operation and l(y) the length of the string y.

T (insStr(x, i), insStr(y, j)) =


insStr (x, i+ length(y)) iff i > j
insStr(x, i) iff i = j &&

C(insStr(x, i)) ≤ C(insStr(y, i))
insStr(x, i) iff i < j

According to this definition Alice has to transform Bob’s operation insStr("y", 2) against her
local operation insStr("x", 1) leading to the operation insStr∗("y", 3) resulting in the
document state "AxByC". Bob transforms Alice’s operation insStr("x", 1) against his own
operation insStr("y", 2) leading to insStr∗("x", 1). If this operation is applied to Bob’s
document it changes also to "AxByC". Eventually Alice as well as Bob share the same consistent
document state once again.

Handling of Late Joiners

Late joiners are participants that want to join an ongoing collaboration session. Because the col-
laboration extension complies with a synchronized state architecture, late joiners have to receive
a copy of the application in its current state. In the case of web applications, a copy of the applica-
tion can be retrieved by downloading the necessary files from the web server and executing them
locally. However, this simple approach would lead to an application in the wrong state. Therefore
the application state has to be synchronized additionally. Assuming that the whole application
state is reflected in the model or view model of an application, a current copy of the collaborative
data model is obtained via the sync server API and pushed into the application data model via
the collaboration adapter. Thus, no complex mechanisms to copy a process image of the running
application from one address space into another is necessary.

3.4.3 Collaboration Adapter

The collaboration extension is integrated into a framework-based application by connecting the
collaboration adapter with the application data model. Depending on the framework data model
structure (see Section 3.3.6) two different ways to couple the collaboration extension with the
application data model are available.

3.4 Conceptual Architecture of a Collaboration Extension 31

Collaboration Proxy

The collaboration proxy can be used for access object- or remote proxy-based frameworks (see
Section 3.3.6). The collaboration proxy mimics the interface of the access object or remote
proxy and adds additional functionality for synchronization. In this case the collaboration adapter
complies with the proxy design pattern [GHJV95].

Figure 3.11 shows the structure of a collaboration proxy. The IDataModel interface belongs to
the single-user application and specifies the interface for the data access object or remote proxy.
This interface is stable in all applications using a specific framework and defines methods for ac-
cessing the data model. For example a getProperty(path)method might be defined to obtain
the value of a property at a specific location in the data model specified by the parameter path.
DataModelImpl is the implementation class for the data access object or remote proxy. The
CollaborationAdapter class is the new collaboration proxy providing a multi-user data model
to the application. The adapter class implements the same interface as DataModelImpl and
therefore can replace the original model implementation in a manner transparent to the applica-
tion and its developers. The collaboration proxy holds a reference to an instance of the original
data model class. Thereby the method implementations can add some additional code to handle
the synchronization, but delegate the main work to the original method implementation.

1

<<interface>>

IDataModel

DataModelImpl

+ getProperty(path)

+ setProperty(path, value)

+ getData()

+ setData(data)

+ registerListener (path, listener)

CollaborationAdapter

+ getProperty(path)

+ setProperty(path, value)

+ getData()

+ setData(data)

+ registerListener (path, listener)

+ getProperty(path)

+ setProperty(path, value)

+ getData()

+ setData(data)

+ registerListener (path, listener)

Figure 3.11: Class Structure of a Collaboration Proxy Implementation

Annotation-based Code Injection

Even though subgraph-based data models have a root object, they lack a central access point
to the data model. Hence, no central proxy object can be installed. Nevertheless the model
can be synchronized by injecting synchronization code directly into the data model, i. e. into the
objects in the data model subgraph. Because the root object of the data model can be accessible
either via the global JavaScript namespace, inside a JavaScript function closure, or only inside a
function, annotations might be used to mark the variable containing a reference to the root object
of the data model. This annotation can be evaluated at runtime and triggers code traversing
the data model. The traversal algorithm injects additional code to synchronize the data models
of different application instances. To ensure that the whole data model is synchronized, the
traversing algorithm determines the transitive closure of the data model, i. e. the set of all objects
and properties reachable from the root object. A comparable approach was used by Hosking and
Chen in [HC99] to implement persistence for object structures.

Figure 3.12 shows the runtime structure of an application adhering to a subgraph-based data
model with injected synchronization code. The root object of the data model was marked with an
annotation indicating that the application data model shall be synchronized. This annotation was

32 Chapter 3 Conception of a Collaboration Extension for JavaScript Frameworks

Application

Namespace
Application

Business Logic

Data Objects

Application

Synchronization

Code

Synchronization

Annotation

Figure 3.12: Subgraph-based Data Model with Injected Synchronization Code

evaluated at runtime and synchronization code was injected in the whole data model subgraph
indicated by the white triangles.

Annotation-based code injection can also be applied in case of scattered data models. Rather
than one synchronization annotation marking the root node of the data model subgraph, several
synchronization annotations have to be spread throughout the source code. These annotations
have to mark all scattered data elements that shall be synchronized.

3.4.4 Discussion of Requirements

In the following the requirements introduced in Section 3.1 shall be discussed with respect to
the proposed framework extension.

Since JavaScript is the predominant programming language for web applications today, only
JavaScript frameworks are going to be enriched with a collaboration extension. Therefore the
programming language to be used by developers will also be JavaScript and the web browser
will serve as runtime environment. Thus, the requirements R01 and R02 are fulfilled. Because
existing frameworks are enriched, requirement R07 asking for a flat learning curve is achieved
too. Already acquired development skills for single-user applications might be reused in the col-
laborative case.

The requirements R03 and R05 aiming at unconstraint collaborative work are fulfilled, since the
collaboration extension adds synchronization as well as conflict resolution to the model or view
model of a framework-based application. Because the view remains untouched in both cases,
application compatibility (R04) is ensured. Furthermore the synchronization at model level solves
cross-browser issues (R13). Even if the visual representation and therefore the DOM differ among
several browsers, the underlying JavaScript data model is the same and can be synchronized
successfully. Moreover only a partial representation of the application state in the DOM does
not hinder the synchronization since modifications to the application state are handled directly at
JavaScript level (R12).

The collaboration extension can be integrated into an application in a lightweight and convenient
fashion annotation-based or via a collaboration proxy. Developers have only to be familiar with
the instantiation of the collaboration proxy class or with a small set of annotations. This complies
with the requirements R06 and R08.

Since collaboration extensions only assume a framework-specific data model structure, they can
be reused among several applications relying on the same framework (R11). Furthermore no
application-specific API has to be available providing comprehensive access to the application
state (R10).

To ensure the requirement R09, the collaboration extension has to be enriched with a mecha-
nism able to exclude parts of the application data model from synchronization. To specify parts

3.4 Conceptual Architecture of a Collaboration Extension 33

of the application data that shall not be synchronized, a configuration file and a path language
reminiscent of XPath [CD99] might be used. In case of the collaboration proxy extension, on any
modification the configuration might be used to check whether any synchronization is necessary
or not. Annotation-based approaches might check the exclusion list while traversing the data
model and inject collaboration functionality only partially.

Eventually, it can be stated that all the specified requirements for a beneficial and usable collabo-
ration extension can be fulfilled by the introduced architecture.

3.5 CONCLUSION

Based on the issues of existing development approaches (see Section 2.3), the major challenges
and requirements for convenient, lean, and reusable collaboration extensions for web application
frameworks enabling unconstraint collaborative work were inferred in Section 3.1. The exten-
sion shall be based on JavaScript and run in any web browser without additional plug-ins. The
integration with applications shall happen in a transparent manner, whereas the application’s look-
and-feel is retained. Besides ensuring a flat learning curve for developers, reuse shall be fostered.

Since a collaboration extension is in charge of reconciling different instances of a framework-
based application it needs access to the application data. To enable reuse among several applica-
tions, commonalities in the data model structure are necessary. Design patterns describing the
separation of an application’s user interface from its business logic and application data, permit
first structural claims. Widespread patterns are the Model-View-Controller (MVC) as well as the
Model-View-ViewModel (MVVM).

Since patterns only describe an abstract application structure, the actual application structure
might differ among several framework implementations. Thus, frameworks implementing the
MVC or MVVM pattern were ananlyzed with respect to several characteristics that influence
the design of collaboration extensions as well as the overall development efficiency of the fi-
nal collaboration-enabled frameworks. It turned out that the architecture of the framework as
well as the data model structure are of crucial importance for the design of a collaboration exten-
sion, whereas other facets like UI definition and UI update have not to be considered to ensure
effectiveness of the extension.

Finally conceptual architectures of framework extensions suitable for both MVC and MVVM frame-
works were described. Operational transformation was explained in more detail, since it is the
predominant synchronization algorithm today. Furthermore special attention was paid to the in-
tegration of the extensions into framework-based applications depending on the enforced data
model structures by the frameworks. The discussion of the proposed collaboration extension
architectures with respect to the requirements revealed compliance with all requirements.

To prove the concept, Chapter 4 presents prototypical implementations of two collaboration ex-
tensions, which are evaluated in Chapter 5.

34 Chapter 3 Conception of a Collaboration Extension for JavaScript Frameworks

4 PROTOTYPICAL
IMPLEMENTATION OF
COLLABORATION EXTENSIONS

To prove that the suggested collaboration extensions described in Section 3.4 are able to extend
current frameworks with real-time collaboration capabilities, two prototypes based on current
frameworks were implemented. The process to select SAPUI5 and Knockout.js as basis for pro-
totypical implementations is explained in Section 4.1. Section 4.2 describes the implementation
architecture of the collaboration extensions for both frameworks. Both extensions were imple-
mented based on the OT engine SAP Gravity and an extension enabling the concurrent editing
of JSON documents referred to as Shared JSON. Hence, Section 4.3 introduces SAP Gravity,
whereas Section 4.4 describes the Shared JSON extension. Framework-specific collaboration
adapters that are part of the collaboration extensions bridge the gap between the framework data
models and the Shared JSON extension. The implementations of the adapters are explained in
detail in the Sections 4.5 and 4.6. Finally, Section 4.7 summarizes the gained experiences.

4.1 FRAMEWORK SELECTION

The selection of two MV* frameworks to prove the feasibility of the devised framework col-
laboration extensions took place in three steps. First, the framework classification dimensions
described in Section 3.3 are used in Section 4.1.1 to define preferred characteristics for every clas-
sification facet. Afterwards in Section 4.1.2 available frameworks are classified with respect to the
introduced classification facets. This overview is used to select two frameworks serving as basis
for the prototypical implementation of collaboration extensions. Finally, based on the described
characteristics and the assessed frameworks two frameworks are chosen in Section 4.1.3.

4.1.1 Framework Selection Characteristics

The conceptual architecture covers collaboration extensions for both MVC and MVVM frame-
works. Therefore one MVC as well as one MVVM framework should be selected. Since
JavaScript is the most widespread programming language for web applications and prepro-
cessed languages require an additional development step, the selected frameworks should be

35

based on JavaScript. Moreover, the integration of a framework into an application should be as
easy as possible for the developer. Thus, only frameworks includable via a single JavaScript file
should be considered.

With respect to the UI specification one template and one widget-based framework should be
selected since both approaches exhibit advantages as well as disadvantages. Templates offer
more freedom for customization but developers have to write more source code. In contrast
widget-based frameworks force the developer to stick with predefined widgets. However the
developer has to write less source code to built up the user interface. To enable UI updates
according to application state changes in a convenient way, data binding should be supported.
This enables developers to focus on the implementation of business logic without having to deal
with boilerplate code.

Even if scattered data models might be supported via annotation-based code injection, the distri-
bution of the data model throughout the whole application would require adding annotations at
several places in the source code. Because scattered source code changes are not convenient for
developers, only frameworks with a data model adhering to a subgraph, access object or remote
proxy should be considered.

4.1.2 Survey of Existing Frameworks

Table 4.1 provides an overview of available MV* frameworks. Rows in the table show the different
frameworks, while the columns classify them with respect to the classification dimensions intro-
duced in Section 3.3. The character "x" equals to "yes" and "-" equals to "no". Furthermore
additional information for every framework is provided:

• The license under which the framework is released,

• the size of the framework,

• watchers and forks on GitHub1 (May 8, 2012) indicating the community support, as well as

• the website of the framework usually providing tutorials and a more or less comprehensive
documentation.

While watchers on GitHub indicate the number of people watching the activities on the repository,
forks show how often the project was forked to be developed further in an additional branch.

The table reveals the uniform distribution of MVC and MVVM frameworks as well as JavaScript
being the predominant programming language. Furthermore most of the frameworks require no
special integration process to be used within an application. Usually it is enough to include a
single JavaScript file into the application’s source code. Only frameworks using transcompiled
programming languages like CoffeeScript, or frameworks with a full-fledged build process like
SproutCore need a preprocessing step. All MVVM frameworks offer template-based UI specifica-
tion whereas MVC frameworks usually provide predefined widgets that can be used for construct-
ing an application user interface. Using data binding for updating the user interface is possible
in almost all MVVM frameworks. Because data binding requires some subscription mechanism
to notify the UI about changes, updating the UI in a procedural way is also possible with these
frameworks. Because the latter is not the intended way, this possibility is indicated in the ta-
ble by means of "(x)" in the corresponding column. MVC frameworks instead provide either
data binding or a procedural mechanism to update the user interface. Regarding the data model
MVVM frameworks usually adhere to a subgraph-based or scattered data model. The "(x)"
in the remote proxy column indicates that even if the data model is scattered, the data objects

1https://github.com/

36 Chapter 4 Prototypical Implementation of Collaboration Extensions

JS Include

Preprocessor

Templates

Widgets

Data Binding

Procedural

Access Object

Remote Proxy

Subgraph

Scattered

Model

Class Instance

Property

A
ng

ul
ar

JS
M

VV
M

Ja
va

S
cr

ip
t

x
-

x
-

x
(x

)
-

-
x

-
x

-
-

M
IT

64
 k

B
 m

in
.

(V
er

si
on

 0
.9

.1
9)

91
9

12
6

ht
tp

://
an

gu
la

rjs
.o

rg
/#

/

B
ac

kb
on

e.
js

M
VV

M
Ja

va
S

cr
ip

t
x

-
x

-
-

x
-

(x
)

-
x

-
x

-
M

IT
16

,1
 k

B
 m

in
.

(V
er

si
on

 0
.9

.2
)

79
98

10
70

ht
tp

://
do

cu
m

en
tc

lo
ud

.g
ith

ub
.c

om
/b

ac
kb

on
e/

B
at

m
an

.js
M

VV
M

C
of

fe
eS

cr
ip

t
-

x
x

-
x

(x
)

-
(x

)
-

x
-

x
-

M
IT

15
 k

B
 m

in
.

(V
er

si
on

 0
.9

.0
)

86
8

80
ht

tp
://

ba
tm

an
js

.o
rg

/

C
ap

pu
cc

in
o

M
VC

O
bj

ec
tiv

e-
J

x
-

-
x

-
x

-
-

-
x

-
x

-
LG

PL
30

6
kB

(V
er

si
on

 0
.9

.5
)

16
55

23
9

ht
tp

://
ca

pp
uc

ci
no

.o
rg

/

Em
be

r.j
s

M
VV

M
Ja

va
S

cr
ip

t
x

-
x

-
x

(x
)

-
-

-
x

-
x

-
M

IT
14

4
kB

 m
in

.
(V

er
si

on
 0

.9
.7

.1
)

28
07

30
4

ht
tp

://
em

be
rjs

.c
om

/

Ja
va

S
cr

ip
t M

V
C

M
VC

Ja
va

S
cr

ip
t

x
-

x
-

-
x

-
(x

)
-

x
-

x
-

M
IT

85
,8

 k
B

 m
in

.
(V

er
si

on
 3

.2
.0

)
40

5
72

ht
tp

://
ja

va
sc

rip
tm

vc
.c

om
/

K
no

ck
ou

t.
js

M
VV

M
Ja

va
S

cr
ip

t
x

-
x

-
x

(x
)

-
-

x
-

-
-

x
M

IT
38

 k
B

 m
in

.
(V

er
si

on
 2

.0
.0

)
18

73
22

1
ht

tp
://

kn
oc

ko
ut

js
.c

om
/

SA
PU

I5
M

VC
Ja

va
S

cr
ip

t
x

-
-

x
x

(x
)

x
-

-
-

x
-

-
pr

op
.

24
0

kB
(V

er
si

on
 1

.3
.3

)
-

-
ht

tp
://

sc
n.

sa
p.

co
m

/c
om

m
un

ity
/d

ev
el

op
er

-c
en

te
r/f

ro
nt

-e
nd

S
pr

ou
tC

or
e

M
VC

Ja
va

S
cr

ip
t

-
x

x
x

x
(x

)
x

x
-

-
-

x
-

M
IT

23
,5

 M
B

(V
er

si
on

 1
.8

)
17

39
22

2
ht

tp
://

sp
ro

ut
co

re
.c

om
/

Architectural
Pattern

Programming
Language

N
am

e

In
te

g
r.

License

Website

Forks

Watchers

U
I S

p
ec

.
U

I U
p

d
at

e
Li

st
en

er
D

at
a

M
o

d
el

Size

Table 4.1: Survey of Existing Web MV* Frameworks

4.1 Framework Selection 37

can be remote proxies providing access to remotely stored data. MVC frameworks usually com-
ply with an access object- or remote proxy-based data model. Listeners announcing changes in
the data model are registered usually at class instance level. Model-based as well as property-
based listener registration is used rarely. The MIT license is the most common license for all
reviewed frameworks. Only two frameworks are published under other licenses such as LGPL or
proprietary ones. Only frameworks like SproutCore having a complex build process reach some
megabytes in size, whereas the typical size is some kilobytes. Backbone.js as well as Ember.js
have a very active community indicated by many watchers and forks on GitHub. Since it is a
relatively new framework, Knockout.js has not as many watchers and forks, but is nevertheless
of big importance. In contrast, frameworks like JavaScript MVC are of slipping importance due to
their limited community support.

4.1.3 Selected Frameworks

Analyzing the MV* frameworks listed in Table 4.1 with respect to the characteristics mentioned
in Section 4.1.1, three frameworks were identified as possible candidates for the extension with
collaboration features: Angular.js2, Knockout.js [San12] and SAPUI5 [SAP12]. Because SAPUI5 is
the only MVC framework meeting the requirements, it is the first elected framework. Both Angu-
lar.js and Knockout.js adhere to the MVVM architecture. Due to its bigger community support on
GitHub and its massive developer adoption during the last three month resulting in 110 000 down-
loads, the Knockout.js framework was selected as second framework.

SAPUI5

SAPUI5 [SAP12] is SAP’s next generation platform for rich user interfaces of web applications.
The framework provides a large set of predefined UI controls that are customizable. Since the
framework is compliant with OpenAJAX3, it can be used together with almost any JavaScript
libraries provided by third party vendors. Examples include jQuery4, jQuery UI5, etc. Since SAP-
UI5 provides access object as well as remote proxy-based data models (see Section 3.3.6) it can
be used to prove that the integration of collaboration functionality via a collaboration proxy (see
Section 3.4.3) is viable.

Knockout.js

Knockout.js [San12] is a JavaScript framework released under the open source MIT license. The
implementation is based on JavaScript and has a very small footprint (39 kB minified). Since
Knockout.js has no dependencies it can be used in conjunction with any other JavaScript library
or framework. For developers a very comprehensive set of documentation is available comprising
an API specification, interactive tutorials as well as running examples. Because applications built
with the Knockout.js framework comply with a subgraph-based data model (see Section 3.3.6),
the framework can be used to demonstrate the feasibility of annotation-based code injection (see
Section 3.4.3) to integrate collaboration functionality into an application.

2http://angularjs.org/
3http://www.openajax.org
4http://jquery.com/
5http://jqueryui.com/

38 Chapter 4 Prototypical Implementation of Collaboration Extensions

4.2 IMPLEMENTATION STRUCTURE

The implementation architectures of the collaboration extensions for SAPUI5 and Knockout.js
are depicted in Figure 4.1. To drive reuse among the extension implementations, the collabo-
ration proxy of SAPUI5 as well as the Knockout.js adapter is not directly based on SAP Gravity.
Instead a reusable implementation enabling the concurrent change of JSON data referred to as
Shared JSON is used. Therefore the actual implementation stacks of the collaboration extensions
comprise three layers:

1. A framework-agnostic synchronization layer comprising the SAP Gravity server as well as
client implementations offering the SAP Gravity API. Details on Gravity are exposed in Sec-
tion 4.3.

2. A framework-agnostic extension of Gravity enabling the concurrent editing of JSON docu-
ments. This extension, referred to as Shared JSON, is discussed in depth in Section 4.4.

3. Finally a framework-specific collaboration adapter implementation. This adapter might be
either a collaboration proxy, or an annotation-based collaboration adapter injecting synchro-
nization code based on annotations. The SAPUI5 collaboration proxy will be explained in
detail in Section 4.5 whereas the Knockout.js collaboration adapter will be exposed in Sec-
tion 4.6.

View

ControllerModel

SAPUI5 Application Instance 2

SAP Gravity API SAP Gravity API

SAP

Gravity

Server

Shared JSON API Shared JSON API

SAPUI5 Application Instance 1

View

Controller

View

Controller

Collaboration

Proxy

Collaboration

Proxy

Model Model

(a) SAPUI5 Collaboration Extension

Model

Knockout.js Application Instance 2

SAP Gravity API SAP Gravity API

Shared JSON API Shared JSON API

Knockout.js Application Instance 1

View

ViewModel Model

View

ViewModelModel

Knockout Adapter Knockout Adapter

SAP

Gravity

Server

(b) Knockout.js Collaboration Extension

Figure 4.1: Implementation Architecture of SAPUI5 and Knockout.js Collaboration Extension

4.3 SAP GRAVITY

SAP Gravity is an OT engine (see Section 2.3.1) implementing an OT algorithm for directed, la-
beled and attributed graph structures. An OT implementation usually comprises three parts: The
data model describing the available structures to store shared data, the control algorithm decid-
ing which operations are subject to transformation, and the protocol coordinating various clients.
Since the control algorithm and protocol are complex topics in the research domain of OT imple-
mentations, a detailed explanation is neglected in this thesis. Rather, emphasis is placed on the
data model and the API available for developers to manipulate shared data.

4.2 Implementation Structure 39

4.3.1 Architecture

Figure 4.2 shows the architecture of SAP Gravity. Because fully distributed peer-to-peer protocols
are more complex than centralized protocols, Gravity adheres to a client-server architecture.

Gravity Client

Model Model Handler

Operation Generator

OT/Protocol

Gravity Client API

Gravity Server

Model

OT/Protocol
HTTP

Figure 4.2: SAP Gravity Architecture

The Gravity Server implemented in Java acts as coordinator handling all communication be-
tween distributed clients working in a shared workspace. Besides storing a persisted version of
the shared data, the server ensures that all clients eventually receive a consistent copy of the
data. Persistence is handled by the Model whereas communication, synchronization and conflict
resolution are managed by the OT/protocol component.

The Gravity Client, written in JavaScript, is replicated at all participants working together in a
shared workspace. A JavaScript API (Gravity client API) providing access to the shared data and
abstracting from the communication with other clients and the server is offered. The client API
is explained in detail in Section 4.3.4. Each client accommodates a transient copy of the shared
data (model). While reading access to the model is possible directly via the client API, leveraging
the model handler is necessary to modify the shared data. The model handler ensures atomicity
of modifications, i. e. all modifications submitted in a batch are applied entirely or not at all. To
achieve atomicity the model handler implements a rollback mechanism that undoes already ap-
plied modifications of a batch if one of the modifications inside the batch could not be executed
successfully. During the application of modifications on the shared data the operation generator
keeps track of all changes and generates corresponding operations. This complies with the basic
idea of OT to represent every modification on a shared data structure as operation. The opera-
tions generated for each single data modification are referred to as primitive operations. The set
of primitive operations generated on behalf of a operation batch executed by the model handler,
is termed complex operation. The OT/protocol component of each client implements the synchro-
nization as well as conflict resolution mechanisms according to the OT approach. Furthermore
communication with the server is handled.

4.3.2 Data Model

Gravity’s data model is a directed, labeled and attributed graph with ordered references. Nodes
in the graph are identified via a unique string. Besides the identifier every node can have several
attributes of primitive types like string, number, boolean, etc. To connect nodes, Gravity supports
two different types of references. Atomic references representing a 1:1 relationship as well as
ordered references which can be treated as lists of referenced nodes (1:N relationship). For all
nodes referenced by an ordered reference a relative, but not an absolute order is maintained.
Relative ordering means that even if the indices of elements might change over time, the relative
positions (before, after) towards other elements remain unchanged.

40 Chapter 4 Prototypical Implementation of Collaboration Extensions

Figure 4.3 depicts an instance of a data model. The model comprises three nodes denoted by
node1, node2, node3. The first node has an attribute named attr1with the boolean value true
assigned. Moreover this node maintains an ordered reference oref1 which points to node2 at
index 0 and to node3 via index 1. An atomic reference aref1 connects node2 with node3. Fur-
thermore two attributes (attr2 and attr3) are assigned to node2. The attribute named attr2
contains the string value "string" whereas the attribute attr3 holds the number 123.

true

attr1

node3

1

"string"

attr2

123

attr3

node2

0

oref1

node1

aref1

Node with IDid

0

value

id

Attribute

Atomic

Reference

Ordered

Reference

aref

attr

N

name

...

Figure 4.3: Example of a Data Model Instance in SAP Gravity

4.3.3 Primitive and Complex Operations

Modifications on a shared data model (see Section 4.3.2) are represented via six primitive op-
erations, which are generated by the operation generator (see Figure 4.2). Table 4.2 lists the
operations by their operation signature accompanied with a short description.

Operation Signature Description

addObj(id) Adds a new node with the identifier id.
delObj(id) Removes the object with the identifier id.
upd(o,a,v,w) Sets the attribute value for attribute a of object o to the value w. The

old value v is replaced.
setRef(o,r,p,q) Sets an atomic reference r from o to q. The old target p is replaced.
addRef(o,r,p,i) Adds a link from node o to p at position i in the ordered reference r.
delRef(o,r,p,i) Removes the link from node o to p at position i from the ordered

reference r.

Table 4.2: Primitive Operations in SAP Gravity

Applications usually provide application-specific operations to change the application state. The
task list application introduced in Section 1.2 would provide operations to create new task items,
to rename existing task items, to change the priority of tasks and to mark task items as completed.
Since the Gravity OT implementation only offers a graph-based data model (see Section 4.3.2) and
the operations introduced before, the application-specific operations have to be translated when
a Gravity data model is used to represent the application state. All application-specific operations
would be mapped to a set of primitive operations accommodated by an application-agnostic com-
plex operation as depicted in Figure 4.4. Complex operations act on behalf of application-specific
operations and are target to transformation by the OT implementation.

Application-Specific Operation

Application-Agnostic Complex Operation

Primitive

Operation 1

Primitive

Operation 2

Primitive

Operation 3

Primitive

Operation N
...

Figure 4.4: SAP Gravity Mapping from Application-Specific to Application-Agnostic Operations

4.3 SAP Gravity 41

The creation of a new task item might be mapped to the complex operation depicted in Equa-
tion 4.1. In the equation Op1;Op2 indicates that operation Op1 is executed before operation Op2.

complexOp(”addTask”) = addObj(”t3”);

addRef(”root”, ”tasks”, ”t3”, 2);

upd(”t3”, ”name”, undefined, ”TaskThree”)

upd(”t3”, ”priority”, undefined, 25);

upd(”t3”, ”done”, undefined, false)

(4.1)

Because all seven primitive operations are issued on behalf of the application-specific opera-
tion addTask(”TaskThree”), atomicity for the set of primitive operations depicted in Equation 4.1
is ensured by the encapsulation in a complex operation.

4.3.4 Client API

The Gravity client API provides methods to handle the lifecycle of a collaboration session, to
obtain information about participants in a collaboration session as well as methods to manipulate
shared data.

Methods to Control the Lifecycle of a Collaboration Session

Methods to control the lifecycle of a collaboration session include for example the function
createCollaboration() to create a new collaboration session object. This object acts as
starting point for all interactions with the API. Joining a created session requires the invoca-
tion of the method session.join(modelId, userDetails). The parameter modelId is
a unique identifier of the model that shall be manipulated in the session. Details about the
joining user are encapsulated by the userDetails parameter and might comprise a display
name, an e-mail address as well as a thumbnail URL. To finally leave a collaboration session the
method session.leave() can be used.

Methods to Handle Participants

Besides the lifecycle methods, the client API provides methods to obtain information about the
participants involved in a collaboration session. The local participant of a collaboration session
is returned via session.getLocalParticipant(), whereas getAllParticipants() re-
turns an array containing all participants of the session. Every participant provides methods
like participant.getDisplayName() to obtain the externally visible name of the participant,
etc. Since every participant is associated with a unique color code once a collaboration session
is joined for the first time, participant.getColor() can be used to retrieve the color code
of the participant.

42 Chapter 4 Prototypical Implementation of Collaboration Extensions

Gravity Client API Method Primitive Operation Model Change Event

model.addNode(id) addObj(id) nodeAdded(node)
model.deleteNode(id) delObj(id) nodeRemoved(node)
node.setAttribute(name,
value)

upd(o,a,v,w) attributeSet(node, name,
newValue, oldValue)

node.setAtomicReference(
name, targetNode)

setRef(o,r,p,q) atomicReferenceSet(node,
name, newTarget, oldTarget)

node.addOrderedReference(
name, index, targetNode)

addRef(o,r,p,i) orderedReferenceAdded(node,
name, index, target)

node.removeOrderedReference(
name, index, targetNode)

delRef(o,r,p,i) orderedReferenceRemoved(
node, name, index, target)

Table 4.3: Mapping of API Method Calls to Primitive Operations and Model Change Events in
SAP Gravity

Methods to Manipulate Data and Fire Model Change Events

At the core of the Gravity client API are methods to manipulate the data model introduced in
Section 4.3.2 and events to notify subscribers about changes in the shared data. Whenever
a data modification is triggered via the client API, an operation and a model change event are
generated. Table 4.3 shows the primitive operations explained in Section 4.3.3 together with the
corresponding API calls and generated model change events.

To underpin the correspondence between API methods, primitive operations and model change
events, Listing 4.1 displays the API calls leading to the primitive operations depicted in Equa-
tion 4.1.

taskNode = model.addNode();
rootNode = model.getNode("root");
rootNode.addOrderedReference("tasks", 2, taskNode);
taskNode.setAttribute("name", "Task Three");
taskNode.setAttribute("priority", 25);
taskNode.setAttribute("done", false);

Listing 4.1: Gravity Client API Calls to Create a Task List Item

To ensure atomicity (see Section 4.3.3), methods manipulating the shared data cannot be called
directly on the model. Instead the model handler has to be leveraged. The model handler provides
the method changeModel(function(model) {...}, [description]) that enables the
execution of a number of methods on the model instance of the ongoing collaboration session.
The first parameter is a function encapsulating a set of methods changing the model. All methods
within such a function are executed entirely or, in case of a conflict with another operation, not
at all. The second parameter of the changeModel method is an optional short description of
the complex operation. This kind of execution of methods is reminiscent of the command design
pattern [GHJV95]. A command is reified as object and passed to a handler that executes the
command. In case of Gravity the function serving as first parameter is the encapsulating object
and the model handler is the executive instance.

During the execution of the primitive operations created on behalf of the API calls from Listing 4.1
the following model change events are created: nodeAdded; orderedReferenceAdded;
attributeSet; attributeSet; attributeSet.

Besides the methods to manipulate the data model, the client API provides also operations to re-
trieve the current model state. An array containing the identifiers for all nodes in a data model can
be retrieved by means of listNodes(). The method getNode(id) enables developers to re-
trieve a node specified by its identifier id from the model. Furthermore methods to get attributes
or references are available (e. g. getAttribute(name), getAtomicReference(name),
getOrderedReference(name)).

4.3 SAP Gravity 43

Methods to Subscribe for Model Change Events

Local as well as remote changes to shared data are advertised via model change events (see
Table 4.3) and callback functions can be registered to keep track of the emitted events. Callbacks
that shall be registered are grouped into so called listener objects. A listener object can be regis-
tered via the model or model handler interface: model.addModelListener(modelListener)
and modelHandler.addModelListener(modelListener). The place of registration deter-
mines when the contained callback functions are invoked due to raised events.

If the listener object was registered at the model, the callbacks are called directly after any modi-
fication on the model. The disadvantage of the direct notification is visible in case of the API calls
to add a new task item (see Listing 4.1). The callback nodeAdded would be executed before
the attributes of the new node are set. If the listener object is registered at the model handler,
listeners are notified whenever a complex operation was finished successfully. Therefore the
model handler buffers all emitted events during the execution of a complex operation and after
finishing all cached events are advertised in one batch. The generation order of the events is
maintained. The advantage of this approach is that for example the addition of a task item would
be announced only when the task item is configured entirely.

Figure 4.5 summarizes the behavior of both possibilities for listener object registration.

Complex Operation

Primitive

Operation 1

Primitive

Operation 2

Primitive

Operation 3

Primitive

Operation 4

E1 E2 E3 E4
Model

E1 E2 E3 E4
Model Handler

E1 E2 E3 E4

Model Change

Event

Cached Model

Change Event

Ex

Ex
...

...

......

Figure 4.5: Model Change Event Handling in SAP Gravity

4.3.5 Synchronization Workflow

Applications built directly on top of Gravity adhere to the MVC architecture (see Section 3.2.1).
The Gravity data model is used as data model for the application. Controller and View are im-
plemented application-dependent. In the following the general synchronization and conflict res-
olution workflow of a Gravity-based task list application shall be exposed. Figure 4.6 depicts
the workflow for local as well as remote modifications to the application state represented by a
shared data model.

Processing of Local Modifications

On every modification of the application state triggered by the local user the following workflow
is executed:

1. To add a new task item to the task list, the user interacts with the view of the task list
application. On behalf of the user the view triggers some application-specific operation
like addTask("Task Three", 25, false) on the controller (T1).

44 Chapter 4 Prototypical Implementation of Collaboration Extensions

G
ra

v
it

y
 C

li
e

n
t

T
a

s
k

 A
p

p

(T3)

(G2)

Model

OT/Protocol

Gravity Client API

(G4)

(G1)
Model Handler

(T2)

(T1)
Controller

(G3)

Operation Generator

(G5)

View

(a) Processing of a Local Modification

T
a

s
k

 A
p

p
G

ra
v

it
y

 C
li

e
n

t

(T1)

Model
(G3)

Model Handler

Operation Generator (G2)

OT/Protocol

Gravity Client API

ViewController

(G1)

(b) Processing of a Remote Modification

Figure 4.6: SAP Gravity Synchronization and Conflict Resolution Workflow

2. The controller maps the application-specific operation to an application-agnostic complex op-
eration accommodating several primitive operations. To submit the complex operation the
controller calls the corresponding methods (see Listing 4.1) via the model handler interface
offered by the Gravity client API (T2).

3. Since atomicity has to be ensured for every complex operation, the model handler executes
all model manipulations entirely or not at all (G1).

4. During the model manipulation the operation generator observes changes on the model (G2)
and generates the corresponding operations (see Table 4.3). The generated complex opera-
tion for the addition of a third task item to the list can be seen in Equation 4.1.

5. If the complex operation could be executed successfully, the operation generator hands
over the generated complex operation to the model handler (G3).

6. Afterwards the model handler passes the complex operation to the OT/protocol compo-
nent (G4).

7. The synchronization protocol transfers the new complex operation to a Gravity server (G5).

8. Finally, the model handler notifies the application’s view about the changes to the model
via the Gravity client API (T3) by emitting model change events in correspondence to
the model changes (see Table 4.3). More precisely the following sequence of model
change events is created: nodeAdded; orderedReferenceAdded; attributeSet;
attributeSet; attributeSet.

Processing of Remote Modifications

Every remote modification of the application state leads to the following workflow:

1. Whenever the Gravity client receives a complex operation from the server (G1) it is handled
first by the OT/protocol component. Because the remote operation might be in conflict with
concurrent local operations, the remote operation is transformed against all concurrent local
operations. This transformation might cause the rollback of conflicting local operations.

2. After transformation the transformed remote operation is handed over to the model han-
dler (G2).

3. The model handler executes the remote operation on the model (G3) and afterwards notifies
the application’s view about the changes via model change events (T1). Thus, the application
can react to the model changes properly.

4.3 SAP Gravity 45

4.4 SHARED JSON

Shared JSON is an extension of SAP Gravity that was introduced in Section 4.3 and enables the
shared editing of JSON documents. Besides some foundations like the JavaScript Object Nota-
tion, the actual implementation will be explained in the following.

4.4.1 JavaScript Object Notation

The JavaScript Object Notation (JSON) is a text-based, language-independent data interchange
format for structured data. The format was described initially in 2006 by Douglas Crockford in the
Request for Comments 4627 [Cro06].

The format specifies four primitive data types: strings, numbers, Boolean and null. Besides the
primitive types JSON comprises two structured data types: object and array. An object is an
unordered collection of zero or more key-value pairs. Keys have to be strings, whereas values are
of arbitrary data type. An array is just an ordered sequence of zero or more values. Values of any
data type are referred to as JSON values in the following. A comprehensive description of the
JSON data types and syntax by means of syntax diagrams can be found in Appendix A.

Revisiting the introductory example (see Section 1.2), Listing 4.2 shows a possible JSON docu-
ment for the data of a task list containing two task items.

{
"tasks": [

{
"name": "Task One",
"priority": 80,
"done": true

},
{
"name": "Task Two",
"priority": 50,
"done": false

}
]

}

Listing 4.2: JSON Representation of a Task List

The root of the JSON document is an object containing exactly one key value pair. The key
is "tasks" and the value is an array containing the description of two task items. Every task
item description is an object having three key-value pairs:

• The key "name" with a value of type string to represent the task’s name,

• "priority" with a number value containing the task’s priority, and

• "done" with a Boolean value to indicate whether the task is already finished or not.

4.4.2 JSONPath

JSONPath is a path-based addressing language reminiscent of XPath [CD99] that was devised for
querying JSON values in JSON documents. The syntax of JSONPath is described in Listing 4.3
using the Extended Backus-Naur Form (EBNF) [EBN96]. Boldface strings correspond to non-
terminal symbols whereas normal type indicates terminal symbols.

46 Chapter 4 Prototypical Implementation of Collaboration Extensions

JSONPath = "/" | {pathPart}-;
pathPart = "/", (index | string);
index = 0 | 1 | 2 | 3 | ...
string = any unicode string without "/" or control characters

Listing 4.3: JSONPath Syntax Definition Using the EBNF [EBN96]

JSONPaths can be absolute or relative. All absolute JSONPath expressions start with the char-
acter "/" and are evaluated starting at the root element of every JSON document. Relative
JSONPath addresses have no slash at the beginning and are evaluated from the current con-
text. For example the relative path "0/name" in the context "/tasks" is equal to the absolute
path "/tasks/0/name".

Sticking with "/" refers to the root of a JSON document. The root can be a structured JSON value
like an object or array, or a primitive value like string, number, Boolean or null. To address a value
inside a structured JSON value, the set of steps on the way to the value has to be specified
separated by "/". For values in JSON objects a step is identified by the key of the desired
key-value pair. In arrays steps are built using the indices of the favored element in the array.

Table 4.4 shows some JSONPath expressions accompanied by a description of the addressed
document part based on the example JSON document from Listing 4.2.

JSONPath Expression Addressed Document Part

"/" The whole JSON document.
"/tasks" The array containing all task items of the task list.
"/tasks/1" The task item with index 1 in the array tasks.
"/tasks/1/name" The value of the name property of the task item with index 1 in

the array tasks.

Table 4.4: JSONPath Expressions and Corresponding Addressed Document Parts

4.4.3 JSON to Gravity Mapping

The Shared JSON implementation shall enable shared editing of JSON data. Rather than imple-
menting a special-purpose OT algorithm for JSON data, Gravity shall be reused. Thus, JSON doc-
uments have to be mapped to the Gravity data model. In the following the mapping of all possible
JSON data types is described.

Mapping of Primitive Data Types

The mapping of primitive JSON data types is depicted in Figure 4.7. Every JSON value adhering
to a primitive data type is mapped to a node with two attributes. The attribute type is a string-
based identifier determining the data type of the mapped value. The value attribute contains
the actual JSON value.

"string" "foobar"

type value

/

(a) String Mapping

"number" "1.2345"

type value

/

(b) Number Mapping

"boolean" "true"

type value

/

(c) Boolean Mapping

"null" "null"

type value

/

(d) Null Mapping

Figure 4.7: Gravity Mapping of Primitive JSON Data Types

4.4 Shared JSON 47

Mapping of JSON Objects

JSON objects (see Figure A.2) are mapped as depicted in Figure 4.8. Every object is mapped to
a node having exactly one attribute type with the value "object" to indicate that an object was
mapped. For every key-value pair in the object one atomic reference is created. The name of the
reference corresponds to the key. Since keys inside an object have to be unique it is ensured that
the names of the atomic references are distinct too. The root node of the mapped value serves
as target of the atomic reference. The identifiers of the nodes are equal to the JSONPath (see
Section 4.4.2) that might be used to address the JSON value represented by the subtree under
the particular node.

"object"

type
values

"array"

/prop1

type

prop1

"string"

type

""

value

/prop0

"object"

type

prop0

"boolean"

type

"true"

value

/prop2/prop

prop

/prop2

prop2

/

Figure 4.8: Gravity Mapping of JSON Objects

Mapping of JSON Arrays

Figure 4.9 depicts the mapping of JSON arrays (see Figure A.3). Arrays are mapped to a node
having an attribute type with the value "array" to indicate that this node is the root node of
a mapped array. Moreover the node has an ordered reference named values accommodating
references to the root nodes of the mapped array elements. For every value in the array, a
reference is added to the ordered reference at the position equal to the array element’s index.

"object"

"array"

values

type

"array"

type

/###

1

"string"

type

""

value

/###

type

/###

20

values

/

Figure 4.9: Gravity Mapping of JSON Arrays

The identifiers of the nodes usually correspond to the JSONPath (see Section 4.4.2) that might be
used to address the JSON value represented by the subtree under the node. The only exception
are nodes representing array elements. The JSONPath path part addressing the first item of
an array would usually be "/0", but instead a randomly hashed identifier indicated in the figure
by /### is used. This is necessary because the concurrent editing of JSON documents shall
be supported. If pure JSONPath expressions would be used as identifiers and two participants
would insert different JSON values at the same position of the very same array at the same time
a conflict would be recognized by Gravity and one of the users actions would be rolled back.
Consider the following example:

• Alice as well as Bob would like to insert a new element at position 0 to an empty array. Alice
wants to insert the string "foo" whereas Bob wants to insert the number 123.

48 Chapter 4 Prototypical Implementation of Collaboration Extensions

• Due to the mapping of JSON to Gravity, this would lead to the following calls on the Gravity
client API (see Section 4.3.4) if pure JSONPath expressions are used for the node identifiers:

– Alice:
node = model.addNode("/0"); node.setAttribute("type", "string"); ...

– Bob:
node = model.addNode("/0"); node.setAttribute("type", "number"); ...

• Since different values are set to the attribute type of the very same node, the complex
operations of Alice and Bob would be in conflict. Therefore one of the operations would be
rolled back by the Gravity OT implementation. Hence, the intention of Alice or Bob would
not be preserved.

• If hashed identifiers for the indices in the array are used the two nodes representing the
array elements would get different identifiers and therefore no conflict would occur since
the complex operations would be transformed successfully.

Therefore every node belonging to the representation of an array element has a hashed part in
the identifier. Therefore every JSON value inside an array might be addressed by two different
path expressions: The JSONPath expression (e. g. "/tasks/0") referred to as external path in
the following, as well as by the identifier of the node that is the root node of the element’s Gravity
representation (e. g. "/tasks/###) where ### stands for the hashed identifier. The latter path
expression is referred to as internal path in the following. While both of the identifiers might
be used to address an array element, the characteristics are different. Internal paths are stable
during the lifetime of an array element. Due to concurrent insertions into and deletions from an
array the actual position of an array element might change and therefore its external path might
also change over time.

Data Mapping Example

The full mapping of the JSON document from Listing 4.2 is presented in Figure 4.10. The
root node is of type "object" and holds one atomic reference pointing to the node repre-
senting the array containing all task list items. The node "/tasks" has an ordered reference
named "values" with two referenced nodes representing the two task items. Every task item
node has the type "object" and three atomic references representing the three object prop-
erties name, priority and done. To emphasize the difference between internal and external
paths consider the paths of the first array item. The internal path is "/tasks/#0" whereas the
external path in the current document state is "/tasks/0.

"array"

type

"string" "Task One" "number" "80" "boolean" "true" "string" "Task Two" "number" "50" "boolean" "false"

type value type value type value type value type value type value

/tasks/#0/name /tasks/#0/priority /tasks/#0/done /tasks/#1/name /tasks/#1/priority /tasks/#1/done

"object"

type

priorityname done

/tasks/#0

0

"object"

type

"object"

type

priorityname done

/tasks/#1

1

values

/tasks

tasks

/

Figure 4.10: JSON to Gravity Mapping Example

4.4 Shared JSON 49

Operation Mapping Example

Due to the mapping of JSON documents to the Gravity data model, every modification to a
shared JSON document has to be reflected in the Gravity data model. If for example a new task
item (see Listing 4.4) shall be added to the JSON document from Listing 4.2 the Gravity client API
calls depicted in Listing 4.5 have to be executed to update the mapped data in the Gravity data
model.

{
"name": "Task Three",
"priority": 25,
"done": false

}

Listing 4.4: JSON representation of a New Task Item

modelHandler.changeModel(function(model) {
var tasks = model.getNode("/tasks");
var taskNode = model.addNode("/tasks/#2");
tasks.addOrderedReference("values", 2, taskNode);

var nameNode = model.addNode("/tasks/#2/name");
nameNode.setAttribute("type", "string");
nameNode.setAttribute("value", "Task Three");
taskNode.setAtomicReference("name", nameNode);

var priorityNode = model.addNode("/tasks/#2/priority");
priorityNode.setAttribute("type", "number");
priorityNode.setAttribute("value", 25);
taskNode.setAtomicReference("priority", priorityNode);

var doneNode = model.addNode("/tasks/#2/done");
doneNode.setAttribute("type", "boolean");
doneNode.setAttribute("value", false);
taskNode.setAtomicReference("done", doneNode);

});

Listing 4.5: Gravity Client API Calls to Add a New Task Item

4.4.4 Client API

The Shared JSON client API enables the concurrent editing of shared JSON documents. There-
fore the API provides methods to initialize a collaboration session, to modify the document as well
as to keep track of changes indicated by advertised events. The implementation of all API meth-
ods relies on the Gravity client API (see Section 4.3.4).

Methods to Handle Collaboration Lifecycle and Participants

The Shared JSON implementation procures a facade object acting as single interaction point for
developers. The method initJSONAdapter(initParams) enables the developer to create
an instance of this root object. Encapsulated in a JavaScript object the parameter initParams
subsumes several configuration parameters explained in the following list:

• initParams.gravityHost contains a URL indicating the host name or IP address, and
port of the Gravity server that shall be used. This parameter is mandatory.

50 Chapter 4 Prototypical Implementation of Collaboration Extensions

• initParams.modelId is a required string identifier for the Gravity data model that shall be
used. This parameter can be used to separate different collaboration sessions by specifying
different model identifiers.

• initParams.userId is the unique identifier of the participant that is used to decide
whether the participant is allowed to modify the shared data model. This parameter is
required.

• initParams.initData is an optional JSON value that would be set as shared JSON doc-
ument when the collaboration session is initially created.

• initParams.onJoinedCallbacks is an array of callback functions that are executed as
soon as the collaboration session specified by initParams.modelId is joined success-
fully. The specification of callbacks is optional.

• If and only if the parameter initParams.blockUserInteraction is set to true, a
modal window blocking all user interactions with the application is shown after the applica-
tion is loaded. The window disappears once the collaboration session is initialized success-
fully.

During the creation of the root object the collaboration session is not joined automatically. There-
fore all API calls modifying the shared JSON document are cached until the session is actually
joined. Even if no connection to the server is established at this point in time, callback functions
for Shared JSON events (see Section 4.4.5) can be registered.

To initialize the collaboration session the method initializeCollaboration() has to be
called. A successfully initialized session triggers the following steps.

• If and only if initParams.blockUserInterface was set to true, the modal window
is removed.

• All callback functions specified in initParams.onJoinedCallbacks are executed.

• The cached JSON data modification API calls are executed.

Methods to Access and Modify Shared JSON Documents

Besides the lifecycle methods, the Shared JSON client API provides methods to query and modify
a shared JSON document.

The method getData() returns the current state of the JSON document as JavaScript value.
If the document is not initialized an exception of type QueryError is thrown. If the current
JSON document shall be obtained as string value getJSON() can be used instead. This method
throws also a QueryError if the model is not initialized. To retrieve single JSON values of
a JSON document the method getProperty(sPath, sContext) is provided. This method
returns the JSON value at the location addressed by the JSONPath specified via sPath and
sContext. The parameter sContext is only necessary if sPath is a relative JSONPath (see
Section 4.4.2). Assume that the JSON document in Listing 4.2 is the currently shared JSON docu-
ment. Calling getProperty with the parameters sPath="name" and sContext="/tasks/0"
would then return "Task One" .

The shared JSON document can be replaced with another document represented as JavaScript
value leveraging the setData(oData) method. The oData parameter references a JavaScript
value representing the JSON document to be stored. If the parameter contains no valid JSON doc-
ument the method throws a TypeError exception. String-based JSON document can be stored
via setJSON(sJSONText). All modifications to a shared JSON document are achieved via the

4.4 Shared JSON 51

method setProperty(sPath, value, sContext, bSkipCallbacks, bOverwrite).
This method can be used to modify primitive JSON values as well as objects and arrays. Key-value
pairs inside an object, referred to as properties, or array elements might be inserted, deleted and
replaced. If old values are replaced or deleted the method returns the old value. The following
list explains the parameters of the method.

• The parameters sPath and sContext address the JSON value that shall be modified via
JSONPath. If no context is provided via sContext the root context ("/") is assumed. If
the path that is passed is invalid a QueryError exception is thrown.

• The JSON value that shall be stored at the specified path is passed as JavaScript object in
the value parameter. If a property shall be deleted undefined has to be passed as value.

• If and only if the optional parameter bSkipCallbacks ist set to true all registered callback
functions are not executed due to the changes of the shared JSON document by the current
modification.

• If and only if bOverwrite equals false already set properties are not overwritten. Hence,
array elements are shifted instead of beeing replaced. If an object property shall be replaced
and bOverwrite equals false a ParamError exception is thrown.

Methods to Subscribe for Shared JSON Events

During the modification of a shared JSON document several Shared JSON events (see Sec-
tion 4.4.5) are advertised. To be notified about emitted events the Shared JSON implementation
provides the possibility to register event listeners.

Listeners are registered with the method registerListener(sPath, fCallbackFunction,
bRecursive, sContext, bAllowPrereg). The following list explains the different parame-
ters.

• Since Shared JSON event listeners are registered for a specific part of a JSON document,
the parameters sPath and sContext contain a JSONPath expression addressing the ac-
tual part of the document. The path to be specified is an external path (see Section 4.4.3).
To ensure that the listener is notified upon changes of the very same element over its whole
lifetime, the unstable external path is immediately converted into a stable internal path. The
internal path is used afterwards to determine whether the registered listener function has
to be executed or not in case of changes to the shared JSON document.

• The callback function fCallbackFunction is called on every Shared JSON event that
matches the specified path. Once executed, the listener functions receive an event ob-
ject (see Section 4.4.5) as parameter that describes the JSON event that was emitted.

• The optional parameter bRecursive can be used to specify whether the registered lis-
tener should only be notified due to JSON events that are matching the specified path
exactly (false) or also on JSON events with a more specific path (true). Revisting the
JSON document from Listing 4.2 the behavior of the parameter can be described as fol-
lows. A listener function registered at the path "/tasks/0" with bRecursive=true
would be notified upon the addition or removal of key-value pairs to the first task item as
well as the modification of the existing task properties. In contrast listeners registered
with bRecursive=false at the very same path would only be notified on the addition or
removal of key-value pairs to the task item.

• Basically the registration of listeners is only possible for valid JSONPath’s, i. e. for paths that
can be resolved in the current shared JSON document. To circumvent this restriction the
optional parameter bAllowPrereg can be set to true.

Whenever a callback function was registered successfully an object is returned that provides the
method unregister() to unregister the listener. Otherwise an exception is thrown.

52 Chapter 4 Prototypical Implementation of Collaboration Extensions

4.4.5 Shared JSON Events

Shared JSON events are emitted on all changes to a shared JSON document. Registered listeners
are notified by calling the registered listener functions. Every listener receives an event object as
parameter that describes the actual changes to the document. Listing 4.6 represents an example
of an event object that might be passed to a listener registered for the JSONPath "/tasks/" to
indicate the addition of a new task item to an array named tasks.

{
type: "ADD",
internalPath: "/tasks",
externalPath: "/tasks",
position: 2,
newValue: {

name: "Task Three",
priority: 25,
done: false

}
}

Listing 4.6: Example of a Shared JSON Event Object

Every event object has a property type indicating the type of the change. In the example the type
is "SET" standing for the addition of a new key-value pair to a JSON object or of an array element
to a JSON array. Moreover, every event object accommodates the properties internalPath as
well as externalPath indicating where the change in the JSON document occured. In the ex-
ample a new task item was added at index 2 to an array named tasks. The property newValue
contains the JSON representation of the newly added element.

Due to the representation of shared JSON documents using Gravity data models, any modifica-
tion on a shared JSON document can be tracked by means of Gravity model change events (see
Table 4.3). Shared JSON events are then derived from the Gravity events. Since different modifi-
cations on shared JSON documents are possible different changes to the underlying Gravity data
model have to be observed. Table 4.5 provides an overview about the possible Shared JSON
event types, their properties as well as the underlying Gravity event that triggers the creation of
the particular Shared JSON event. The registration point defines whether the corresponding Grav-
ity model change callbacks are registered at the model handler or the model (see Section 4.3.4).

Event Description Properties Gravity Event Registration

SET Indicates that a property was added
to an object or replaced with a new
value. In case of replacements
before the SET event an event of
type DEL is issued.

internalPath,
externalPath,
newValue

atomic
Reference
Set

model handler

DEL Indicates that a property was
deleted from an object.

internalPath,
externalPath,
oldValue

atomic
Reference
Set

model

ADD Indicates that a new element was
inserted into a JSON array.

internalPath,
externalPath,
position,
newValue

ordered
Reference
Added

model handler

REM Indicates that an element was re-
moved from a JSON array.

internalPath,
externalPath,
position,
oldValue

ordered
Reference
Removed

model

Table 4.5: Shared JSON Event Types with Corresponding Properties

In the following the entries in the table will be explained in detail. The Shared JSON event
properties externalPath and internalPath provide the JSONPath as well as the identifier

4.4 Shared JSON 53

of the node representing the property or array of the shared JSON document in the Gravity data
model. In case of array modification events (ADD and REM) the parameter position indicates the
index of the element inside the array. The properties oldValue and newValue contain the old
or new value of the property, or the added or removed array item in case of array modifications.
The shared JSON events SET and ADD are triggered based on Gravity events emitted by the
model handler. This ensures that the Gravity model has reached a consistent state, i. e. the
currently running complex operation on behalf of a Shared JSON operation has been finished.
Thus, it is ensured that new values are fully configured before the registered Gravity callbacks
are executed. In case of DEL or REM events the Shared JSON events are triggered directly
when the corresponding Gravity model change event is fired. This ensures that the data to
be removed from a shared JSON document can be read a last time before it is finally deleted.
Therefore the Shared JSON implementation has to ensure, that first the subtree in the Gravity
model representing the value to be deleted is isolated from the rest of the JSON document
representation.

4.4.6 Synchronization Workflow

Instead of using the Gravity client API directly to implement a collaborative application, the
Shared JSON client API might be used. Since the application data is represented in a valid
JSON document, data interchange with other applications is fostered. In the following the syn-
chronization workflow of a collaborative task list application (see Section 1.2) realized by means
of the Shared JSON client API shall be explained. Figure 4.11 depicts the workflow for local as
well as remote modifications to the application state represented by a shared JSON document.

T
a

s
k

 A
p

p
S

h
a

re
d

J
S

O
N

(J2)(J1)

(T3)

Shared JSON API

Shared JSON Implementation

(T2)

Controller

G
ra

v
it

y
 C

li
e

n
t

(G2)

Model

OT/Protocol

Gravity Client API

(G4)

(G1)
Model Handler

(G3)

Operation Generator

(G5)

(T1)
View

(a) Processing of a Local Modification

T
a
s
k
 A

p
p

ViewController

S
h

a
re

d

J
S

O
N

Shared JSON Implementation

(J1)

(T1)

Shared JSON API

G
ra

v
it

y
 C

li
e
n

t

Model
(G3)

Model Handler

Operation Generator (G2)

OT/Protocol

Gravity Client API

(G1)

(b) Processing of a Remote Modification

Figure 4.11: Shared JSON Synchronization and Conflict Resolution Workflow

Processing of Local Modifications

The synchronization workflow in case of a local application state manipulation is depicted in Fig-
ure 4.11(a). It is assumed that the current application state is represented by the JSON document
in Listing 4.2.

1. If the user specifies a new task item via the UI of the application and presses the add button
the application controller would be notified (T1).

54 Chapter 4 Prototypical Implementation of Collaboration Extensions

2. The controller creates a JSON representation of the new task item (see Listing 4.4). This
JSON representation is stored to the shared JSON document via
setProperty("/tasks/2", {"name":"Task Three", "priority":25, "done":false}
called on the Shared JSON API (T2).

3. The Shared JSON implementation is in charge of mapping modifications submitted via the
Shared JSON API to Gravity client API calls that modify the Gravity data model. In case of
the addition of an extra task item the Shared JSON implementation maps the operation to
the set of Gravity client API calls presented in Listing 4.5 and dispatches a new complex
operation via the Gravity Client API (J1).

4. The workflow inside the Gravity Client (G1, G2, G3, G4, G5) is similar to the pure Gravity
case described in Section 4.3.5.

5. After Gravity successfully handled the complex operation it will fire several model change
events. Since Gravity model change events trigger the creation of high-level Shared JSON
events (J2), the Shared JSON event depicted in Listing 4.6 will be emitted.

6. The emitted JSON event can be used to update the view of the application properly (T3).

Processing of Remote Modifications

The synchronization workflow in case of a remote application state manipulation is depicted in
Figure 4.11(b).

1. Whenever the Gravity Client receives a complex operation it is processed. The processing
steps (G1, G2, G3) are similar to the ones described in Section 4.3.5.

2. Gravity model change events (J1) are processed by the Shared JSON implementation re-
sulting in Shared JSON events describing the changes to the shared JSON document in
detail.

3. Finally the Shared JSON implementation notifies registered listeners about the new Shared
JSON events. These events can be used to update the application’s view according to the
changes (T1).

4.5 SAPUI5 COLLABORATION ADAPTER

The SAPUI5 collaboration extension was outlined in Section 4.2. On top of the Shared JSON im-
plementation a framework-specific collaboration adapter bridges the gap between the framework-
based application data model and a shared JSON document. The implementation of this SAPUI5-
specific collaboration adapter as well as its utilization shall be described in the following.

4.5.1 Implementation Structure

Because SAPUI5 provides access object as well as remote proxy-based data models, the collabo-
ration adapter is implemented as collaboration proxy wrapping existing data models of the frame-
work. Different model implementations are available out of the box: a JSON model that stores
JSON data (see Appendix A), a XML model storing XML data [BPSM+06] and the OData model
that provides transparent access to data offered via the Open Data Protocol [Cor11].

Figure 4.12 depicts the class structure of the SAPUI5 JSON model with associated classes to real-
ize the data binding mechanism and the classes for the collaboration proxy. All classes necessary
for the collaboration proxy are aligned at the bottom line of the figure.

4.5 SAPUI5 Collaboration Adapter 55

1

<<abstract>>

sap.ui.model.Model

sap.ui.model.json.JSONModel

+ getProperty(sPath, oContext)

+ setProperty(sPath, oValue, oContext)

+ getData()

+ setData(data)

+ bindProperty(sPath, oContext)

+ bindList(sPath, oContext)

+ bindTree(sPath, oContext)

…

+ getDefaultBindingMode()

+ getProperty(sPath, oContext)

+ setProperty(sPath, oValue, oContext)

+ getData()

+ setData(data)

+ bindProperty(sPath, oContext)

+ bindList(sPath, oContext)

+ bindTree(sPath, oContext)

…

+ getDefaultBindingMode()

sap.ui.model.collab.JSONCollab

+ getProperty(sPath, oContext)

+ setProperty(sPath, oValue, oContext)

+ getData()

+ setData(data)

+ bindProperty(sPath, oContext)

+ bindList(sPath, oContext)

+ bindTree(sPath, oContext)

…

+ getDefaultBindingMode()

<<abstract>>

sap.ui.model.Binding

+ attachChange(fnFunction)

+ detachChange(fnFunction)

+ attachSort(fnFunction)

+ detachSort(fnFunction)

…

+ sort(oSorter)

+ getContexts()

<<abstract>>

sap.ui.model.PropertyBinding

+ getValue()

+ setValue(oValue)

<<abstract>>

sap.ui.model.TreeBinding

+ attachFilter(fnFunction)

+ detachFilter(fnFunction)

…

+ filter(aFilter)

+ getRootContexts()

+ attachSort(fnFunction)

+ detachSort(fnFunction)

…

+ sort(oSorter)

+ getContexts()

+ getValue()

+ setValue(oValue)

+ attachFilter(fnFunction)

+ detachFilter(fnFunction)

…

+ filter(aFilter)

+ getRootContexts()

+ attachSort(fnFunction)

+ detachSort(fnFunction)

…

+ sort(oSorter)

+ getContexts()

+ getValue()

+ setValue(oValue)

+ attachFilter(fnFunction)

+ detachFilter(fnFunction)

…

+ filter(aFilter)

+ getRootContexts()

<<abstract>>

sap.ui.model.ListBinding

sap.ui.model.json.JSONPropertyBinding sap.ui.model.json.JSONListBinding sap.ui.model.json.JSONTreeBinding

sap.ui.model.collab.JSONCollabListBindingsap.ui.model.collab.JSONCollabPropertyBinding sap.ui.model.collab.JSONCollabTreeBinding

Figure 4.12: Class Structure of Collaborative SAPUI5 JSONModel with Associated Data Binding
Classes

Collaborative Data Model

Model implementations in SAPUI5 inherit from the abstract superclass sap.ui.model.Model.
This class defines the interface implemented by actual model implementations and provides
some default implementations. The set of methods comprises getter and setter for data
like getProperty(sPath, oContext) and setProperty(sPath, oValue, oContext)
where the parameter sPath specifies the path to the read or written property and oContext
the context in which the path shall be resolved. The model implementation for JSON data is
encapsulated by the class sap.ui.model.json.JSONModel.

As described in the conceptual architecture of a collaboration proxy (see Section 3.4.3), a proxy
implementation wraps the actual implementation of a model and provides the same interface.
Since different models (JSONModel, XMLModel, ODataModel) use different addressing expres-
sions in the parameters sPath and oContext a collaboration proxy suitable for all model imple-
mentations would have to be able to handle all of these different addressing languages. Thus, no
general purpose collaboration proxy is possible. Therefore a collaboration proxy has to be imple-
mented for each of the models. Due to resource constraints only one exemplary implementation
was provided for the JSONModel. JSON was selected because it is more lightweight compared
to XML and the OData model is currently read-only.

The collaboration proxy for the JSONModel is represented by the class sap.ui.model.collab.
JSONCollab that inherits from the original model implementation class sap.ui.model.json.
JSONModel. The proxy implements exactly the same interface as the original model implemen-
tation and can therefore be used to replace an instance of the JSONModel in a transparent
manner. Every method call on the proxy instance is either forwarded directly to the super class
(for example in the case of getDefaultBindingMode()) or it is implemented within the proxy.
The implementation of the proxy relies on the Shared JSON implementation (see Section 4.4).
Any method call to get or set data is translated into a corresponding call on the Shared JSON
client API manipulating a shared JSON document.

56 Chapter 4 Prototypical Implementation of Collaboration Extensions

Collaborative Bindings

SAPUI5 supports declarative data binding with the UI. Therefore every data model has to enable
the creation of bindings that are an explicit representation of the connection between UI ele-
ments and model data. After any changes in their associated data model bindings are notified.
Afterwards they check whether the change in the data model influenced the state of the binding.
Whenever the binding state has changed all listeners of the binding are notified.

Bindings are created via bindProperty(), bindList() or bindTree(). These bindings are
represented by instances of model-specific subclasses of the abstract classes sap.ui.model.
PropertyBinding, sap.ui.model.ListBinding or sap.ui.model.TreeBinding. An
instance of JSONModel for example would create instances of JSONPropertyBinding,
JSONListBinding as well as JSONTreeBinding.

Since the original JSONModel returns a reference to the stored JSON data on any getData()
or getProperty(...) method calls, but the JSONCollab implementation returns only a copy
of the current data stored in the shared JSON document, the binding classes associated with
the JSONModel have to be reimplemented for the JSONCollab proxy. On initialization bind-
ings usually obtain a reference to their data of interest. Afterwards this reference is used
during the whole lifetime of the binding. Since the data is only referenced, any changes to
the data model are visible to the bindings automatically. Because the JSONCollab proxy deals
with copies of the shared data, all bindings have to be reimplemented so that they retrieve
a new copy of the data whenever they are notified about changes. Otherwise the binding
would not be able to notice changes in the data. Therefore subclasses of the bindings for the
JSONModel are implemented (JSONCollabPropertyBinding, JSONCollabListBinding,
JSONCollabTreeBinding).

4.5.2 Application Integration

Because the collaboration proxy provides the very same API as the original model implementa-
tion, the integration of the collaborative data model into a SAPUI5 application is very easy. The
class JSONCollab can be used instead of the class JSONModel without further efforts. List-
ing 4.7 shows the single-user JSON model as well as the collaborative JSON model configured
to be used with a SAPUI5 application.

////////////////// single-user ///////////////////////
//create single-user JSON model instance
var model = new sap.ui.model.json.JSONModel();
////////////////// multi-user ////////////////////////
//create multi-user JSON model instance
var model = new sap.ui.model.json.JSONCollab("mySession");

/////////// single-user / multi-user ///////////////
//set the data for the model
model.setData(data);
//set the model as core model
sap.ui.getCore().setModel(model);

Listing 4.7: Utilization of Single-User as well as Multi-User JSON Data Model in SAPUI5

In the single-user case first an instance of JSONModel is created. Afterwards the initial data
values are set and the model is set as global data model for the application. This ensures that
all bindings are resolved towards this data model. When the application shall be used collabora-
tively, the instance of JSONModel has just to be replaced with an instance of JSONCollab. The
parameter of the constructor function is the identifier of the collaboration session that shall be
joined. Afterwards the initial data can be set in the same way as in the single-user case and the
collaborative JSON model can be used as global data model of an application.

4.5 SAPUI5 Collaboration Adapter 57

4.5.3 Synchronization Workflow

Revisiting the introductory task list example (see Section 1.2), Figure 4.13 depicts the synchro-
nization as well as conflict resolution workflow for a SAPUI5-based task list application.

S
A

P
U

I5

A
p

p
li

c
a

ti
o

n

S
h

a
re

d

J
S

O
N

(J2)(J1)

Shared JSON Implementation

G
ra

v
it

y
 C

li
e

n
t

(G2)

Model

OT/Protocol

Gravity Client API

(G4)

(G1)
Model Handler

(G3)

Operation Generator

(G5)

(S1)(S3) (S4)

(S2)
Controller

(S6)

Shared JSON API

(S5)

JSONCollab

JSONModel

View

(a) Processing of a Local Modification

S
h

a
re

d

J
S

O
N

Shared JSON Implementation

(J1)

G
ra

v
it

y
 C

li
e
n

t

Model
(G3)

Model Handler

Operation Generator (G2)

OT/Protocol

Gravity Client API

(G1)

S
A

P
U

I5

A
p

p
li

c
a
ti

o
n

(S2) (S3)

(S1)

View

Shared JSON API

(S4)

JSONCollab

JSONModel
Controller

(b) Processing of a Remote Modification

Figure 4.13: SAPUI5 Synchronization and Conflict Resolution Workflow

Processing of Local Modifications

Whenever a user of the SAPUI5-based task list application wants to add a new task item to
the list of tasks, the name and priority of the new task item are provided via the user interface.
Afterwards the following workflow is executed:

• Once the add button is pressed, the controller of the application is triggered (S1).

• The controller implementation obtains the values of the task properties (name, priority, etc.)
from the corresponding input fields of the UI and creates a new task item representation in
JSON. A possible JSON representation of a task item is depicted in Listing 4.4. This task
item representation is stored in the data model by calling the method setProperty on the
JSONCollab collaboration proxy (S2).

• The call is processed by the proxy implementation. First, the data is stored in the orig-
inal JSON model. This model notifies the view accordingly (S3) and the view updates
its state (S4). Afterwards the new data is stored to a shared JSON document via the
Shared JSON client API (S5).

• Now the Shared JSON as well as the Gravity implementation processes the request (J1,
G1, G2, G3, G4, G5, J2). The explanation of these steps can be found in Section 4.4.6.

• After the new data was stored successfully by the Shared JSON implementation, a
Shared JSON event is emitted that notifies the JSONCollab proxy about the changes.
If the event would be processed by the JSONCollab model implementation the announced
modification in the data would be propagated again via the Shared JSON API resulting in
an endless event loop. To avoid this cycle, the processing of the Shared JSON event (S6)
has to be suppressed.

58 Chapter 4 Prototypical Implementation of Collaboration Extensions

Processing of Remote Modifications

Whenever a remote user modifies the shared data model, the following workflow is carried out:

1. Remote modifications are first processed by the Gravity as well as the Shared JSON imple-
mentation (G1, G2, G3, J1). Details of these processing steps can be found in Section 4.4.6.

2. After the modification was successfully incorporated into the shared JSON document, a
Shared JSON event is generated and handled by the JSONCollab collaboration proxy imple-
mentation (S1).

3. On behalf of the event the original JSONModel is updated, leading to the update of
the UI (S2, S3).

4. Finally, the changes to the JSONModel would be propagated to the shared JSON document
via the Shared JSON client API resulting in an event loop. Therefore the propagation has to
be inhibited (S4).

4.6 KNOCKOUT.JS COLLABORATION ADAPTER

The Knockout.js collaboration extension outlined in Section 4.2 comprises three parts. While the
Gravity layer (see Section 4.3) as well as the Shared JSON layer (see Section 4.4) were already
described, this Section shall describe the framework-specific collaboration adapter on top of the
Shared JSON layer. Since Knockout.js applications comply with a subgraph-based data model
structure (see Section 3.3.6), the collaboration adapter is connected with the data model using
annotation-based code injection (see Section 3.4.3). Thus, synchronization code that keeps track
of local changes and replays remote changes has to be injected into the view model.

4.6.1 Knockout.js View Model Structure

To be able to develop an algorithm injecting code in a view model that captures and re-
plays changes, the view model structure is analyzed. View models in Knockout.js are simple
JavaScript objects that might be created using the object literal {...}. Listing 4.8 shows the
view model definition for a simple task list application in the style of the introductory exam-
ple (see Section 1.2). To simplify the example, task list items only have a name property whereas
the priority and done flag are neglected.

var Task = function (data) {
this.name = ko.observable(data.name || "default name");

}
Task.prototype.delete = function() {
viewModel.tasks.remove(this);

}

var viewModel = {
input: ko.observable(),
tasks: ko.observableArray()

}

viewModel.addTask = function() {
viewModel.tasks.push(new Task({name: viewModel.input()}));
viewModel.input("");

}

Listing 4.8: Knockout.js View Model for a Task List Application

4.6 Knockout.js Collaboration Adapter 59

The viewModel variable references a simple JavaScript object serving as root object of the view
model. This object holds a property input containing the input of the name input field in the view
of the task list application. The property tasks is an array holding a list of task items. Moreover
the view model accommodates a function addTask to add a new task item to the list of tasks.
This function first reads the current value of the input field via viewModel.input(). Afterwards
a new task item is created using the object constructor function Task. Object constructor func-
tions are comparable to constructor functions in Java. Whenever the constructor is called a new
instance of the class represented by the function is created. Properties and functions added
to the prototype property of a constructor function like Task.prototype.delete, are added
automatically to all instances of the particular class.

To notify the view about changes in the view model, all model elements have to be declared
as observables. Observables are simple JavaScript properties enriched with a notification mech-
anism. The notification mechanism is used to inform subscribers about changes. In general, a
Knockout.js view model can comprise three different types of observable properties: observables,
observable arrays and computed observables.

Observables

Primitive observables are the simplest form of observables representing a single value that can
be observed. The value can be primitive (string, number, etc.) or structured (object, array). The
current value of a primitive observable can be read by invoking the observable itself. The current
value of the view model’s input property can be read for example via viewModel.name(). A
new value is written by calling the observable itself, but with the new value as parameter. Call-
ing viewModel.input("Task Three") would set the input property of the view model from
Listing 4.8 to "Task Three".

Observable Arrays

Observable arrays can be understood as collection of things enabling the detection of changes.
Observable arrays notify observers about changes to the array like the addition or removal of
items. However, changes to the array elements itself have to be observed separately. From
a more technical point of view observable arrays are simple observables with an array as value.
Furthermore array specific operations to modify the elements of the underlying array are provided.
Table 4.6 shows some examples for array specific functions.

Method Description

push(element) Adds an element to the end of the array.
pop() Removes the last element from the array and returns it.
unshift(element) Adds a new element as the first element to the array.
indexOf(element) Returns the index of the first array element matching the passed element.
remove(element) Removes all values that equal the passed element parameter from the array.

Table 4.6: Examples for Methods of Observable Arrays

Computed Observables

Computed observables enable the computation of aggregated values based on other observables.
The simplest example might be the full name of a person calculated using the first name as well as
the last name. Computed observables are usually read-only and their value is updated whenever
the underlying observables change. Knockout.js offers the possibility to register a write-callback
function that is invoked whenever the computed observable is updated with a new value. This
callback decomposes the joined value into its parts and saves them in the particular variables.

60 Chapter 4 Prototypical Implementation of Collaboration Extensions

4.6.2 Knockout.js Synchronization Extension

Since Knockout.js observables provide features to notify observers about changes this subscrip-
tion mechanism is used to keep track of changes inside the view model and synchronize them
among different instances. Thus, listeners that store changes to a shared JSON document via
the Shared JSON client API have to be registered with any observable.

Knockout.js provides the concept of Extenders to enrich observables with additional functionality.
Extenders are created by adding an extender function to the global object ko.extenders. This
function takes the observable as first argument and any additional information (string, number,
object, etc.) as the second parameter. The return value can be the enriched observable itself or
anything else that shall be used instead of the enriched observable. Listing 4.9 shows the source
code of a synchronization extension for a simple observable.

ko.extenders.syncChange = function(target, path) {
//observe value changes of the observable
target.subscribe(function(newValue) {

//store new value of observable via Shared JSON client API
sharedJSON.setProperty(path, newValue);

});

//register change listener to the corresponding shared JSON event
sharedJSON.registerListener(path, function(event) {

if (event.type === "SET") {
target.call(null, event.newValue);

}
}

//store the initial value
sharedJSON.setProperty(path, target());

return target;
};

Listing 4.9: Knockout.js Synchronization Extension for Observables

If the extension is added to an observable, first a listener is subscribed. This listener keeps
track of changes and whenever the observable changed, the new value is stored in the shared
JSON document via sharedJSON.setProperty(path, newValue). The parameter path
specifies the JSONPath to the observable inside the Knockout.js view model. Since the view
model might be a graph structure, an observable might be reachable via different paths from the
root object of the view model leading to different JSONPath expressions. To ensure that every
observable is reachable via exactly one JSONPath in the view model, the view model structure
is restricted to tree-based view models. This limitation of the current approach is discussed in
detail in Section 5.5.5.

Since remote changes of the observable have to be observed and integrated in the view model,
a listener for Shared JSON events targeting the path of the observable is registered. Anytime
an event of type "SET" (see Section 4.4.5) occurs, the observable is updated with the current
value via target.call(null, event.newValue). The invocation of the call function on the
observable invokes the observable itself with event.newValue as parameter whereas the value
of JavaScript’s this variable is bound to null.

For observable arrays an extension in the same way was created. Because the callback function
registered at the observable only gets the new array content as parameter, an algorithm has to
check whether new elements were added or old ones were deleted from the array. The logic
compares the current shared JSON document state with the state of the observable array. Two
difference sets are obtained: A = Array\JSONArray and B = JSONArray\Array where
X\Y indicates the array difference between X and Y , i. e. all elements that are in X but not in
Y . All elements from A have to be stored to the JSON document whereas the elements in B

4.6 Knockout.js Collaboration Adapter 61

have to be deleted from the JSON document. The elements that were neither added nor deleted
(Array ∩ JSONArray) are compared with the JSON document state with respect to their order.
Changes in the order of elements have to be propagated too.

For computed observables no extension is necessary, because they depend on other observables.
If the dependencies of a computed observable are tracked transitively, a set of observables and
observable arrays would result as seed. Thus, it is enough to synchronize observables and ob-
servable arrays. Computed observables will be automatically recomputed on any changes of the
underlying observables.

The observable and observable array Knockout.js extensions have to be added to all observ-
ables inside the view model that shall be synchronized. Therefore a special traversal func-
tion was devised that traverses a specified view model and adds the extenders. For exam-
ple the algorithm would add an extender to the property name of the first task item in the
view model from Listing 4.8 by calling viewModel.tasks()[0].name.extend({syncExtension:

"/viewModel/tasks/0/name"}). Note the additional part "/viewModel" in the path passed
as parameter to the extension. Since one application might comprise several view models re-
sponsible for different views, multiple view models have to be synchronized. To ensure that no
interference is possible because for example two view models have the same property with
different semantics, namespaces were introduced in the paths, so that different view models are
separated by different prefixes.

4.6.3 Annotations

Since the integration of function calls to extend the view model with synchronization code re-
quires scattered source code changes in the view model, a declarative approach was devised
based on annotations that are used to inject the necessary code snippets automatically. The set
of annotations encompasses: @Session, @Class and @Sync. To prevent JavaScript errors the
annotations are always accommodated by comments. Thus, if the annotations are not evaluated
the application still runs as single-user application. The view model from Listing 4.8 enriched with
the annotations is depicted in Listing 4.10. Changes to the original view model are emphasized
in bold face.

// @Session("mySession")

var Task = function (data) {
this.name = ko.observable(data.name || "default name")

}
// @Class("Task");

Task.prototype.delete = function() {
viewModel.tasks.remove(this)

}

var viewModel = {
input: ko.observable(),
tasks: ko.observableArray()

}
// @Sync("viewModel")

viewModel.addTask = function() {
viewModel.tasks.push(new Task({"name": viewModel.input()}));
viewModel.input("");

}

Listing 4.10: Knockout.js View Model for a Task List Application with Annotations

62 Chapter 4 Prototypical Implementation of Collaboration Extensions

@Session

The annotation @Session(<sessionId>) is used to establish a collaboration session. Differ-
ent collaboration sessions are distinguished using unique session identifiers. This is necessary
since different user groups might want to use the same application. Based on the identifier a
corresponding Shared JSON as well as Gravity session is set up on behalf of the Knockout.js
application. The @Session annotation will be replaced at runtime with the following function call:
com.sap.gcm.knockout.initSession(modelId: "<sessionId>");.

@Sync

The annotation @Sync(<viewModel>) marks the view model that shall be synchronized among
all application instances. The parameter <viewModel> specifies the name of the variable that
contains the view model. In case of the example the variable viewModel references the view
model and the property input as well as the array tasks are synchronized. To ensure syn-
chronization the evaluation of the annotation triggers the traversal of the view model. Hence,
all observables are enriched with the synchronization extensions explained in Section 4.6.2. Ev-
ery @Sync annotation is replaced at runtime with the following procedural JavaScript source code:
syncViewModel(<viewModel>, "<viewModel>");

@Class

The @Class(<className>) annotation marks object constructors. This is necessary to enable
the recreation of objects remotely using the appropriate constructor function.

Objects in the view model might not be created just by means of object literals, but rather by
a JavaScript constructor function. Objects constructed with the latter might have an associated
JavaScript prototype object that contains properties and functions shared among class instances.
If the synchronization extension (see Section 4.6.2) captures for example the addition of a task
item to the array of tasks, the object has to be added to all task arrays at remote sites. This
requires that the object is transferred to all other sites.

One possible solution would be the serialization and deserialization of the object including all
properties and functions. Since the view models are synchronized by means of the Shared JSON
implementation the stringification of functions would be required. This stringification using
JavaScript’s toSource() function is not feasible due to JavaScript’s function scope. Consider
the example in Listing 4.11.

Task = function(id) {
this.getId = function() {

return id;
}

};

task = new Task("123");
task.getId(); //returns "123"

//stringify the object to reconcile the object
source = task.toSource();

//recreate the object
newTask = eval(source);
newTask.getId(); //ReferenceError: id is not defined

Listing 4.11: JavaScript Object Recreation Using Serialization

4.6 Knockout.js Collaboration Adapter 63

The listing shows the constructor function definition of a task item that has only an identifier
with a corresponding getter function. Afterwards a new task item is created with the identi-
fier "123" and stored in the variable task. Calling getId() on the task item would return
the identifier "123". If we would use serialization to reconcile the objects the object would
have to be transformed into a string representation that is stored in the variable source in the
example. This string-based representation would be transferred to remote clients. Afterwards
the incoming object would be reconstructed at the remote site using JavaScript’s eval function.
Calling newTask.getId() would result in a JavaScript exception ReferenceError: id is
not defined. The reason for this behavior is that the variable is resolved in different scopes.
During the initial creation of the task item, the id was resolved within the scope of the constructor
function. When the function is recreated remotely id was resolved against the global JavaScript
namespace.

To circumvent this problem, the original constructor functions are used to reconstruct objects
remotely. Therefore a global mapping between unique keys and constructor functions is estab-
lished. The collaboration adapter implementation maintains a global map that maps every class
constructor function to a unique class name. This map is used to obtain a string-based identifier
for the class of every object. Furthermore a reverse map is used to enable the easy look up of
the constructor function for a given class identifier. Whenever an @Class annotation is used it is
replaced with the following source code registerClass(<className>, "<className>")
where the first parameter is the variable that contains the constructor function and the second
parameter is the unique identifier for the class.

To reconstruct a class instance remotely the following workflow is carried out:

1. The synchronization extension of an observable array is notified of a new element added to
the array.

2. The class constructor map is used to determine the corresponding unique key for the class
instance.

3. Along with the JSON representation of the object, the class identifier is stored in the shared
JSON document using a special property GCMClass.

4. Once the change is handled by remote clients the GCMClass property is evaluated. The
corresponding constructor function is determined using the reverse mapping.

5. The constructor function is invoked with the data obtained from the JSON representation of
the object as parameter. Therefore the constructor functions have to comply with a special
parameter format that is discussed in Section 5.5.3.

Annotation-based Code Injection Mechanism

To replace the annotations with actual source code all files containing annotations have to be pro-
cessed. Therefore the file locations are specified in a configuration file and afterwards processed
by a code injection mechanism according to the following steps:

1. Every file is loaded asynchronously using an XMLHttpRequest.

2. Once a file was loaded successfully, it is analyzed with respect to contained annotations.
JavaScript’s regular expressions are used to find and replace the annotations inside the
source code. Table 4.7 provides an overview of the regular expressions that are used to
find and replace the annotations.

64 Chapter 4 Prototypical Implementation of Collaboration Extensions

Annotation Regular Expression Source Code Replacement

@Session /\/\/@Session\("(\w+)"\)/ initSession(modelId:
"<sessionId>");

@Sync /\/\/@Sync\("(\w+)"\)/g syncViewModel(<viewModel>,
"<viewModel>");

@Class /\/\/@Class\("(\w+[.\w+]*)"\)/g registerClass("<className>")

Table 4.7: Knockout.js Annotations with Regular Expressions and Source Code Replacements

4.6.4 Property Exclusion Mechanism

Once a view model variable is marked with a @Sync annotation for synchronization all observ-
ables are extended with the synchronization extension. Since some of the observables control
only the visibility of for example additional input fields or div containers these observables have
to be excluded from synchronization. Otherwise changing the visibility of an input field in one
application instance would cause this change in all other instances too.

To provide a convenient way for developers to exclude properties, a path-based property exclu-
sion mechanism was devised. Within a configuration file paths with a language reminiscent of
JSONPath (see Section 4.4.2) might be specified to exclude several view model properties from
synchronization. Listing 4.12 shows the language definition for the property exclusion language
using the EBNF notation [EBN96]. Boldface strings correspond to non-terminal symbols whereas
normal type indicates terminal symbols.

exclusionPath = modelPart, pathPart ;
modelPart = "/", viewModelName;
pathPart = "/", (propertyName | "*" | "/");
propertyName = any unicode string without "/" or control characters
viewModelName = any unicode string without "/" or control characters

Listing 4.12: Property Exclusion Language Definition

Every exclusion path comprises a model part specifying the view model for which some proper-
ties might be excluded as well as at least one path part. Path parts might be the keys of some
JavaScript object properties, array indices or one of the wildcards * or /. The wildcard symbol *
indicates that any property name will match the path at the position of the wildcard. The wildcard
symbol / indicates that an arbitrary number of path parts can lie between the wildcard and the
appendix of the exclusion path.

Table 4.8 shows some examples of property exclusion expressions accompanied by a short de-
scription.

Exclusion Expression Description

/viewModel/input Excludes the observable input of the view model viewModel.
/viewModel/tasks/*/editing Excludes the property editing of every task in the array tasks

of the view model viewModel.
/viewModel//editing Excludes all observables with the name editing in the whole

view model viewModel.

Table 4.8: Examples for Property Exclusion Expressions

4.6 Knockout.js Collaboration Adapter 65

4.6.5 Application Integration

To describe the workflow of coupling an application with the Knockout.js collaboration extension,
a simplified introductory application example where tasks only have a name is used. To enable
real-time collaboration in an application, the following steps have to be followed:

1. The JavaScript file of the application containing the view model definition has to be enriched
with annotations.

2. A configuration file has to be provided specifying the files that shall be analyzed regarding
annotations, property exclusion expressions, etc.

3. The view definition of the application, which is usually a simple HTML file, has to import a
JavaScript file accommodating the implementation of the Knockout.js collaboration exten-
sion. To actually incorporate the synchronization code into the view model, the collaboration
extension uses the code injection mechanism explained in Section 4.6.3.

The incorporation of annotations inside applications’ view model definitions was already described
in Section 4.6.3 and the configuration file is just a simple text-based file. Listing 4.13 depicts an
excerpt of an HTML page representing the UI definition for the task list application based on
Knockout.js.

...
<!-- <script type="text/javascript" src="viewmodel.js"/> -->
<script type="text/javascript" src="knockoutadapter.js"/>
...
<input data-bind="value: name"/>
<button data-bind="click: addTask">Add Task</button>

<ul data-bind="foreach: tasks">

Delete Task

...

Listing 4.13: Knockout.js View Definition

The main HTML elements are an input element to enter the name of a new task item, a button
to add the new task as well as a list showing all tasks accompanied by a delete link. The data-
bind attributes establish data bindings (see Section 3.3.5) to the view model (see Listing 4.10).
Changes to link the collaboration extension with the Knockout.js application are limited to ex-
change the import of the file viewmodel.js (now encapsulated in the <!-- / --> tags) with
the file knockoutadapter.js. This script imports the SAP Gravity as well as the Shared JSON
code. Furthermore it contains the actual Knockout.js adapter implementation that connects the
view model with a shared JSON document.

66 Chapter 4 Prototypical Implementation of Collaboration Extensions

4.6.6 Synchronization Workflow

Figure 4.14 depicts the synchronization workflow for local as well as remote modifications to the
application state of a task list application based on Knockout.js.

K
n

o
c
k

o
u

t.
js

A
p

p
li

c
a

ti
o

n

S
h

a
re

d

J
S

O
N

(J2)(J1)

Shared JSON Implementation

G
ra

v
it

y
 C

li
e

n
t

(G2)

Model

OT/Protocol

Gravity Client API

(G4)

(G1)
Model Handler

(G3)

Operation Generator

(G5)

(S2) (S1)

Model

(S6)

Shared JSON API

(S3)

View

ViewModel

Sync Code

(a) Processing of Local Modifications

S
h

a
re

d

J
S

O
N

Shared JSON Implementation

(J1)

G
ra

v
it

y
 C

li
e
n

t

Model
(G3)

Model Handler

Operation Generator (G2)

OT/Protocol

Gravity Client API

(G1)

K
n

o
c
k
o

u
t.

js

A
p

p
li

c
a
ti

o
n

(S2)

Model

(S1)(S3)

View

ViewModel

Sync Code

Shared JSON API

(b) Processing of Remote Modifications

Figure 4.14: Knockout.js Synchronization and Conflict Resolution Workflow

Processing of Local Modifications

The synchronization workflow in case of a local application state manipulation is depicted in Fig-
ure 4.14(a). Assuming that the task list application based on Knockout.js currently maintains two
task items, the addition of a third task item would lead to the following workflow:

1. The user adds a task item to the tasks array by specifying the properties of the task and
pressing the add button. Therefore the method addTask is called on the view model (S1).

2. The invocation of addTask creates a new instance of the class Task and adds it to the
array tasks. Due to the two-way data binding of the view model with the view, the view is
updated to show the new task item in the list (S2).

3. Since extenders were added to all observables, the change is captured and stored to the
shared JSON document representing the current view model state via the Shared JSON
client API (S3).

4. In the following the modification of the shared JSON document is handled as described in
Section 4.4.6 by the Shared JSON as well as the Gravity implementation (J1, G1, G2, G3,
G4, G5, J2).

5. After the request has been processed by Gravity as well as the Shared JSON implementa-
tion a Shared JSON event is fired. This event would be processed by the synchronization
extension of the changed observables leading to an incorporation of the changes into the
observables. This would trigger the change tracking again resulting in an endless event
loop. Therefore the handling of Shared JSON events has to be inhibited in case of local
manipulations (S6).

4.6 Knockout.js Collaboration Adapter 67

Processing of Remote Modifications

The synchronization workflow in case of a remote application state manipulation is depicted in
Figure 4.14(b). Any remote modification triggers the execution of the following steps:

1. Every incoming modification is processed first via the Gravity as well as the Shared JSON
implementation (G1, G2, G3, J1). Details of these processing steps can be found in Sec-
tion 4.4.6.

2. Once the processing finished, the Shared JSON implementation emits Shared JSON events
that represent the changes in the shared JSON document (S1).

3. The Knockout.js synchronization extension incorporates the changes into the view model.
Due to the declarative data binding the view is updated immediately (S2).

4. Since the incorporation of changes in the view model would trigger the listeners of the
synchronization extension, the replay of remote modifications would trigger the propagation
of the changes once again leading to an endless event loop. Therefore the capturing and
propagation of changes in the view model has to be suppressed in the case of incoming
remote modifications (S3).

4.7 CONCLUSION

Two frameworks should be selected to proof that the conceptual architecture of collaboration ex-
tensions for MV* frameworks is feasible to enrich frameworks with support for the development
of collaborative real-time applications. To select the frameworks, characteristics were inferred
using the framework classification dimensions introduced in Section 3.3. Based on the derived
characteristics SAPUI5 and Knockout.js were selected and served as basis for the prototypical
implementation of collaboration extensions.

Based on the conceptual architecture, implementation architectures for both selected frameworks
were described. The collaboration extensions were not implemented from scratch, especially no
OT algorithm was implemented. Rather, SAP Gravity providing an OT implementation for directed,
labeled and attributed graph structures was reused.

Since the Gravity client API offers only simple operations to modify a graph-based data model, a
Gravity extension was devised. This extension, referred to as Shared JSON, provides a high-level
API for the modification of a shared JSON document by multiple participants.

Based on the Shared JSON implementation a collaboration adapter bridging the gap between
the data model of a SAPUI5 application and a shared JSON document was designed and imple-
mented. Since SAPUI5 adheres to an access object or remote proxy-based data model structure,
the collaboration adapter was conceived as collaboration proxy. Since the proxy offers the very
same API as the original data model, it can replace a model instance in a single-user application
transparently to enable real-time collaboration.

The Knockout.js collaboration adapter was also implemented based on the Shared JSON imple-
mentation. Since Knockout.js adheres to a subgraph-based data model, an annotation-based code
injection approach was used to couple the data model of an application with a shared JSON doc-
ument. The set of annotations comprises @Session, @Class and @Sync.

Even though only SAPUI5 and Knockout.js were enriched with collaboration support, these two
prototypes proved that the implementation of collaboration extensions is feasible. Thus, the
approach might be transferred to other JavaScript MV* frameworks in the future.

68 Chapter 4 Prototypical Implementation of Collaboration Extensions

5 EVALUATION

The previous chapter described the implementation of collaboration extensions for SAPUI5 as
well as Knockout.js. But how do these solutions perform when used by developers creating
collaborative web applications?

To assess the worth and merits of the developed collaboration extensions an evaluation was
conducted determining the software quality compared to SAP Gravity. A common definition of
software quality is given by the ISO/IEC 250xx series of standards. However, software quality
models and associated characteristics are usually tied to end-user applications that have to be
evaluated. Therefore two common quality models are adapted to the use case of framework
evaluation in Section 5.1.

The evaluation of a framework or framework extension is a time-consuming task. Developers
have to become familiar with the framework itself and different development tools. Finally, a
full-fledged application has to be implemented. Since test persons could only be recruited at the
SAP laboratory or at university, and the time those persons could spend for the study was limited,
only the Knockout.js collaboration extension was evaluated and compared to SAP Gravity. The
overall evaluation process is outlined in Section 5.2.

The evaluation process comprised two major steps: A preliminary user study with an experi-
enced web developer illuminated in Section 5.3, and a comprehensive developer study in form
of a practical course at the Dresden University of Technology. The latter is the main subject of
Section 5.4.

Gaining experience with the development of applications using the prototypical implemented
Knockout.js collaboration extension, several limitations were carved out that are explained in
Section 5.5.

Finally, Section 5.6 summarizes the experiences of the evaluation.

5.1 SOFTWARE QUALITY MODELS

The ISO/IEC 250xx series of standards, referred to as "Software Product Quality Requirements
and Evaluation (SQuaRE)", fosters the specification and evaluation of software quality require-
ments. Serving as umbrella document for a series of standards as well as guideline for soft-
ware evaluation, the ISO/IEC 25000 standard [ISO05] defines software quality as the "capabil-

69

ity of software products to satisfy stated and implied needs when used under specified con-
ditions." Since this definition is quite abstract, detailed quality models are defined in the stan-
dard ISO/IEC 25010 [ISO10]. These models specify concrete characteristics for the evaluation
of software products that will be used to assess the Knockout.js collaboration extension (Knock-
out.js CE). Characteristics can be subdivided into subcharacteristics that might be separated fur-
ther to measurable quality-related properties associated with quality measures. Furthermore
guidelines for using the characteristics are offered.

The standard ISO/IEC 25010 [ISO10] defines two quality models: A product quality model con-
cerning static properties of software as well as a quality in use model, which is related to the
usage of a system in a particular context. Since all quality characteristics defined by the models
are abstract, adaptation with respect to the Knockout.js CE was necessary. Furthermore quality
characteristics of interest were selected, since a software product can be evaluated from different
points of view. In case of the Knockout.js CE three different perspectives are possible:

1. The framework developer perspective, which emphasizes characteristics related to frame-
work construction and implementation.

2. The application developer perspective, where framework characteristics that enable the
effective and efficient development of framework-based applications are emphasized.

3. The application user perspective that assesses a framework-based application in use.

Because the main goal of the evaluation was to find out, whether the implemented Knock-
out.js CE fosters the effective and efficient development of web-based collaborative applications
in a manner satisfying framework users, the application developer perspective was chosen. The
next sections will explain the selection of evaluation characteristics in detail.

5.1.1 Product Quality Model

The product quality model defined in ISO/IEC 25010 [ISO10] revolves around the static quality
of a software product. Figure 5.1 depicts the eight quality characteristics accommodated by the
model. Since the Knockout.js CE was judged out of the application developer perspective, not all
characteristics were assessed. Therefore neglected characteristics are indicated by strikethrough
text.

Product Quality

Usability

Appropriateness

Recognizability

Learnability

Operability

User Error

Protection

User Interface

Aesthetics

Accessibility

Security

Confidentiality

Integrity

Non-

Repudiation

Accountability

Authenticity

Functional

Suitability

Functional

Completeness

Functional

Correctness

Functional

Appropriateness

Compatibility

Co-Existence

Interoperability

Performance

Efficiency

Time-Behavior

Resource

Utilization

Capactiy

Reliability

Maturity

Availability

Fault Tolerance

Recoverability

Maintainability

Modularity

Reusability

Analyzability

Modifiability

Testability

Portability

Adaptability

Installability

Replaceability

Figure 5.1: Product Quality Model According to ISO/IEC 25010 [ISO10]

Functional Suitability is the degree to which SAP Gravity/the Knockout.js CE provides the neces-
sary functionality to develop a collaborative web application. Out of the three subcharacteristics
of functional suitability, functional correctness was excluded, since an application developer is
not responsible for the correct functioning of a framework. The adapted definitions of functional
completeness and functional appropriateness are listed in Table 5.1.

70 Chapter 5 Evaluation

Characteristic Description

Functional Completeness Degree to which SAP Gravity/the Knockout.js CE enables the develop-
ment of arbitrary web-based collaborative applications.

Functional Appropriateness Degree to which SAP Gravity/the Knockout.js CE facilitates the devel-
opment of collaborative web applications.

Table 5.1: Subcharacteristics of Functional Suitability According to ISO/IEC 25010 [ISO10]

Performance Efficiency aims at assessing the performance of SAP Gravity/the Knockout.js CE
relative to the used resources. Since the performance of a framework has to be enforced by
framework developers rather than application developers, this characteristic was excluded from
evaluation.

Compatibility is defined as the degree to which SAP Gravity/the Knockout.js CE can be used
together with other technologies within the very same collaborative application. The subcharac-
teristics of compatibility accompanied by a short description are listed in Table 5.2.

Characteristic Description

Co-Existence Degree to which SAP Gravity/the Knockout.js CE restricts the choice of
other technologies.

Interoperability Degree to which SAP Gravity/the Knockout.js CE works well with other
technologies.

Table 5.2: Subcharacteristics of Compatibility According to ISO/IEC 25010 [ISO10]

Usability is the degree to which SAP Gravity/the Knockout.js CE can be used to develop a collabo-
rative application in an effective, efficient and satisfying manner. Out of the six subcharacteristics
only the three listed in Table 5.3 were considered to be relevant. Usually evaluating if developers
can decide whether a framework out of a plentitude of available frameworks is appropriate for
their needs, the criterion of appropriateness recognizability is neglected since only the Knock-
out.js CE was evaluated and no comparable alternatives were available. The degree to which a
user interface is recognized as pleasing and satisfying by users, user interface aesthetics were
ignored since the Knockout.js CE has only a prototypical programming interface rather than a
extensively designed user interface. Accessibility checks whether people with disabilities that
might be caused by age as well as people with different backgrounds are able to use the Knock-
out.js CE. Since only students were available as human resources for the evaluation, accessibility
was skipped.

Characteristic Description

Learnability Degree to which the use of SAP Gravity/the Knockout.js CE for the
development of collaborative web applications can be learned in an ef-
fective and efficient manner.

Operability Degree to which SAP Gravity/the Knockout.js CE is easy to use after
the initial learning phase.

User Error Protection Degree to which SAP Gravity/the Knockout.js CE prevents users from
making errors.

Table 5.3: Subcharacteristics of Usability According to ISO/IEC 25010 [ISO10]

Reliability evaluates whether SAP Gravity/the Knockout.js CE can fulfill a specific level of service
for a period of time. Since reliability has either to be evaluated by the framework developer for
any use cases or with respect to a dedicated application, this characteristic was neglected in the
evaluation from the application developer’s view. The same holds for Security.

Maintainability is the degree to which SAP Gravity/the Knockout.js CE enables the effective and
efficient maintenance of implemented applications. Out of the five subcharacteristics three were
considered to be relevant and are listed in Table 5.4. Reusability targets the reuse of assets
in other systems. Since SAP Gravity as well as Knockout.js are frameworks, reuse is inherent.

5.1 Software Quality Models 71

Thus, reusability was not evaluated explicitly. How test criteria for SAP Gravity/the Knockout.js CE
can be established and how easy they can be ensured is covered by testability. Since testing a
framework regarding functional correctness, security, etc., is in the responsibility of framework
developers the criteria was also neglected.

Characteristic Description

Modularity Degree to which SAP Gravity/the Knockout.js CE helps to modularize
applications in a way that changes to one component have minimal
impact to other components.

Analyzability Degree to which SAP Gravity/the Knockout.js CE enables developers to
foresee the impact of intended changes in a collaborative application.

Modifiability Degree to which an application based on SAP Gravity/the Knock-
out.js CE can be modified without introducing defects.

Table 5.4: Subcharacteristics of Maintainability According to ISO/IEC 25010 [ISO10]

Portability assesses whether SAP Gravity/the Knockout.js CE can be transferred to another op-
erating system, platform, etc. Since framework developers are in charge of porting frameworks,
this characteristic was ignored.

5.1.2 Quality in Use Model

The quality in use model focuses on the quality of a software product in concrete usage scenar-
ios. The five characteristics of the model are depicted in Figure 5.2. Since the overall use case
in the conducted evaluation was the development of a collaborative web application based on
both SAP Gravity and the Knockout.js CE, not all characteristics were considered to be relevant.
Neglected (sub-)characteristics are indicated by strikethrough text.

Quality in Use

Satisfaction

Usefulness

Trust

Pleasure

Comfort

Context

Coverage

Context

Completeness

Flexibility

Freedom

from Risk

Economic Risk

Mitigation

Health and

Safety Risk

Mitigation

Environmental

Risk Mitigation

Efficiency

Efficiency

Effectiveness

Effectiveness

Figure 5.2: Quality in Use Model According to ISO/IEC 25010 [ISO10]

Effectiveness is the degree to which users can fulfill the functional requirements specified for a
collaborative web application based on SAP Gravity/the Knockout.js CE.

Efficiency is characterized by the development time as well as the lines of code necessary to fulfill
a specified set of functional requirements when developing a collaborative application based on
SAP Gravity/the Knockout.js CE.

Satisfaction is the degree to which SAP Gravity/the Knockout.js CE satisfies users when lever-
aged for the development of a collaborative web application. The subcharacteristics of satisfaction
are listed in Table 5.5.

Freedom from Risk usually contemplates potential risks to economic status, human life, health
or the environment. Since the Knockout.js CE is only a prototype, which is not used in production,
this characteristic was skipped.

72 Chapter 5 Evaluation

Characteristic Description

Usefulness Degree to which users are satisfied with their perception of achieved
goals when using SAP Gravity/the Knockout.js CE for the development
of a collaborative application.

Trust Degree to which users trust SAP Gravity/the Knockout.js CE to lead to
the intended behavior.

Pleasure Degree to which users are pleasured when using SAP Gravity/the
Knockout.js CE.

Comfort Degree to which users feel comfortable when using SAP Gravity/the
Knockout.js CE.

Table 5.5: Subcharacteristics of Satisfaction According to ISO/IEC 25010 [ISO10]

Because checking SAP Gravity as well as the Knockout.js CE for different use cases would require
a comprehensive study with several different tasks residing in different domains the characteristic
of Context Coverage was ignored too due to human resource constraints.

5.2 EVALUATION PROCESS

The main goal of the evaluation was to confirm assumed improvements of the Knockout.js CE
compared to existing development approaches for collaborative applications. Because nowadays
OT libraries are used to develop collaborative applications, the Knockout.js CE was compared to
SAP Gravity with respect to the selected software quality characteristics introduced in Section 5.1.
Hence, each characteristic was considered for both SAP Gravity and the Knockout.js CE.

As depicted in Figure 5.3 the evaluation was accomplished in two steps:

1. A minimal collaboration application was built. This application revealed a first impression of
the effectiveness as well as efficiency of the Knockout.js CE compared to SAP Gravity. This
preliminary study is described in Section 5.3.

2. To underpin the results of the preliminary study and to obtain further results in terms of the
selected quality characteristics, a developer study was conducted. This study is subject to
description in Section 5.4.

Minimal Application

Collected Data

- fulfilled requirements

- development time

- code base

Derived Quality Characteristics

- effectiveness and efficiency

Developer Study

Derived Quality Characteristics

- functional suitability, compatibility,

 usability, maintainability

- effectiveness, efficiency,

 satisfaction

Collected Data

- fulfilled requirements

- development time

- code base

- questionnaire results

Figure 5.3: Overall Evaluation Process

5.2 Evaluation Process 73

5.3 MINIMAL APPLICATION

The development of a collaborative task list application similar to the introductory example (see
Section 1.2) was carried out in three steps:

• First, a single-user version of the application was implemented based on Knockout.js [San12].

• Second, the single-user application was enriched with collaboration functionality using the
Knockout.js CE (see Section 4.6).

• Finally, SAP Gravity (see Section 4.3) was used to enrich the single-user application with
collaboration functionality once again.

All implementation tasks were fulfilled by an experienced developer familiar with Knockout.js, the
Knockout.js CE and SAP Gravity.

5.3.1 Functional Requirements

Figure 5.4 depicts a screenshot of the task list application’s user interface.

Figure 5.4: Screenshot of Simple Task List Application

The application met the following set of functional requirements:

• R01: The application shall display a list of tasks.

• R02: Every task shall have a name.

• R03: The name of each task shall be editable.

• R04: The dynamic addition of tasks to the list shall be possible.

• R05: Tasks shall be deletable.

• R06: All changes apart from inputs of a new task’s name shall be synchronized in real-time.

74 Chapter 5 Evaluation

5.3.2 Data Collection Techniques

The data collected during the development of the task list application comprises the time spent for
the development as well as the application’s lines of code in JavaScript and HTML. Furthermore
the used annotations as well as lines for configuration were captured. Above all, the fulfilled
functional requirements were determined.

Since counting lines of code is a cumbersome and error-prone task, the command line tool
CLOC (Count Lines of Code)1 was used. CLOC counts empty lines, comments and actual source
code lines in over hundred different programming languages. Besides line counting, CLOC can
be used to compute differences between two versions of a code base. The results are available
in various formats encompassing plain text, XML, CSV, etc.

5.3.3 Results

Regarding the effectiveness of the Knockout.js CE compared to SAP Gravity, the developed task
list applications revealed, that both approaches are suitable to meet the specified requirements
described in Section 5.3.1.

The results valuable for assessing the efficiency are summarized in Figure 5.5. For both single-
user and multi-user applications the total development times are shown. Moreover the figure
presents the lines of code in HTML and JavaScript, the amount of annotations, and the lines
spent for configuration of the Knockout.js CE.

30 24 25

0 0

80

26

87

0 0

42

24 25

3 2
0

20

40

60

80

100

0
Development Time

(Minutes)
Lines of Code HTML Lines of Code

JavaScript
Annotations Lines for

Configuration

Single-User Application
Collaborative Application Based on SAP Gravity
Collaborative Application Based on Knockout.js Collaboration Extension

Figure 5.5: Evaluation Results of Minimal Task List Application

The total development time shortened from 80 minutes when using SAP Gravity to only 42 min-
utes in case of the Knockout.js CE. This is a reduction of 47.5 percent. It is also noteworthy
that the development time for adding collaboration capabilities to the single-user application, cal-
culated by total development time minus development time for the single-user application, was
decreased by 76 percent (50 minutes vs. 12 minutes). Both approaches lead to an almost equal
amount of lines of code in HTML, because only the amount of JavaScript file imports differs. The
lines of code in JavaScript could be reduced from 87 lines necessary for Gravity to 25 lines in case
of the Knockout.js CE. That is, the JavaScript code base was reduced by 71.3 percent. However,
the Knockout.js CE added three additional annotations and two lines of configuration to the code
base whereas SAP Gravity did not. We can thus confirm that the overall code base encompassing
HTML, JavaScript, annotations and lines for configuration was scaled down from 113 lines using
Gravity to only 54 lines for the Knockout.js CE. This equals an overall reduction of 52 percent.

1http://cloc.sourceforge.net/

5.3 Minimal Application 75

5.4 DEVELOPER STUDY

The developer study to elaborate the results from the preliminary study described in Section 5.3
was conducted in form of a practical course at the Dresden University of Technology. Former expe-
riences of the participants with respect to the development of collaborative web applications are
presented in Section 5.4.1. The actual task is described in Section 5.4.2 whereas the schedule of
the internship is presented in Section 5.4.3. Subject of Section 5.4.4 are the used data collection
techniques. Eventually the results of the developer study are described in Section 5.4.5.

5.4.1 Participants

The participants registered themselves for the course that was announced via the webpages of
the chair of computer networks at the Technical University Dresden. Eight students studying com-
puter science or computational engineering took part. To get an impression of the participants’
experiences regarding the development of collaborative web applications, the questionnaire de-
picted in Figure B.1 was devised. The results are summarized in Table C.1. All of the participants
had at least some first programming experiences. The programming languages used before the
internship are for example Java, C, C++, C#, VisualBasic, PHP, etc. However, only three partici-
pants were experienced with the JavaScript programming language. Familiarity with HTML and
CSS before the internship was claimed by four participants. None of the participants had already
developed a collaborative web application before the internship.

5.4.2 Task Description

The collaborative application developed during the course represents a business analytic tool.
Such an application, which is typically adopted by economists having to be aware of the current
market situation, the strengths and weaknesses of their company, etc., is depicted in Figure 5.6.

Figure 5.6: Mockup of Collaborative Business Analytic Tool

The tool can be visualized by means of a two by two matrix. This matrix supports the classification
of items (e. g. products, stakeholder, etc.) along two dimensions (e. g. costs and benefits).
Since every matrix cell is associated with a recommendation that describes how to handle the
contained items, it is a valuable means for decision making in companies. Let’s consider the
concrete matrix example depicted in Figure 5.6, which can be used to conduct a cost-benefit
analysis. The matrix dimensions are costs and benefits. Once all items are spread across the

76 Chapter 5 Evaluation

matrix, the cells can be considered in detail. Some ideas will be too costly with little benefit
and therefore should be abandoned. Other ideas should be reviewed whether the costs can
be reduced. For others alternatives should be searched, whereas items with high benefit and
reasonable costs should be considered further. In essence, the matrix can help to evaluate
products in a company portfolio by weighing costs against benefits.

The collaborative version of this application shall fulfill the following functional requirements:

1. R01: A two by two matrix shall be visualized.

2. R02: The matrix shall have a heading.

3. R03: The two matrix dimensions shall have legends.

4. R04: Every matrix cell shall have a heading.

5. R05: The matrix and cells headings as well as the legends shall be editable.

6. R06: Every matrix cell shall be able to accommodate items.

7. R07: Users shall be able to add and delete items in the matrix cells.

8. R08: Every item shall have at least a name property associated.

9. R09: All properties of the items (e. g. name) shall be editable.

10. R10: Moving and reordering items by means of drag-and-drop shall be ensured.

11. R11: The addition and deletion of different matrix type presets shall be possible.

12. R12: All changes to the application state shall be synchronized in real-time and conflicts
shall be resolved automatically.

5.4.3 Schedule

During the practical course the collaborative web application described in Section 5.4.2 was devel-
oped based on Knockout.js [San12] and one of the following development approaches for collabo-
rative applications: the Knockout.js collaboration extension (see Section 4.6) and SAP Gravity (see
Section 4.3). The schedule of the course is exhibited in Table 5.6.

Week Description

1 Kickoff meeting
2 Introduction to task and schedule; Tutorial about Knockout.js
3 Development of the single-user application
4 Development of the single-user application
5 Submission of the single-user application; Tutorial about the Knockout.js collaboration extension
6 Development of the collaborative application using the Knockout.js collaboration extension
7 Submission of the first collaborative application; Tutorial about SAP Gravity
8 Development of the collaborative application by means of SAP Gravity
9 Development of the collaborative application by means of SAP Gravity
10 Final submission; Questionnaire

Table 5.6: Schedule of Practical Course for Developer Study

The practical course lasted ten weeks and followed a schedule based on the Scrum software
development method [Sch95]. Before the course all participants were briefed to work alone,
although they were allowed to discuss problems in the group or ask the supervisor for help. The
whole course was divided into three major sprints: Within the first sprint the participants were
asked to develop the web-based application described in Section 5.4.2 as single-user application.

5.4 Developer Study 77

In the second sprint the single-user application was enriched with collaboration capabilities by
means of the Knockout.js CE. Finally, in the third sprint a collaborative application was developed
again, but this time using SAP Gravity.

In order to establish a common understanding regarding the used technologies, all students
received an introductory training at the beginning of every sprint. Lasting one and a half hours,
the trainings introduced the technologies required to fulfill the task of the particular sprint.

After every sprint the participants had to submit their solutions including source code and a short
document (see Section 5.4.4) listing the efforts and problems during the sprint.

5.4.4 Data Collection Techniques

During the course data was collected using several qualitative as well as quantitative sources.
Documentation was solicited by the participants after every sprint, the source code of the devel-
oped applications was analyzed and finally a questionnaire was answered by every participant.

Sprint Documentation

To acquire measures for deriving the efficiency of the approaches as well as to expose limitations,
the participants of the course were asked to document their efforts and problems. Figure 5.7
shows a template for such a document.

Figure 5.7: Template for Sprint Documentation

The document contains two parts: In the first part the efforts for fulfilling the particular sprint
are listed. Participants were requested to record the time as exact as possible and provide a
short description what was achieved during the different periods. In the second part of the
documentation, the participants should briefly describe encountered problems and corresponding
solutions.

78 Chapter 5 Evaluation

Source Code Analysis

The submitted applications of the three sprints were analyzed regarding their fulfillment of the
functional requirements (see Section 5.4.2) as well as the lines of code in JavaScript and HTML.
Whether the applications fulfill the functional requirements was checked by running and testing
the applications in use. Furthermore in case of the collaborative application based on the Knock-
out.js CE the number of annotations and lines used to configure the extension was evaluated. To
analyze the source code the tool CLOC (see Section 5.3.2) was used.

Questionnaire

To inquire the attitude of the participants in terms of the two used development approaches, a
questionnaire was devised. The questionnaire accommodated an overall set of 34 statements,
where 17 statements were targeted to each of the approaches. To ensure that the answers of
the participants are comparable with respect to the approaches, the statements were designed
to be equivalent.

Figure 5.8 shows the questions that were devised grouped in terms of the covered software
quality characteristic (see Section 5.1).

(Q01) Gravity/the Knockout.js extension provides the necessary functionality to develop collaborative web applications.

(Q02) The functionality of Gravity/the Knockout.js extension eases the development of collaborative applications.

(Q03) Gravity/the Knockout.js extension restricted the choice of other technologies.

(Q04) Other selected technologies worked well with Gravity/the Knockout.js extension.

(Q05) I could easily learn how to use Gravity/the Knockout.js extension.

(Q06) After the initial learning phase, Gravity/the Knockout.js extension was easy to use.

(Q07) Gravity/the Knockout.js extension prevented me from making mistakes during the development of the collaborative web application.

(Q08) Gravity/the Knockout.js extension helped me to separate synchronization code from the rest of the application.

(Q09) The impact of changes made to the application's source code could be foreseen easily.

(Q10) The cause of failures could be reconstructed with modest effort.

(Q11) Parts of a developed application that have to be modified could be easily determined.

(Q12) The developed application could be easily enriched with additional application features without introducing defects.

(Q13) Gravity/the Knockout.js extension is useful to develop collaborative applications.

(Q14) The Gravity API calls and callbacks/the annotations lead to the expected behaviour.

(Q15) The callback mechanism/the property exclusion mechanism is convenient.

(Q16) It is very easy to use Gravity/the Knockout.js extension to add collaboration capabilities to an application.

(Q17) Gravity/the Knockout.js extension is a comfortable means for developing real-time applications.Q
u

al
it

y
in

 U
se

Satisfaction

P
ro

d
u

ct
 Q

u
al

it
y

Functional Suitability

Compatibility

Usability

Maintainability

Figure 5.8: Questions to Participants of Developer Study

The full questionnaire is attached in Appendix B. Comprising several balanced five-point Likert
items, the questionnaire represents a Likert scale [Lik32]. The items measure the degree of dis-
agreement or agreement. Since five-point items with the meanings strongly disagree, disagree,
neither agree nor disagree, agree, and strongly agree are used, the neutral position is an easy
choice for participants that are unsure how to respond.

Gutwin and Greenberg discovered in one of their studies [GG98] that responses under between-
subject analysis are lacking of significant distinction. This finding is probably sourced by the lack
of a base for judgments. Therefore the questionnaire and its evaluation follow a within-subject
design that allows participants to make comparisons when rating the approaches. Therefore
every participant had to pass all three sprints of the course.

5.4.5 Results

In the following, the results obtained from the collected data (see Section 5.4.4) are described.
First, effectiveness and efficiency of the Knockout.js CE compared to SAP Gravity are discussed.
Afterwards, details on further software quality characteristics are exposed.

5.4 Developer Study 79

Effectiveness and Efficiency

To reveal improvements regarding the effectiveness as well as efficiency when using the Knock-
out.js CE for the development of collaborative web applications instead of SAP Gravity, the im-
plemented applications were investigated at runtime and the source code was analyzed. To
interpret the data, it was aggregated first by calculating the means for the different measures like
development time, lines of code in JavaScript, etc. Figure 5.9 summarizes the calculated mean
values. Note that the mean values were calculated only from the results of seven participants, be-
cause one participant could not fulfill all functional requirements successfully and was therefore
excluded from the source code analysis to ensure comparable results.

25

157 200

0 054
163

715

0 042
154

297

4 7
0

200

400

600

800

Development Time
(Hours)

Lines of Code HTML Lines of Code
JavaScript

Annotations Lines for
Configuration

Single-User Application
Collaborative Application Based on SAP Gravity
Collaborative Application Based on Knockout.js Collaboration Extension

Figure 5.9: Source Code Results of the Developer Study

Regarding the effectiveness it can be stated, that all developed applications fulfilled the full set
of functional requirements listed in Section 5.4.2. Thus, effectiveness is ensured by both devel-
opment approaches.

The total development time for the collaborative application amounted to 54 hours when using
SAP Gravity and 42 hours in case of the Knockout.js CE in average. That is the Knockout.js CE
diminished the time by 22 percent compared to SAP Gravity. Note that the addition of real-time
capabilities to the single-user application actually required 41 percent less time when using the
Knockout.js CE (17 hours) instead of SAP Gravity (29 hours). Small differences in the lines of code
in HTML were caused by different amounts of JavaScript file imports required for the approaches
as well as by additional technologies used by the participants.

Let’s consider the lines of code written in JavaScript. While SAP Gravity caused 715 lines to
be written, the Knockout.js CE required 297 lines in average. Thus, the Knockout.js CE reduced
the lines of code in JavaScript by 59 percent compared to SAP Gravity. However, the Knock-
out.js CE added in average four additional annotations and seven lines of configuration to the
code base. Differences in the lines of code in JavaScript between the single-user application and
the collaborative applications are source from modifications to meet the limitations explained in
Section 5.5 in case of the collaboration extension and by application-specific adapter code to glue
the application’s view model to the Gravity client API. In summary the overall code base including
HTML, JavaScript, annotations, and lines for configuration could be reduced from 878 lines to
462 lines by using the Knockout.js CE instead of SAP Gravity. This equates to an overall reduction
of 47 percent.

Further Software Quality Characteristics

Figure 5.10 shows the questionnaire results usable for evaluating the Knockout.js CE regarding
further software quality characteristics besides effectiveness and efficiency. The left hand side
shows the questions that were answered by the respondents grouped by the software quality
characteristics described in Section 5.1. On the right side bar charts display the mean values

80 Chapter 5 Evaluation

of the responses. The error bars in the charts do represent confidence intervals [SRL03] for a
confidence level of 90 percent. Thus, the significance level is α = 0.1. A confidence interval is
calculated from the observations and determines the range of values which probably contains
the mean value if more course groups were sampled and the mean would be calculated. These
confidence intervals might be used to judge whether differences in the mean between SAP Grav-
ity and the Knockout.js CE are significant or not [SRL03]. Clearly non overlapping confidence
intervals indicate that the difference of the mean values is significant. If the confidence intervals
overlap no conclusion is possible.

If only the mean values of SAP Gravity and the Knockout.js CE are compared it is obvious that
the collaboration extension performs better than Gravity.

With respect to the Functional Suitability of both approaches the following conclusions can be
drawn. SAP Gravity as well as the Knockout.js CE provides the necessary functionality to develop
collaborative applications. Since the provided functionality of the Knockout.js CE eases the de-
velopment of collaborative applications significantly compared to SAP Gravity, the functionality of
the collaboration extension is judged to be more appropriate for the development of collaborative
applications.

Compatibility was rated as follows. The respondents disagreed that SAP Gravity or the Knock-
out.js CE restricts the choice of other technologies. However, there is a trend that the Knock-
out.js CE worked better with other technologies than Gravity. Thus, it can be concluded that de-
velopers are free in their choice of other technologies when using Gravity or the Knockout.js CE.

Furthermore the Knockout.js CE showed some improvements regarding the Usability. The mean
values regarding the learnability of the different approaches indicate that there is a flatter learning
curve for the Knockout.js CE compared to SAP Gravity. However, after passing the initial learn-
ing phase both approaches were rated to be easy to use. In protecting users from errors the
Knockout.js CE performed slightly better compared to SAP Gravity, but both approaches might be
improved.

The Maintainability of applications built using the Knockout.js CE is also improved, since applica-
tions are modularized significantly better compared to SAP Gravity. This is sourced by the declar-
ative nature of the annotation-based code injection used in the collaboration extension. How
source code changes impact the application can be foreseen when using SAP Gravity almost as
easy as with Knockout.js CE. Moreover the Knockout.js CE tends to ease the reconstruction of fail-
ure causes with modest effort. This might be due to the declarative nature of the Knockout.js CE
too, since only the application’s view model and business logic code has to be checked for errors.
However, tracking failures is still a complex and cumbersome endeavor. Because the business
logic is not interwoven with synchronization code in case of the Knockout.js CE, the look up of
application parts that have to be modified in case of changes is easier. When application parts
were determined successfully, both approaches enable the addition of new application features
with modest effort.

In terms of Satisfaction the following conclusions can be drawn. While both approaches are
judged to be useful for the development of collaborative applications, the Knockout.js CE tends to
be more useful. The main development concepts of both approaches - the callbacks in SAP Grav-
ity as well as the annotations of the Knockout.js CE - lead to the expected behavior. The same
holds for the convenience of the callbacks of SAP Gravity and the property exclusion mechanism
of Knockout.js CE. A significant difference between the approaches could be found regarding the
ease of use. Participants rated that the Knockout.js CE is significantly better to use in contrast
to SAP Gravity. The reason might be the use of annotations instead of procedural code, since
only some minor source code changes to address the limitations of the Knockout.js CE (see Sec-
tion 4.6) are necessary. Furthermore the Knockout.js CE was perceived as a significantly more
comfortable means for the development of collaborative web applications.

5.4 Developer Study 81

Fu
n

ct
io

n
al

 S
u

it
ab

ili
ty

(Q
01

) G
ra

vi
ty

/t
he

 K
no

ck
ou

t.
js

 e
xt

en
si

on
 p

ro
vi

de
s

th
e

ne
ce

ss
ar

y
fu

nc
tio

na
lit

y
to

 d
ev

el
op

 c
ol

la
bo

ra
tiv

e
w

eb
 a

pp
lic

at
io

ns
.

(Q
02

) T
he

 f
un

ct
io

na
lit

y
of

 G
ra

vi
ty

/t
he

 K
no

ck
ou

t.
js

 e
xt

en
si

on
 e

as
es

 t
he

 d
ev

el
op

m
en

t o
f

co
lla

bo
ra

tiv
e

ap
pl

ic
at

io
ns

.

C
o

m
p

at
ib

ili
ty

(Q
03

) G
ra

vi
ty

/t
he

 K
no

ck
ou

t.
js

 e
xt

en
si

on
 r

es
tr

ic
te

d
th

e
ch

oi
ce

 o
f o

th
er

 t
ec

hn
ol

og
ie

s.

(Q
04

) O
th

er
 s

el
ec

te
d

te
ch

no
lo

gi
es

 w
or

ke
d

w
el

l w
ith

 G
ra

vi
ty

/th
e

K
no

ck
ou

t.
js

 e
xt

en
si

on
.

U
sa

b
ili

ty

(Q
05

) I
 c

ou
ld

 e
as

ily
 le

ar
n

ho
w

 t
o

us
e

G
ra

vi
ty

/th
e

K
no

ck
ou

t.
js

 e
xt

en
si

on
.

(Q
06

) A
ft

er
 t

he
 in

iti
al

 le
ar

ni
ng

 p
ha

se
, G

ra
vi

ty
/t

he
 K

no
ck

ou
t.

js
 e

xt
en

si
on

 w
as

 e
as

y
to

 u
se

.

(Q
07

) G
ra

vi
ty

/t
he

 K
no

ck
ou

t.
js

 e
xt

en
si

on
 p

re
ve

nt
ed

 m
e

fr
om

 m
ak

in
g

m
is

ta
ke

s
du

rin
g

th
e

de
ve

lo
pm

en
t o

f
th

e
co

lla
bo

ra
tiv

e
w

eb
 a

pp
lic

at
io

n.

M
ai

n
ta

in
ab

ili
ty

(Q
08

) G
ra

vi
ty

/t
he

 K
no

ck
ou

t.
js

 e
xt

en
si

on
 h

el
pe

d
m

e
to

 s
ep

ar
at

e
sy

nc
hr

on
iz

at
io

n
co

de
 fr

om
 t

he
 r

es
t

of
 t

he
 a

pp
lic

at
io

n.

(Q
09

) T
he

 im
pa

ct
 o

f
ch

an
ge

s
m

ad
e

to
 th

e
ap

pl
ic

at
io

n'
s

so
ur

ce
 c

od
e

co
ul

d
be

 f
or

es
ee

n
ea

si
ly

.

(Q
10

) T
he

 c
au

se
 o

f f
ai

lu
re

s
co

ul
d

be
 r

ec
on

st
ru

ct
ed

 w
ith

 m
od

es
t

ef
fo

rt
.

(Q
11

) P
ar

ts
 o

f
a

de
ve

lo
pe

d
ap

pl
ic

at
io

n
th

at
 h

av
e

to
 b

e
m

od
ifi

ed
 c

ou
ld

 b
e

ea
si

ly
 d

et
er

m
in

ed
.

(Q
12

) T
he

 d
ev

el
op

ed
 a

pp
lic

at
io

n
co

ul
d

be
 e

as
ily

 e
nr

ic
he

d
w

ith
 a

dd
iti

on
al

 a
pp

lic
at

io
n

fe
at

ur
es

 w
ith

ou
t i

nt
ro

du
ci

ng
 d

ef
ec

ts
.

S
tu

d
y

R
es

u
lt

s
(N

 =
 8

)
M

ea
n

 a

n
d

 C
o

n
fi

d
en

ce
 In

te
rv

al
 (

 =
 0

.1
)

Q
u

es
ti

o
ns

1
2

3
4

5

1
2

3
4

5

1
2

3
4

5

(Q
12

) T
he

 d
ev

el
op

ed
 a

pp
lic

at
io

n
co

ul
d

be
 e

as
ily

 e
nr

ic
he

d
w

ith
 a

dd
iti

on
al

 a
pp

lic
at

io
n

fe
at

ur
es

 w
ith

ou
t i

nt
ro

du
ci

ng
 d

ef
ec

ts
.

S
at

is
fa

ct
io

n

(Q
13

) G
ra

vi
ty

/t
he

 K
no

ck
ou

t.
js

 e
xt

en
si

on
 is

 u
se

fu
l t

o
de

ve
lo

p
co

lla
bo

ra
tiv

e
ap

pl
ic

at
io

ns
.

(Q
14

) T
he

 G
ra

vi
ty

 A
PI

 c
al

ls
 a

nd
 c

al
lb

ac
ks

/t
he

 a
nn

ot
at

io
ns

 le
ad

 to
 t

he
 e

xp
ec

te
d

be
ha

vi
ou

r.

(Q
15

) T
he

 c
al

lb
ac

k
m

ec
ha

ni
sm

/t
he

 p
ro

pe
rt

y
ex

cl
us

io
n

m
ec

ha
ni

sm
 is

 c
on

ve
ni

en
t.

(Q
16

) I
t

is
 v

er
y

ea
sy

 t
o

us
e

G
ra

vi
ty

/t
he

 K
no

ck
ou

t.
js

 e
xt

en
si

on
 t

o
ad

d
co

lla
bo

ra
tio

n
ca

pa
bi

lit
ie

s
to

 a
n

ap
pl

ic
at

io
n.

(Q
17

) G
ra

vi
ty

/t
he

 K
no

ck
ou

t.
js

 e
xt

en
si

on
 is

 a
 c

om
fo

rt
ab

le
 m

ea
ns

 f
or

 d
ev

el
op

in
g

re
al

-t
im

e
ap

pl
ic

at
io

ns
.

1
2

3
4

5

1
2

3
4

5

M
ea

n
of

 S
A

P
 G

ra
vi

ty
M

ea
n

of
 K

no
ck

ou
t.

js
 C

ol
la

bo
ra

tio
n

E
xt

en
si

on
C

on
fid

en
ce

 In
te

rv
al

 (
=

0.
1)

Figure 5.10: Results of the Developer Study Questionnaire

82 Chapter 5 Evaluation

5.5 LIMITATIONS

During the developer study several limitations of the Knockout.js CE were carved out by the
participants. In the following, the major challenges are explained in detail.

5.5.1 Observable Properties

If a view model is marked for synchronization via the @Sync annotation (see Section 4.6.3), a
traversal algorithm adds the Knockout.js synchronization extension described in Section 4.6.2 to
all primitive observables and observable arrays. Therefore it is necessary that all properties of a
view model to be reconciled among different view model instances are observables, observable
arrays or computed observables. Otherwise the synchronization extension is not added success-
fully to all parts of the view model resulting in a partial synchronization. Figure 5.11 depicts an
invalid view model structure on the left hand side, as well as a revised one compliant with the
Knockout.js CE on the right hand side. Note that all properties on the right hand side are observ-
ables or observable arrays.

var viewModel = {
input: "My first input.",
tasks: [

{ name: "Task One" }
]

}

var viewModel = {
input: ko.observable("My first input."),
tasks: ko.observableArray([

{ name: ko.observable("Task One") }
])

}

(a) View Model without Observables

var viewModel = {
input: "My first input.",
tasks: [

{ name: "Task One" }
]

}

var viewModel = {
input: ko.observable("My first input."),
tasks: ko.observableArray([

{ name: ko.observable("Task One") }
])

}

(b) View Model with Observables

Figure 5.11: Knockout.js View Model without and with Observables

5.5.2 Dynamic Property Additions

Once a collaborative Knockout.js application is loaded, the annotations in the view model (see
Section 4.6.3) are evaluated. If a view model is marked with the @Sync annotation, it is traversed
and the Knockout.js synchronization extension is added to all observables. Whenever observ-
ables are added to the view model after the traversal, they are not automatically enriched with
the synchronization extension and therefore not synchronized. Extending at runtime added ob-
servables automatically would require the tracking of additions to the view model at any point
in time. Since JavaScript provides no mechanism to observe property additions to objects, a
continual task would have to scan the view model for newly added properties. Hence, observing
changes comes with a performance penalty and was not implemented. Therefore all properties
have to be part of the view model already at design time. Figure 5.12 depicts source code exam-
ples for a dynamic property addition at runtime on the left hand side and a fixed version of this
source code compliant with the Knockout.js CE at the right hand side.

var viewModel = {
input: ko.observable("My first input.")

}

//some other code

viewModel.inputTwo = ko.observable("Second input.");

var viewModel = {
input: ko.observable("My first input."),
inputTwo: ko.observable(null)

}

//some other code

viewModel.inputTwo("Second input.");

(a) View Model with Dynamic Property Additions

var viewModel = {
input: ko.observable("My first input.")

}

//some other code

viewModel.inputTwo = ko.observable("Second input.");

var viewModel = {
input: ko.observable("My first input."),
inputTwo: ko.observable(null)

}

//some other code

viewModel.inputTwo("Second input.");

(b) View Model without Dynamic Property Additions

Figure 5.12: Knockout.js View Model with and without Dynamic Property Additions

5.5 Limitations 83

5.5.3 Class Constructor Parameters

Class constructor functions used to create class instances must have only one parameter if
they are marked with the @Class annotation to enable remote replay. The parameter can be
a JavaScript value of simple type (string, number, etc.) or a parameter object encapsulating all
parameters. This requirement is raised by the JavaScript object structure and multi-parameter
constructor functions. Constructors with multiple parameters have to be called with the param-
eters in a specific order. Since objects in JavaScript are simple sets of key-value pairs, the order
how the parameters were passed to the constructor function formerly cannot be derived from
object instances. Therefore parameter objects have to be used that support an arbitrary order of
parameters. Figure 5.13 depicts the two possible parameter styles for constructor functions in
JavaScript. Figure 5.13(a) shows a constructor for a task item with multiple parameters, whereas
Figure 5.13(b) shows the very same constructor function using a parameter object compliant with
the Knockout.js collaboration extension.

var Task = function(name, priority, done) {
this.name = name || "default name";
this.priority = priority || 50;
this.done = done || false;

}

var task = new Task("My Task", 25, false);

var Task = function(spec) {
this.name = spec.name || "default name";
this.priority = spec.priority || 50;
this.done = spec.done || false;

}

var task = new Task({
name: "My Task",
priority: 25,
done: false

});

(a) Constructor Function with Separate Parameters

var Task = function(name, priority, done) {
this.name = name || "default name";
this.priority = priority || 50;
this.done = done || false;

}

var task = new Task("My Task", 25, false);

var Task = function(spec) {
this.name = spec.name || "default name";
this.priority = spec.priority || 50;
this.done = spec.done || false;

}

var task = new Task({
name: "My Task",
priority: 25,
done: false

});

(b) Constructor Function with Parameter Object

Figure 5.13: JavaScript Constructor Function Styles

5.5.4 Manual Subscriptions

Advanced users of Knockout.js might subscribe listeners for every observable manually. In case
of synchronized class instances, registered listener functions have to be reregistered remotely.
If the listeners were added to a class instance after the constructor function was called, those
listeners will not be replayed remotely. Therefore it is necessary to subscribe all individual listener
functions directly in the class constructor function. Serializing and remotely restoring the listener
functions is not an option due to JavaScript’s function scope (see Section 4.6.3). Figure 5.14(a)
depicts the non-valid subscription of a listener that will not be replayed remotely. The registration
within a constructor function, compliant with the Knockout.js collaboration extension, is depicted
in Figure 5.14(b).

var Task = function(name) {
this.name = ko.observable(name || "Default Name");

}
var task = new Task("My Task Item");

task.name.subscribe(function(newValue) {
console.log("The new name is: " + newValue);

}

var Task = function(name) {
this.name = ko.observable(name || "default name");
this.name.subscribe(function(newValue) {

console.log("The new name is: " + newValue);
};

}
var task = new Task("My Task Item");

(a) Listener Registration after Class Instance Creation

var Task = function(name) {
this.name = ko.observable(name || "Default Name");

}
var task = new Task("My Task Item");

task.name.subscribe(function(newValue) {
console.log("The new name is: " + newValue);

}

var Task = function(name) {
this.name = ko.observable(name || "default name");
this.name.subscribe(function(newValue) {

console.log("The new name is: " + newValue);
};

}
var task = new Task("My Task Item");

(b) Listener Registration during Class Instance Cre-
ation

Figure 5.14: Manual Listener Registration in Knockout.js

5.5.5 Tree Structure

As already mentioned in Section 4.6.2, the view model of a Knockout.js-based application has to
adhere to a tree structure to be compliant with the Knockout.js CE. View models that are graph
structures might not be synchronized properly.

84 Chapter 5 Evaluation

Let’s consider the definition of a view model structure representing a graph. Figure 5.15(a) shows
the source code whereas in Figure 5.15(b) the runtime structure is visualized.

var Task = function(name) {
this.name = ko.observable(name || "default name");

}
var task1 = new Task("Task One");
var task2 = new Task("Task Two");

var viewModel = {
tasks: ko.observableArray([task1, task2]),
selectedTask: ko.observable(task2)

}

var Task = function(name) {
this.id = Math.uuid();
this.name = ko.observable(name || "default name");

}
var task1 = new Task("Task One");
var task2 = new Task("Task Two");

var viewModel = {
tasks: ko.observableArray([task1, task2]),
selectedId: ko.observable(task2.id),
selectedTask: ko.computed(function() {

//look up the task by means of selectedID
...
return task;

})
}

(a) View Model Source Code

tasks

task1 task2

selectedTask

viewModel

10

(b) View Model Runtime Structure

Figure 5.15: View Model with Graph Structure

In the source code snippet first a class constructor function for tasks is defined. Afterwards two
task instances task1 and task2 are created. The variable viewModel contains the actual view
model, which is represented by a simple JavaScript object with two properties: an observable
array accommodating the tasks and a primitive observable holding a reference to the currently
selected task item. If this view model is marked for synchronization using the @Sync annotation,
the traversal algorithm adds the synchronization extension (see Section 4.6.2) to all observables in
the view model. During the traversal the name of task2 is reached twice at different JSONPath
addresses: first at /viewModel/tasks/1/name and second at /viewModel/selectedTask
/name. Therefore the name property is stored twice in the underlying JSON document provided
by the Shared JSON implementation (see Section 4.4). At remote sites this would lead to two
different copies of the very same object and eventually to inconsistent view models. To avoid
this, the view model has to be a tree, so that every observable is addressable by exactly one
JSONPath.

This limitation exists only due to the current implementation of the collaboration extension. There
are two possible ways to improve the Knockout.js CE:

1. First, the traversal algorithm might be enriched to deal with primary and foreign keys known
from relational databases. Once the observable property name is reached via /viewModel
/tasks/1/name the corresponding observable would get an ID that is stored with the ob-
servable’s value in the shared JSON document. When the traversal algorithm recognizes
the name observable again via /viewModel/selectedTask/name the ID would be read.
The ID indicates that this element was already reached and stored in the shared JSON doc-
ument. Therefore the ID of the already stored observable would be stored in the JSON doc-
ument for the current observable rather than the actual value. At remote sites this foreign
key might be used to reconstruct the actual value.

2. Second, neglecting reuse the Knockout.js CE might be implemented directly on top of
SAP Gravity. If one of the observables would be addressable via different paths in the
view model, these paths would be directly mapped to a data model based on SAP Gravity,
since it provides a directed, labeled and attributed graph structure.

Rather than re-implementing the Knockout.js CE or to introduce primary and foreign keys in the
collaboration extension, keys can be used in the view model by the application developer to
ensure that the view model is tree-structured. This workaround is depicted in Figure 5.16 for the
view model introduced in Figure 5.15. The left hand side shows the source code of the fixed view
model whereas on the right hand side the runtime structure is visualized. Dashed lines indicate
indirect references by a foreign key.

The direct reference to task2 by selectedTask is replaced by a foreign key reference. The
selectedId is an observable that contains just the primary key (ID) of the currently selected
task item. Via the computed observable selectedTask that looks up the corresponding task
according to the ID provided by selectedId, the actual task item is returned. Since computed
observables have not to be extended with the change tracking extension, this new version of the
view model is a tree.

5.5 Limitations 85

var Task = function(name) {
this.name = ko.observable(name || "default name");

}
var task1 = new Task("Task One");
var task2 = new Task("Task Two");

var viewModel = {
tasks: ko.observableArray([task1, task2]),
selectedTask: ko.observable(task2)

}

var Task = function(name) {
this.id = Math.uuid();
this.name = ko.observable(name || "default name");

}
var task1 = new Task("Task One");
var task2 = new Task("Task Two");

var viewModel = {
tasks: ko.observableArray([task1, task2]),
selectedId: ko.observable(task2.id),
selectedTask: ko.computed(function() {

//look up the task by means of selectedID
...
return task;

})
}

(a) View Model Source Code

task1 task2

10

selectedTaskselectedIdtasks

viewModel

(b) View Model Runtime Structure

Figure 5.16: View Model with Tree Structure

5.6 CONCLUSION

Due to resource constraints only the Knockout.js collaboration extension was evaluated in de-
tail. The evaluation revolved around the ISO/IEC 250xx series of standards, especially the quality
models defined in ISO/IEC 25010 [ISO10]. Since the assessment took place from an applica-
tion developer’s point of view, some software quality characteristics defined in the models were
neglected. Examples comprise performance efficiency, reliability, etc., and have to be ensured
already by the framework developer.

The evaluation was accomplished in two steps. First, a minimal application built by an experi-
enced web developer was evaluated with respect to effectiveness and efficiency. Afterwards,
the preliminary results were reconsidered in a developer study.

The minimal task list application that was developed successfully showed a reduction of develop-
ment time due to the Knockout.js CE of 48 percent compared to SAP Gravity. The development
time for code dealing with synchronization and conflict resolution was diminished by 76 percent.
Moreover the total code base could be reduced by 52 percent.

During the developer study a business analytic tool supporting different matrix-based analysis was
developed within ten weeks. Each of the eight participants had to develop the application alone.
The results showed a reduction of the total development time by 22 percent in average when
using the Knockout.js CE instead of SAP Gravity. Adding collaboration capabilities by means of
the collaboration extension could be achieved in 41 percent less time in average compared to
Gravity. Eventually the code base was reduced by 47 percent in average. Besides efficiency
further software quality characteristics were assessed via a questionnaire. The results revealed
that the collaboration extension significantly eases the development of collaborative applications.
Moreover the extension has a flatter learning curve compared to SAP Gravity, and the separation
of synchronization and conflict resolution code from the business logic is significantly improved.
Since the reconstruction of failures is still a complex endeavor, in further research the debugging
facilities have to be improved. Furthermore the Knockout.js CE was treated to be significantly
more comfortable for the development of collaborative applications.

Moreover, the developer study exposed some limitations of the Knockout.js collaboration exten-
sion. While some of these are inherent to the conceptual architecture of the collaboration ex-
tension (observable properties, class constructor parameters, manual subscriptions), others are
specific for the current implementation (dynamic property additions, tree structure). The latters
can be resolved by a revised implementation.

In essence, it can be concluded that the collaboration extension improves the efficiency when
developing collaborative web applications while effectiveness is still ensured. Furthermore devel-
opers can easily become familiar with the approach.

86 Chapter 5 Evaluation

6 CONCLUSION

The HTML5 movement paved the way for rich interactive web applications. Collaborative applica-
tions like Google Docs are nowadays well established and adopted by millions of users. However,
a classification of current web applications and assessment in terms of real-time collaboration
capabilities revealed that about two thirds of today’s web applications do not provide any support.
This is the case, because collaborative applications are hard to implement, test and maintain.
Even though web application frameworks provide structure to applications by enforcing a struc-
tural design pattern like MVC or MVVM, concurrency control and conflict resolution has to be
implemented manually using complementary techniques.

To ease the development, the augmentation of existing MV* frameworks with real-time collab-
oration capabilities was proposed and a conceptual architecture of collaboration extensions for
MV* frameworks was introduced. A collaboration extension comprises two main parts: A syn-
chronization service (e. g. an operational transformation engine) that is in charge of reconciling
different application states, and a collaboration adapter coupling the synchronization service with
a framework-based application. Owing to the fact that the collaboration extension is only depen-
dent on framework- instead of application-specific concepts, reuse among several applications
built on top of the very same framework is possible. Since the proposed collaboration extensions
complement frameworks in an orthogonal way rather than interfering with existing framework
features, application developers can profit from already gained experiences with the develop-
ment of framework-based applications. Moreover, collaboration features can be integrated into
an application in a lightweight fashion either by a collaboration proxy or annotation-based code
injection.

To prove the feasibility of the proposed collaboration extensions, two frameworks (SAPUI5 and
Knockout.js) were selected. For both SAPUI5 and Knockout.js the conceptual architecture for col-
laboration extensions was refined towards specific implementation architectures. The operational
transformation engine SAP Gravity was used as synchronization service. The collaboration exten-
sion implementation comprised two layers on top of SAP Gravity: An abstraction layer enabling
the concurrent modification of shared JSON documents, and the collaboration adapter bridging
the gap between a shared JSON document and the framework’s data encapsulation concepts.
Although only SAPUI5 and Knockout.js were augmented, the conceptual architecture might be
implemented also for other frameworks.

Due to resource constraints only the Knockout.js collaboration extension was evaluated in detail.
A developer study was conducted to compare the collaboration-enabled Knockout.js framework
with Knockout.js in conjunction with SAP Gravity when developing a collaborative web applica-
tion. Several software quality characteristics were captured and compared. Examples include
effectiveness, efficiency, functional suitability, usability, etc. Almost all evaluated characteristics

87

were judged positively by the study’s participants. Room for improvements could be seen only
regarding error protection and error tracking. Furthermore several limitations of the Knockout.js
collaboration extensions were carved out during the study. Even though the approach currently
suffers from several limitations, developers are empowered to efficiently program new collabora-
tive applications and to migrate existing single-user applications.

Despite the gained results, there are several open problems that might be subject to research in
the future:

• A developer study might be conducted for the SAPUI5 collaboration extension that was
implemented. This study could expose insights to the gains with respect to several software
quality criteria compared to the development of collaborative applications using SAPUI5 in
conjunction with SAP Gravity.

• Because the developer study carried out for the Knockout.js collaboration extension re-
vealed several limitations, future versions of the extension might address these limitations.
Especially the limitations requiring a tree-structured data model and prohibiting dynamic
property additions should be considered.

• Besides the developer study, a user study could be conducted for a real-size application.
Therefore the very same application would have to be implemented by means of a tradi-
tional development approach (e. g. an operational transformation library) and a collaboration-
enabled web application framework. Assuming that application-specific implementations
provide the best possible collaboration experience, this evaluation would show to which ex-
tent the collaboration extension reaches the perfect result in terms of usability of the final
application for end-users.

• Aside from concurrent work, group awareness is another important principle for collabora-
tive applications. Awareness is defined as the "up-to-the-moment understanding of another
person’s interaction with the shared space." [GG02] In essence, it enables effective collab-
orative work by answering the "who, what, and where" questions [GSG95] (e. g. who is in
the workspace, what are the other participants doing, where are they working). The inte-
gration of awareness services in an application currently requires techniques apart from the
used web application framework. How awareness can be incorporated as integral part of
web application frameworks that enable the development of collaborative applications is an
open research question.

• Even though no performance measurements are available yet, the collaboration extensions
might be improved by using a synchronization service that provides smaller latencies com-
pared to SAP Gravity. Another option would be the use of new communication technolo-
gies (e. g. WebSockets) instead of the currently used HTTP long polling in SAP Gravity.

88 Chapter 6 Conclusion

BIBLIOGRAPHY

[ALX+08] Agustina, Fei Liu, Steven Xia, Haifeng Shen, and Chengzheng Sun. CoMaya: Incor-
porating Advanced Collaboration Capabilities into 3D Digital Media Design Tools. In
CSCW, pages 5–8, 2008.

[BL12] Tim Berners-Lee. WorldWideWeb, the first Web Client. http://www.w3.org/
People/Berners-Lee/WorldWideWeb.html, 2012.

[BPSM+06] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau,
and John Cowan. Extensible Markup Language (XML) 1.1 (Second Edition).
http://www.w3.org/TR/2006/REC-xml11-20060816/, 2006.

[BRS99] James Begole, Mary Beth Rosson, and Clifford A. Shaffer. Flexible Collaboration
Transparency: Supporting Worker Independence in Replicated Application-Sharing
Systems. ACM Trans. Comput.-Hum. Interact., 6(2):95–132, 1999.

[BSSS01] James Begole, Randall B. Smith, Craig A. Struble, and Clifford A. Shaffer. Resource
Sharing for Replicated Synchronous Groupware. IEEE/ACM Trans. Netw., 9(6):833–
843, 2001.

[CD99] James Clark and Steve DeRose. XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath/, 1999.

[Cor11] Microsoft Corporation. Open Data Protocol (OData) Specification.
http://www.odata.org/media/16352/[ms-odata].pdf, 2011.

[Cro06] Douglas Crockford. RFC 4627: The application/json Media Type for JavaScript Object
Notation (JSON). http://www.ietf.org/rfc/rfc4627.txt, 2006.

[Cro08] Douglas Crockford. JavaScript: The Good Parts. O’Reilly Media, Inc., 2008.

[Dij82] Edsger W. Dijkstra. On the Role of Scientific Thought. In Selected Writings on
Computing: A Personal Perspective, pages 60–66. Springer, 1982.

[DSL02] Aguido Horatio Davis, Chengzheng Sun, and Junwei Lu. Generalizing Operational
Transformation to the Standard General Markup Language. In CSCW, pages 58–67,
2002.

[EBN96] ISO/IEC 14977 : 1996 (E) - Information technology – Syntactic Metalanguage – Ex-
tended BNF. http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf, 1996.

[EG89] Clarence A. Ellis and Simon J. Gibbs. Concurrency Control in Groupware Systems.
In SIGMOD Conference, pages 399–407, 1989.

Bibliography 89

[Fla11] David Flanagan. JavaScript: The Definitive Guide. O’Reilly Media, Inc., 2011.

[Fow04] Martin Fowler. Presentation Model. http://www.martinfowler.com/eaaDev/
PresentationModel.html, 2004.

[Fra09] Neil Fraser. Differential Synchronization. In ACM Symposium on Document Engi-
neering, pages 13–20, 2009.

[FS12] Hongfei Fan and Chengzheng Sun. Achieving Integrated Consistency Maintenance
and Awareness in Real-Time Collaborative Programming Environments: The Co-
Eclipse Approach. In CSCWD, pages 94–101, 2012.

[Gar05] Jesse James Garrett. AJAX: A New Approach to Web Applications. http://
www.adaptivepath.com/ideas/ajax-new-approach-web-applications,
2005.

[GG98] Carl Gutwin and Saul Greenberg. Effects of Awareness Support on Groupware Us-
ability. In CHI, pages 511–518, 1998.

[GG02] Carl Gutwin and Saul Greenberg. A Descriptive Framework of Workspace Aware-
ness for Real-Time Groupware. Computer Supported Cooperative Work, 11(3-4):411–
446, 2002.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional Com-
puting Series. Addison-Wesley, 1995.

[GLG11] Carl Gutwin, Michael Lippold, and T. C. Nicholas Graham. Real-time Groupware in
the Browser: Testing the Performance of Web-based Networking. In CSCW, pages
167–176, 2011.

[Goo07] Danny Goodman. Dynamic HTML: The Definitive Reference. O’Reilly Media, Inc.,
2007.

[Gos05] John Gossman. Introduction to Model/View/ViewModel Pattern for Building
WPF Apps. http://blogs.msdn.com/b/johngossman/archive/2005/10/
08/478683.aspx, 2005.

[GSG95] Carl Gutwin, Gwen Stark, and Saul Greenberg. Support for Workspace Awareness
in Educational Groupware. In CSCL, pages 147–156, 1995.

[HC99] Antony L. Hosking and Jiawan Chen. Mostly-Copying Reachability-based Orthogonal
Persistence. In OOPSLA, pages 382–398, 1999.

[HG04] Jason Hill and Carl Gutwin. The MAUI Toolkit: Groupware Widgets for Group Aware-
ness. Computer Supported Cooperative Work, 13(5-6):539–571, 2004.

[Hic12a] Ian Hickson. HTML5 - A Vocabulary and Associated APIs for HTML and XHTML.
http://www.w3.org/TR/html5/, 2012.

[Hic12b] Ian Hickson. HTML5 Web Messaging. http://dev.w3.org/html5/postmsg/,
2012.

[Hic12c] Ian Hickson. Web Storage. http://dev.w3.org/html5/webstorage/, 2012.

[HLSG12] Matthias Heinrich, Franz Lehmann, Thomas Springer, and Martin Gaedke. Exploit-
ing Single-User Web Applications for Shared Editing: A Generic Transformation Ap-
proach. In WWW, pages 1057–1066, 2012.

[Int97] ECMA International. ECMAScript: A General Purpose, Cross-Platform Programming
Language; ECMA-262; First Edition. http://www.ecma-international.org/
publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,
%20June%201997.pdf, 1997.

90 Bibliography

[Int11] ECMA International. ECMAScript: A General Purpose, Cross-Platform Programming
Language; ECMA-262; 5.1 Edition. http://www.ecma-international.org/
publications/files/ECMA-ST/Ecma-262.pdf, 2011.

[ISO05] ISO/IEC FDIS 25000 : 2005 (E) - Software Engineering - Software Product Quality
Requirements and Evaluation (SQuaRE) – Guide to SQuaRE, 2005.

[ISO10] ISO/IEC FDIS 25010 : 2010 (E) - Systems and Software Engineering – Systems and
Software Quality Requirements and Evaluation (SQuaRE) – System and Software
Quality Models, 2010.

[Joh88] Robert Johansen. GroupWare: Computer Support for Business Teams. The Free
Press, New York, NY, USA, 1988.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In
ECOOP, pages 220–242, 1997.

[KP88] Glenn E. Krasner and Stephen T. Pope. A Description of the Model-View-Controller
User Interface Paradigm in the Smalltalk-80 System. http://www.itu.dk/
courses/VOP/E2005/VOP2005E/8_mvc_krasner_and_pope.pdf, 1988.

[LCSD07] Kai Lin, David Chen, Chengzheng Sun, and R. Geoff Dromey. Leveraging Single-User
Microsoft Visio for Multi-user Real-Time Collaboration. In CDVE, pages 353–360,
2007.

[Lik32] Rensis Likert. A Technique for the Measurement of Attitudes. Archives of Psychol-
ogy, 22(140):1–55, 1932.

[Mar11] Chris Marrin. WebGL Specification, Version 1.0. https://www.khronos.org/
registry/webgl/specs/1.0/, 2011.

[McI68] Doug McIlroy. Mass-Produced Software Components. In P. Naur and B. Randell,
editors, Proceedings of NATO Software Engineering Conference, pages 138–155,
1968.

[Mic02] Sun Microsystems. Core J2EE Patterns – Data Access Object. http://java.
sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.
html, 2002.

[MT08] Tommi Mikkonen and Antero Taivalsaari. Web Applications Spaghetti Code for the
21st Century. In SERA, pages 319–328, 2008.

[Pat95] John F. Patterson. A Taxonomy of Architectures for Synchronous Groupware Applica-
tions. SIGOIS Bull., 15(3):27–29, 1995.

[Ree79a] Trygve M. H. Reenskaug. Models - Views - Controllers. http://heim.ifi.uio.
no/~trygver/1979/mvc-2/1979-12-MVC.pdf, December 1979.

[Ree79b] Trygve M. H. Reenskaug. Thing-Model-View-Editor - an Example from a Planningsys-
tem. http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.
pdf, 1979.

[RP05] Steven L. Rohall and John F. Patterson. The Zipper System for Flexible, Replicated Ap-
plication Sharing. http://domino.watson.ibm.com/cambridge/research.
nsf/0/8df3bbbd96965284852570a500603bab/$FILE/TR_2005-08.pdf,
2005.

[RZ95] Dirk Riehle and Heinz Züllighoven. A Pattern Language for Tool Construction and
Integration Based on the Tools and Materials Metaphor. In Pattern Languages of
Program Design, pages 9–42. Addison-Wesley, 1995.

[San12] Steven Sanderson. Knockout : Home. http://knockoutjs.com/, 2012.

Bibliography 91

[SAP12] UI Development Toolkit for HTML5 Developer Center. http://scn.sap.com/
community/developer-center/front-end, 2012.

[SBF+87] Mark Stefik, Daniel G. Bobrow, Gregg Foster, Stan Lanning, and Deborah G. Tatar.
WYSIWIS Revised: Early Experiences with Multiuser Interfaces. ACM Trans. Inf.
Syst., 5(2):147–167, 1987.

[Sch95] Ken Schwaber. SCRUM Development Process. In Proceedings of the 10th Annual
ACM Conference on Object Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA), pages 117–134, 1995.

[SRL03] G.G. Simpson, A. Roe, and R.C. Lewontin. Quantitative Zoology: Revised Edition.
Dover Books on Biology, Psychology and Medicine. Dover Publications, 2003.

[SS06] David Sun and Chengzheng Sun. Operation Context and Context-based Operational
Transformation. In CSCW, pages 279–288, 2006.

[SSZ07] Haifeng Shen, Chengzheng Sun, and Suiping Zhou. Leveraging Single-User OpenOf-
fice Writer for Collaboration by Transparent Adaptation. In SNPD (1), pages 15–20,
2007.

[SXS+06] Chengzheng Sun, Steven Xia, David Sun, David Chen, Haifeng Shen, and Wentong
Cai. Transparent Adaptation of Single-User Applications for Multi-User Real-Time
Collaboration. ACM Trans. Comput.-Hum. Interact., 13(4):531–582, 2006.

[TM11] Antero Taivalsaari and Tommi Mikkonen. The Web as an Application Platform: The
Saga Continues. In EUROMICRO-SEAA, pages 170–174, 2011.

[XSS+04] Steven Xia, David Sun, Chengzheng Sun, David Chen, and Haifeng Shen. Leveraging
Single-User Applications for Multi-User Collaboration: The CoWord Approach. In
CSCW, pages 162–171, 2004.

[ZSS09] Yang Zheng, Haifeng Shen, and Chengzheng Sun. Leveraging Single-User AutoCAD
for Collaboration by Transparent Adaptation. In CSCWD, pages 78–83, 2009.

92 Bibliography

LIST OF FIGURES

1.1 Time-Space Matrix of Collaboration (cf. [Joh88]) . 2

1.2 Simple Task List Application . 3

2.1 Major Evolution Steps of the Web (cf. [TM11]) . 5

2.2 Web Application Classification Based on Application Domain 8

2.3 Web Application Classification Based on Implementation Technology 9

3.1 Application Running on Multiple Sites with a Collaboration Extension 17

3.2 Model-View-Controller (MVC) Pattern . 20

3.3 Presentation Model (PM) Pattern . 21

3.4 MV* Framework Classification Dimensions . 22

3.5 Application Structure of an Access Object-based Data Model 26

3.6 Application Structure of a Remote Proxy-based Data Model 26

3.7 Application Structure of a Subgraph-based Data Model 27

3.8 Application Structure of a Scattered Data Model 27

3.9 Conceptual Architecture of Collaborative MV* Applications 30

3.10 Synchronization Example Based on Operational Transformation for Two Participants
Editing a Simple Text Document . 30

3.11 Class Structure of a Collaboration Proxy Implementation 32

3.12 Subgraph-based Data Model with Injected Synchronization Code 33

93

4.1 Implementation Architecture of SAPUI5 and Knockout.js Collaboration Extension . 39

4.2 SAP Gravity Architecture . 40

4.3 Example of a Data Model Instance in SAP Gravity 41

4.4 SAP Gravity Mapping from Application-Specific to Application-Agnostic Operations 41

4.5 Model Change Event Handling in SAP Gravity . 44

4.6 SAP Gravity Synchronization and Conflict Resolution Workflow 45

4.7 Gravity Mapping of Primitive JSON Data Types . 47

4.8 Gravity Mapping of JSON Objects . 48

4.9 Gravity Mapping of JSON Arrays . 48

4.10 JSON to Gravity Mapping Example . 49

4.11 Shared JSON Synchronization and Conflict Resolution Workflow 54

4.12 Class Structure of Collaborative SAPUI5 JSONModel with Associated Data Binding
Classes . 56

4.13 SAPUI5 Synchronization and Conflict Resolution Workflow 58

4.14 Knockout.js Synchronization and Conflict Resolution Workflow 67

5.1 Product Quality Model According to ISO/IEC 25010 [ISO10] 70

5.2 Quality in Use Model According to ISO/IEC 25010 [ISO10] 72

5.3 Overall Evaluation Process . 73

5.4 Screenshot of Simple Task List Application . 74

5.5 Evaluation Results of Minimal Task List Application 75

5.6 Mockup of Collaborative Business Analytic Tool . 76

5.7 Template for Sprint Documentation . 78

5.8 Questions to Participants of Developer Study . 79

5.9 Source Code Results of the Developer Study . 80

5.10 Results of the Developer Study Questionnaire . 82

5.11 Knockout.js View Model without and with Observables 83

5.12 Knockout.js View Model with and without Dynamic Property Additions 83

5.13 JavaScript Constructor Function Styles . 84

5.14 Manual Listener Registration in Knockout.js . 84

94 List of Figures

5.15 View Model with Graph Structure . 85

5.16 View Model with Tree Structure . 86

A.1 JSON Value Syntax Definition . 101

A.2 JSON Object Syntax Definition . 101

A.3 JSON Array Syntax Definition . 102

A.4 JSON String Syntax Definition . 102

A.5 JSON Number Syntax Definition . 102

List of Figures 95

96 List of Figures

LIST OF TABLES

2.1 Classification of Available Web Applications . 10

4.1 Survey of Existing Web MV* Frameworks . 37

4.2 Primitive Operations in SAP Gravity . 41

4.3 Mapping of API Method Calls to Primitive Operations and Model Change Events in
SAP Gravity . 43

4.4 JSONPath Expressions and Corresponding Addressed Document Parts 47

4.5 Shared JSON Event Types with Corresponding Properties 53

4.6 Examples for Methods of Observable Arrays . 60

4.7 Knockout.js Annotations with Regular Expressions and Source Code Replacements 65

4.8 Examples for Property Exclusion Expressions . 65

5.1 Subcharacteristics of Functional Suitability According to ISO/IEC 25010 [ISO10] . . 71

5.2 Subcharacteristics of Compatibility According to ISO/IEC 25010 [ISO10] 71

5.3 Subcharacteristics of Usability According to ISO/IEC 25010 [ISO10] 71

5.4 Subcharacteristics of Maintainability According to ISO/IEC 25010 [ISO10] 72

5.5 Subcharacteristics of Satisfaction According to ISO/IEC 25010 [ISO10] 73

5.6 Schedule of Practical Course for Developer Study 77

B.1 Questionnaire Experiences of Participants . 103

B.2 Questionnaire Knockout.js Collaboration Extension 104

97

B.3 Questionnaire SAP Gravity . 105

C.1 Questionnaire Result Distribution Experiences of Participants 107

C.2 Questionnaire Result Distribution Functional Suitability 107

C.3 Questionnaire Result Distribution Compatibility . 108

C.4 Questionnaire Result Distribution Usability . 108

C.5 Questionnaire Result Distribution Maintainability 108

C.6 Questionnaire Result Distribution Satisfaction . 109

98 List of Tables

LISTINGS

3.1 Single JavaScript Include of Knockout.js framework 23

3.2 Template-Based UI Specification by means of Handlebars 24

3.3 Widget-Based UI Specification by means of SproutCore 24

3.4 Data Binding by means of Knockout.js . 25

3.5 Procedural View Update by means of Backbone.js 25

3.6 Model-based Listener Registration using SAPUI5 28

3.7 Class Instance-based Listener Registration using Backbone.js 28

3.8 Property-based Listener Registration using Knockout.js 28

4.1 Gravity Client API Calls to Create a Task List Item 43

4.2 JSON Representation of a Task List . 46

4.3 JSONPath Syntax Definition Using the EBNF [EBN96] 47

4.4 JSON representation of a New Task Item . 50

4.5 Gravity Client API Calls to Add a New Task Item . 50

4.6 Example of a Shared JSON Event Object . 53

4.7 Utilization of Single-User as well as Multi-User JSON Data Model in SAPUI5 . . . 57

4.8 Knockout.js View Model for a Task List Application 59

4.9 Knockout.js Synchronization Extension for Observables 61

4.10 Knockout.js View Model for a Task List Application with Annotations 62

4.11 JavaScript Object Recreation Using Serialization 63

99

4.12 Property Exclusion Language Definition . 65

4.13 Knockout.js View Definition . 66

100 Listings

A JAVASCRIPT OBJECT
NOTATION (JSON)

The JavaScript Object Notation (JSON) is a lightweight and language-independent data inter-
change format. Since it is a text format, it is human- as well as machine-readable. In the following,
the JSON syntax is described using syntax diagrams according to [Cro08]. Dark gray rectangles
represent non-terminal symbols, wereas rounded rectangles as well as circles stand for terminal
symbols.

JSON object

JSON array

JSON string

JSON number

true

false

null

JSON value

Figure A.1: JSON Value Syntax Definition

JSON string

JSON object

JSON value{ }:

,

Figure A.2: JSON Object Syntax Definition

101

JSON array

JSON value[]

,

Figure A.3: JSON Array Syntax Definition

JSON string

any Unicode character

except " or \ or control character
" "

quotation mark
"

\

reverse solidus
\

horizontal tab
t

...

Figure A.4: JSON String Syntax Definition

JSON number

0

-

digit 1-9

digit digit

.

digit

E

+

e

-

Figure A.5: JSON Number Syntax Definition

102 Appendix A JavaScript Object Notation (JSON)

B DEVELOPER EVALUATION:
QUESTIONNAIRE

strongly
disagree

strongly
agree

Question 1 2 3 4 5

I had strong programming skills before the internship. � � � � �
Which programming languages did you use before the internship?

I was familiar with HTML and CSS before the internship. � � � � �
I was familiar with JavaScript before the internship. � � � � �
I was familiar with the development of collaborative web applica-
tions before the internship.

� � � � �

Table B.1: Questionnaire Experiences of Participants

103

strongly
disagree

strongly
agree

Question 1 2 3 4 5

Functional Suitability

The Knockout.js extension provides the necessary functionality to
develop collaborative web applications.

� � � � �

The functionality of the Knockout.js extension eases the develop-
ment of collaborative applications.

� � � � �

What functionality did you miss? What hindered your development?

Compatibility

The Knockout.js extension restricted the choice of other technolo-
gies.

� � � � �

Other selected technologies worked well with the Knockout.js ex-
tension.

� � � � �

What problems did you encounter using other technologies?

Usability

I could easily learn how to use the Knockout.js extension. � � � � �
After the initial learning phase, the Knockout.js extension was easy
to use.

� � � � �

What was hard for you to learn?

The Knockout.js extension prevented me from making mistakes
during the development of the collaborative web application.

� � � � �

What kind of errors did you encounter?

Maintainability

The Knockout.js extension helped me to separate synchronization
code from the rest of the application.

� � � � �

The impact of changes made to the application’s source code could
be foreseen easily.

� � � � �

The cause of failures could be reconstructed with modest effort. � � � � �
Parts of a developed application that have to be modified could be
easily determined.

� � � � �

The developed application could be easily enriched with additional
application features without introducing defects.

� � � � �

Satisfaction

The Knockout.js extension is useful to develop collaborative appli-
cations.

� � � � �

The annotations lead to the expected behaviour. � � � � �
The property exclusion mechanism is convenient. � � � � �
It is very easy to use the Knockout.js extension to add collaboration
capabilities to an application.

� � � � �

The Knockout.js extension is a comfortable means for developing
real-time applications.

� � � � �

Table B.2: Questionnaire Knockout.js Collaboration Extension

104 Appendix B Developer Evaluation: Questionnaire

strongly
disagree

strongly
agree

Question 1 2 3 4 5

Functional Suitability

Gravity provides the necessary functionality to develop collabora-
tive web applications.

� � � � �

The functionality of Gravity eases the development of collaborative
applications.

� � � � �

What functionality did you miss? What hindered your development?

Compatibility

Gravity restricted the choice of other technologies. � � � � �
Other selected technologies worked well with Gravity. � � � � �
What problems did you encounter using other technologies?

Usability

I could easily learn how to use Gravity. � � � � �
After the initial learning phase, Gravity was easy to use. � � � � �
What was hard for you to learn?

Gravity prevented me from making mistakes during the develop-
ment of the collaborative web application.

� � � � �

What kind of errors did you encounter?

Maintainability

Gravity helped me to separate synchronization code from the rest
of the application.

� � � � �

The impact of changes made to the application’s source code could
be foreseen easily.

� � � � �

The cause of failures could be reconstructed with modest effort. � � � � �
Parts of a developed application that have to be modified could be
easily determined.

� � � � �

The developed application could be easily enriched with additional
application features without introducing defects.

� � � � �

Satisfaction

Gravity is useful to develop collaborative applications. � � � � �
The Gravity API calls and callbacks lead to the expected behaviour. � � � � �
The callback mechanism is convenient. � � � � �
It is very easy to use Gravity to add collaboration capabilities to an
application.

� � � � �

Gravity is a comfortable means for developing real-time applica-
tions.

� � � � �

Table B.3: Questionnaire SAP Gravity

105

106 Appendix B Developer Evaluation: Questionnaire

C DEVELOPER EVALUATION:
RESULTS

Question Answer

I had strong programming skills before the internship.

1 2 3 4 5
0
2
4
6

I was familiar with HTML and CSS before the internship.

1 2 3 4 5
0
2
4
6

I was familiar with JavaScript before the internship.

1 2 3 4 5
0
2
4
6

I was familiar with the development of collaborative web applications
before the internship.

1 2 3 4 5
0
2
4
6

Table C.1: Questionnaire Result Distribution Experiences of Participants

Question SAP Gravity Knockout.js

(Q01) Gravity/the Knockout.js extension provides the
necessary functionality to develop collaborative web
applications.

1 2 3 4 5
0
2
4
6

1 2 3 4 5
0
2
4
6

(Q02) The functionality of Gravity/the Knockout.js ex-
tension eases the development of collaborative appli-
cations.

1 2 3 4 5
0
2
4
6

1 2 3 4 5
0
2
4
6

Table C.2: Questionnaire Result Distribution Functional Suitability

107

Question SAP Gravity Knockout.js

(Q03) Gravity/the Knockout.js extension restricted the
choice of other technologies.

1 2 3 4 5
0
2
4
6

1 2 3 4 5
0
2
4
6

(Q04) Other selected technologies worked well with
Gravity/the Knockout.js extension.

1 2 3 4 5
0
2
4
6

1 2 3 4 5
0
2
4
6

Table C.3: Questionnaire Result Distribution Compatibility

Question SAP Gravity Knockout.js

(Q05) I could easily learn how to use Gravity/the
Knockout.js extension.

1 2 3 4 5
0
2
4
6

1 2 3 4 5
0
2
4
6

(Q06) After the initial learning phase, Gravity/the
Knockout.js extension was easy to use.

1 2 3 4 5
0
2
4
6

1 2 3 4 5
0
2
4
6

Table C.4: Questionnaire Result Distribution Usability

Question SAP Gravity Knockout.js

(Q07) Gravity/the Knockout.js extension prevented me
from making mistakes during the development of the
collaborative web application.

1 2 3 4 5
0
2
4
6

1 2 3 4 5
0
2
4
6

(Q08) Gravity/the Knockout.js extension helped me to
separate synchronization code from the rest of the ap-
plication.

1 2 3 4 5
0
2
4
6

1 2 3 4 5
0
2
4
6

(Q09) The impact of changes made to the application’s
source code could be foreseen easily.

1 2 3 4 5
0
2
4
6

1 2 3 4 5
0
2
4
6

(Q10) The cause of failures could be reconstructed
with modest effort.

1 2 3 4 5
0
2
4
6

1 2 3 4 5
0
2
4
6

(Q11) Parts of a developed application that have to be
modified could be easily determined.

1 2 3 4 5
0
2
4
6

1 2 3 4 5
0
2
4
6

(Q12) The developed application could be easily en-
riched with additional application features without in-
troducing defects.

1 2 3 4 5
0
2
4
6

1 2 3 4 5
0
2
4
6

Table C.5: Questionnaire Result Distribution Maintainability

108 Appendix C Developer Evaluation: Results

Question SAP Gravity Knockout.js

(Q13) Gravity/the Knockout.js extension is useful to de-
velop collaborative applications.

1 2 3 4 5
0
2
4
6

1 2 3 4 5
0
2
4
6

(Q14) The Gravity API calls and callbacks/the annota-
tions lead to the expected behaviour.

1 2 3 4 5
0
2
4
6

1 2 3 4 5
0
2
4
6

(Q15) The callback mechanism/the property exclusion
mechanism is convenient.

1 2 3 4 5
0
2
4
6

1 2 3 4 5
0
2
4
6

(Q16) It is very easy to use Gravity/the Knockout.js ex-
tension to add collaboration capabilities to an applica-
tion.

1 2 3 4 5
0
2
4
6

1 2 3 4 5
0
2
4
6

(Q17) Gravity/the Knockout.js extension is a comfort-
able means for developing real-time applications.

1 2 3 4 5
0
2
4
6

1 2 3 4 5
0
2
4
6

Table C.6: Questionnaire Result Distribution Satisfaction

109

