
IEEE Copyright Notice

© 2017 IEEE.

Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

This work has been published in 2017 IEEE 2nd International Workshops on Foundations and Applications
of Self* Systems (FAS*W), Tucson, AZ, USA, 2017, pp. 39-44.

DOI: 10.1109/FAS-W.2017.118
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8064094&isnumber=8064070

https://doi.org/10.1109/FAS-W.2017.118
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8064094&isnumber=8064070


RoleDiSCo: A Middleware Architecture and Implementation for Coordinated
On-Demand Composition of Smart Service Systems in Decentralized Environments

Markus Wutzler and Thomas Springer and Alexander Schill
Technische Universität Dresden

Faculty of Computer Science, Chair of Computer Networks
01062 Dresden, Germany

Email: markus.wutzler@tu-dresden.de, thomas.springer@tu-dresden.de, alexander.schill@tu-dresden.de

Abstract—Future smart computing environments will heavily
rely on the collaboration of services, which are dynamically
interconnected to Smart Service Systems in order to develop
their full potential. Such computing environments are coined
by a high degree of distribution and decentralization render-
ing a centralized control of service composition and system
adaptation infeasible. Self-organizing Software Systems tackle
this issue to automatically compose service systems at run time.
Due to missing holistic system specifications, they constitute a
mainly linear service chain, which contradicts the collaborative
nature of Smart Service Systems. Thus, we proposed a Two-
Phase Development Methodology, which includes a role-based
collaboration specification, for engineering Smart Service Sys-
tems. In this paper, we present RoleDiSCo, a middleware for
coordinated on-demand composition of Smart Service Systems
in decentralized environments in order to bridge the gap
between design and run time.

1. Introduction

Future smart computing environments, e.g., smart home,
smart mobility, smart city or smart health, will heavily rely
on the spontaneous collaboration of independently developed,
autonomously operating services in order to develop their full
potential. The increasing number of smart systems inevitably
leads to a huge number of systems that potentially provide
such services. While only a few systems may participate in
a collaboration, the number of concurrent collaborations is
considerably high and individual systems might participate in
multiple collaborations simultaneously. This renders central
management infeasible as it becomes a bottleneck and is no
viable option for such large-scale, volatile environments.

Dynamically interconnecting independently developed
systems in decentralized environments at run time is a
challenging task. Protocols, such as UPnP [1], are limited
to a fixed number of collaborating systems. Self-organizing
Software Systems (SOSSs) [2] deal with the composition of
dependent service systems with many autonomous services.
Their structure emerges without central control by match-
ing provided and required service ports. Due to missing
holistic collaboration specifications, they constitute a linear
service chain, delegating requests across services until a

task is completed [3], but lack support for complex service
collaborations at run time, such as binding multiple instances
of the same service type simultaneously. Complex service
collaborations require specifications, but those usually lead
to monolithic systems that follow a closed-world assumption
and are only dynamic within their specified system boundary.

In Smart Service Systems, independently developed
services are dynamically interconnected on-demand at run
time, forming a complex service collaboration to combine
its individual subsystems’ capabilities in order to develop
their full potential. Smart Service Systems face three major
challenges: First, independently developed and autonomously
operating services will have to be composed on-the-fly
to form complex application structures providing desired
functionalities. However, developing the service and its role
essential to the incorporating collaboration should remain as
distinct as possible. Second, such a service collaboration will
have to adapt to changes in the users’ situation or its own
computational environment. Finally, due to the high degree
of distribution and decentralization, such systems will have
to be composed and adapted without static central control.

Previously, we proposed a Two-Phase Development
Methodology [4], including a Role-based Collaboration
Specification (RBCS) for Smart Service Systems to address
the first challenge. We also investigated context-dependent,
structural adaptation [5] to address the second challenge.

In this paper, we tackle the third challenge. Elaborating
on our previous explorations [6], we present RoleDiSCo,
a middleware for coordinated on-demand composition of
Smart Service Systems in decentralized environments.

2. Foundations

Roles [7] are an intuitive abstraction that perfectly
matches the collaborative nature of Smart Service Systems.
Collaborations are a foundation of the role concept, in
which the role is an abstract functionality whose actual
performance is delegated to the role’s player. Players can be
restricted through requirements specified by the role (e.g.,
provided methods or contextual properties). Since this plays
relationship can be dynamically established and detached at
run time, dynamic system behavior can be achieved. Thereby,
the role concept enables serendipity [3], i.e., to deal with



System
Specification

Smart Service System

A B C

Service X

Service Z

Service Y

A

B

B
Smart Service System

Service D Service E

C

Role

Collaboration

Player On-Demand
Composition

generate

1 * 1 1

Figure 1. The RoleDiSCo Idea: Loose Coupling, Adaptivity, Serendipity.

integrating unforeseen services, already at design time. In
other words, a role can be seen as a previously unknown
plugin, enabling the player to join in a collaboration.

Figure 1 depicts the RoleDiSCo approach: A Smart
Service System is specified as a collaboration of roles. A role
encapsulates an abstract functionality which is performed by
a player, i.e., an independently developed service. Hence, the
service can be considered the player of a role. The service,
in turn, may play multiple roles in several collaborations.

2.1. Two-Phase Development Methodology

RoleDiSCo’s Two-Phase Development Methodology [4]
demarcates the service’s development from that of its role
required through the service’s participation in various col-
laborations. In Phase 1©, the collaboration designer specifies
the Smart Service System as a self-contained collaboration
using the proposed RBCS, in which roles capture the abstract
functionality a service should provide to the collaboration.
Thereof, a partial implementation is generated. In Phase 2©,
several (other) developers complement this partial implemen-
tation, extending the autonomous service, i.e., the player, to
provide the role’s concrete performance. This preserves the
independent development of the service separated from its
role essential to a collaboration. Consequently, the result-
ing services developed following this methodology can be
dynamically composed to Smart Service Systems on-demand.

2.2. Scenario

We consider an interactive, tech-enhanced classroom
setting in which both the lecturer and the students have smart
devices, e.g., smart phones or tablets. The lecturer delivers
the lecture using a smart device to present accompanying
slides. The students’ smart devices, by contrast, are only able
to display the current slide and the annotations the lecturer
adds to the slides. The students, additionally, are able to
give feedback to the lecturer and also may ask questions by
virtually raising their hand. The lecturer is the head of the
classroom collaboration and keeps it alive, while students
may join and leave during the collaboration.

Since our main focus is on structural composition and
adaptation, we rely on a basic implementation of the sce-
nario as this is sufficient in order to explain and discuss
our approach hereinafter. Listing 1 shows the specifica-
tion of the scenario using the RBCS. Thereof, a partial
implementation (in Java) is generated. Listing 2 shows the
generated implementation of the collaboration and comprises

1 module org.roledisco.samples.classroom
2 collaboration InteractiveClassroom {
3 context LectureContext lectureContext
4 coordinator role Lecturer {
5 context LecturerContext lecturerContext
6 player op receiveFeedback(String message)
7 op setSlide(Slide slide) { // outbound method call
8 slideBase64 = slide.toBase64()
9 Student.setSlide(slideBase64) } }

10 role Student {
11 context LectureContext lectureContext
12 context StudentContext studentContext
13 op submitFeedback(String message) {
14 Lecturer.receiveFeedback(message) }
15 op setSlide(String slideBase64) {
16 slide = Slide.fromBase64(slideBase64)
17 player.setSlide(slide) } }
18 multiplicities { Lecturer one-to-many Student }
19 constraints { Lecturer >-< Student } }

Listing 1. Scenario’s Collaboration Specification.

1 package org.rosi.roledisco.samples.classroom;
2 @Collaboration(
3 coordinator = SimpleCoordinatorRole.class,
4 roles = SimpleRole.class )
5 @Constraint(
6 from = SimpleCoordinatorRole.class,
7 to = SimpleRole.class,
8 value = RoleConstraint.ROLE_PROHIBITION )
9 @Multiplicity(

10 from = SimpleCoordinatorRole.class,
11 to = SimpleRole.class, value = RoleLink.ONE_TO_MANY )
12 public class InteractiveClassroomCollaboration extends

AbstractCollaboration {
13 @Context LectureContext lectureContext;
14 /* ... */ }

Listing 2. Generated Collaboration Implementation.

mostly structural information. Listing 3 shows the generated
implementation of the non-coordinating Student role. The
generated Lecturer role is similar to that of the Student and
therefore has been omitted.

1 package org.rosi.roledisco.samples.classroom;
2 public class StudentRole extends AbstractRole {
3 @Context LectureContext lectureContext;
4 @Context StudentContext studentContext;
5 public void submitFeedback(String feedback) {
6 Dispatcher.getDispatcher().dispatchToRole(this,

LecturerRole.class,"receiveFeedback",msg); }
7 public void setSlide(String slideBase64){
8 Slide slide = Slide.fromBase64(slideBase64);
9 Dispatcher.getDispatcher().dispatchToPlayer(this,"

setSlide",slide); }}

Listing 3. Generated Student Role Implementation.

3. Middleware Architecture

Figure 2 shows the high-level architecture of a subsys-
tem equipped with the RoleDiSCo middleware1, which is
assumed to run on each subsystem (node) in the infrastructure.
The Application Container contains the roles and the collabo-
ration, as a result of Phase 1© of the Two-Phase Development
Methodology [4]; the player-specific parts provided by a
developer of Phase 2©, i.e., the Context Providers, the Players
or Bindings; as well as the independently developed service.
Collaboration Specifications can be reconstructed from the

1. https://bitbucket.org/roledisco/roledisco

https://bitbucket.org/roledisco/roledisco


ap
pl

ic
at

io
n

co
nt

ai
ne

r
player

specific
Context

Providers
Players /
Bindings Service

player
independent Collaboration Roles

PlannerKnowledge
Context
Manager

Discovery Coordination Dispatch

Infrastructure Abstraction Layer

RoleDiSCo
middleware

Figure 2. Architectural Overview of the RoleDiSCo Middleware.

collaboration and role classes. Since a collaboration is a
self-contained bundle, an application container contains all
role types even if it does not provide players for all of them.

The middleware consists of several modules with different
responsibilities, discussed in detail in the remainder of this
section. Figure 2 omits supportive modules: a message queue
processes messages from remote subsystems and delegates
them to their respective modules; an event system is used
to notify components about changes, e.g., updated discovery
information, which allows loose coupling of the components.

3.1. Infrastructure Abstraction Layer

Subsystems communicate via the Infrastructure Abstrac-
tion Layer, which has been introduced as a replaceable
component in order to completely abstract from concrete
underlying protocols and infrastructures. We assume that
every node in the infrastructure is reachable via this layer.
The layer provides the following interface:
publish(message)

Broadcasts the message to all subsystems within the
infrastructure without expecting a reply (non-blocking).

send(target[s], message)
The message is only sent to the specified target system(s).

dispatch(target[s], method name, parameters
[, return type [, callback]])
Dispatches a method call to the specified target system(s).
If a return type is specified, this method expects the
remote method to provide a return value, implying a
blocking method call. A callback may be passed, which
is executed upon receiving the return value, and results in
a non-blocking method call.

At this point, we assume reliable messaging as well as
request/response handling in order to realize method calls
with return values. The received messages are to be forwarded
to the message queue, which distributes it internally to
the corresponding modules. In order to send messages to
specific subsystems, they require unique addresses which are
generated within the middleware as the very same subsystem
might be connected via multiple links. Thus, each subsystem
generates a unique identifier [8] the first time it is started and
keeps that during its lifetime. Our current implementation
uses JGroups [9], which provides reliable, decentralized
messaging as well as request/response handling.

3.2. Local Repositories & Knowledge

The middleware and thereby each subsystem has a Knowl-
edge base to maintain knowledge for continuous operation.
This comprises a repository for Collaborations Specifications,
one for Discovery Information, one for Dispatch Information,
the Fills Relation, and the Context Cache.

The Collaboration Specifications repository contains all
locally available collaboration specifications, comprising
the collaboration class, its role classes, and thereby also
the relationships within the collaboration. The repository
is managed by the Discovery module, as explained later,
but specifications may also be added to and removed from
the repository manually: Adding a collaboration specifica-
tion to the repository requires the collaboration type, the
coordinating role type and all non-coordinating role types.
Removing a collaboration from the repository only requires
the collaboration type. The Fills Relation complements this
repository and contains potential players for role types. The
»fills relation« usually refers to the modeling level and defines
which player type plays which role type. This, however,
contradicts the idea of serendipity. Thus, the Fills Relation
is populated at run time, as a task of the Discovery module.

The Discovery Information repository contains all role
types available in the infrastructure that have a corresponding
player to perform that role, the respective subsystem the role
type is located on, and its associated context information.
This repository, however, only knows that the role type
has a player on the respective subsystem, but neither its
implementation nor class name. Moreover, the repository
may contain multiple entries with the same subsystem
and the same role type but different contexts, in case a
role type might be applicable in several contexts. Context
information, by default, includes context features that are
part of both the collaboration and a non-coordinating role
type. In the example given before, this would apply to the
LectureContext. The repository is populated by the
Discovery module, as explained in the subsequent section.

The Dispatch Information repository captures run-time
information of a running pervasive collaboration. Once a
pervasive collaboration is instantiated (cf. Section 4), all
participating subsystems keep track of that collaboration
and its role instances. This enables to dispatch method calls
between roles. Although only the Pervasive Collaboration
Coordinator, i.e., the initiating subsystem, is in charge of
maintaining this information, it is replicated to all subsystems
participating in the collaboration. This allows to dispatch

AS1
Pervasive Collaboration
Coordinator

AS2 AS3method invocation

Figure 3. Direct Method Invocation, Bypassing the Coordinating Subsystem.

method calls bypassing the coordinating role’s subsystem (cf.
Figure 3) and circumvents bottlenecks. If a non-coordinating
subsystem notices, for instance, the absence of a required
subsystem, it is able to queue the messages until the
coordinator orders that subsystem to do something different.



3.3. Discovery

The Discovery module is responsible for broadcasting
and collecting discovery information within the infrastructure.
Discovery information comprises the collaboration type and
role type, both as fully qualified name derived from the
collaboration specification, the subsystem those types are
located on, and the respective context information. Only role
types that have a complementing player implementation
are broadcast. The discovery module is subdivided into
local and remote discovery and therefore has to perform
different tasks. Additionally, the discovery module monitors
the infrastructure for subsystems which joined or left.

The local role discovery scans the subsystem for available
collaboration and role types, which are then added to the
collaboration specifications repository if they have not been
added yet. Therefore, the partial implementation contains the
@Collaboration annotation (cf. Listing 2:2–4), which
allows to find collaboration types and to register them and
their roles to the collaboration specifications repository. Sub-
sequently, the collaboration specification can be reconstructed
using the annotations shown in Listing 2 and Listing 3.

The local player discovery scans the subsystem for com-
plementing player implementations for the locally available
role types. We assume that the subsystem’s runtime can
be introspected and, especially in the case of a role-based
runtime, that it is possible to request complementing player
types for role types. First, the local role-based runtime is
introspected and requested to provide the complementing
player implementations. If that fails, the role-based runtime is
asked whether it has a complementing player implementation
for the role type. At this point, the middleware would only
know that a player exists but it would not be aware of
the number of implementations or their types. The first
steps are skipped unless a role-based runtime is available.
Second, configuration files containing role types and com-
plementing player implementations are processed. Last, the
(generic) runtime is searched for classes annotated with
@Player(<role type>) [4]. Those classes’ annotations
also contain the role type the player class can play. Thereby,
the Fills Relation is populated.

Knowing the local role types that have a corresponding
player is a crucial prerequisite for publishing locally available
role types as only those role types that have a player are
to be published. Subsequently, the discovery information is
broadcast whenever the infrastructure changes, the collabora-
tion specifications repository changes, the context associated
to the role type changes, a role type has no complementing
player implementation anymore, or a complementing player
for a previously not playable role type is available. For
each role type to be published a RoleAnnouncement message
containing the collaboration type, the role type, the unique
identifier of the local subsystem, and the respective context
features, is sent to all other subsystems. Listing 4 shows an
example message for the scenario introduced earlier. The
remote role discovery processes these messages and adds
their content to the local discovery information repository if
the discovered role type is available locally as well.

1 RoleAnnouncementMessage:
2 CollaborationType: org.r...o.samples.classroom.

InteractiveClassroomCollaboration
3 RoleType: org.r...o.samples.classroom.StudentRole
4 Subsystem: e3858665-063d-4d2b-9a11-3b90848e90a8
5 Context: LectureContext{...}

Listing 4. Sample RoleAnnouncement Message.

Finally, the discovery module monitors the infrastructures
for changes, e.g., subsystems that left. For the sake of
simplicity, we rely on mechanisms integrated in JGroups [9].
If necessary, an operating collaboration has to be adapted,
causing changes to the dispatch information repository.

3.4. Context Manager

During discovery, the collaboration and its roles cannot
provide context information on their own easily as they
only exist as types and therefore could only provide static
information. Conceptually, context should be provided by the
player, which is, at first, the adaptive subsystem and therein
a complementing class, core object, etc., which is provided
by the runtime. Thus, the Context Manager is introduced to
acquire context information defined in the RBCS. Therefore,
Phase 2© developers are asked to implement a Context
Provider, providing the following method:
getContext(role type [, feature])

This method has to return the concrete context values
for the role type’s features specified in the collaboration
specification’s context blocks, e.g., an instance of Stu-
dentContext for feature studentContext. Unless
a concrete feature is specified, context values for all
features shall be returned.

The context manager obtains the context features to be re-
quested from the providers using the @Context annotations
of the respective fields inside the derived collaboration and
role classes (e.g., Listing 3:3–4). The context providers have
to register themselves to the context manager. Providers can
notify the context manager, whose interface is described
below, about changes using the update method.
update(provider, role type [, feature])

Registered context providers may push context changes.
The context manager will retrieve the context values itself.
This may also cause dependent modules, such as the
discovery module, to perform some tasks.

getContext(role type [, feature])
Returns the cached context values for a given feature
and a specific player class or delegates the call to the
corresponding context provider(s) if no values are cached.
If the feature is omitted, a set of key-value pairs is returned.
It is used by other modules, e.g., discovery, as context
providers are not accessed directly.

3.5. Dispatcher

The Dispatcher module resolves method calls to remote
roles and to local roles’ players. It integrates with the local
runtime in order to retrieve players for role types, as described



for the local player discovery before. This is also a reason
why the interface looks like a typical dispatch component of
a role-based runtime, such as LyRT [10], which, for instance,
provides a registry to look up such information.
dispatchToPlayer(role instance, method name,
parameters)
Delegates a call from a remote role to the local player.

dispatchToRole(calling role instance, target
role type, method name, parameters[,
callback])
Dispatches a call from a local to a remote role. The
calling role instance is used to determine the collaboration
and, thus, the target role instances. The instances are
required to determine the target addresses before the
method is dispatched to the infrastructure abstraction layer.
As method calls may be dispatched in a non-blocking
way, an optional callback might be passed that expects
the return value of the remote system as input.

dispatchToRoles(calling role instance,
target role type, method name, parameters[,
callback])
In contrast to the method before, this method dispatches
a call from a local role instance to several remote role
instances, which are determined as before. The callback
will be invoked for every received return value.

hasPlayer(role type[, context])
Used within the discovery and dispatcher modules to
determine whether a role type has a complementing player
implementation. The default strategy works as explained
within the local player discovery.

getPlayer(role type[, context])
The local runtime is asked to return an instance of a
complementing player implementation for the given role
type in an (optional) context. It is used for dispatching as
well as binding and unbinding during composition.

[un]bind(role instance, player instance)
Binds or unbinds a role during composition. By default,
the binding relation is stored in an internal memory. A role-
based runtime might choose more sophisticated strategies.

activate(role instance)
Activates a role binding. After that, method calls are
effectively dispatched to the player and to other roles.
The default strategy is to annotate the respective entry of
the relation mentioned afore with an active flag.

3.6. Planner

The Planner module calculates the composition plan of
a collaboration, i.e., on which subsystems which roles have
to be instantiated and integrated into the collaboration. The
planner module takes the collaboration specification and the
associated discovery information from the respective reposito-
ries as input and returns a set of composition instructions, i.e.,
the roles to be instantiated and their respective subsystems
and contexts. As our focus is on composition and adaptation,
we assume that such planners exist. For instance, OptaPlanner
[11] is a lightweight, embeddable planning engine based on
Java. Yet, we focused on basic support of different application

structures, such as one-to-one and one-to-many with multiple
target role types (i.e., the coordinating role is connected
to an/many instance/s of more than one other role type).
We follow a greedy strategy, i.e., we aim to incorporate as
much roles as possible. Context matching is achieved as
follows: The non-coordinating role’s context features are
matched against those of the collaboration. With respect to
the scenario, a student’s role’s lectureContext must be
equal to that of the collaboration. In general, only context
features being of the same type and appearing in both a
non-coordinating role and its surrounding collaboration are
matched against each other.

4. Towards Coordinated Composition

Our goal was to bridge the gap between the design-time
specification and the run-time execution, i.e., to achieve
automated discovery and composition, especially in decen-
tralized environments. Thus, we will sketch how the proposed
middleware contributes to tackle these challenges.

The derived Partial Implementation of the Two-Phase
Development Methodology [4] is the prerequisite to bridge the
gap between design and run time. The generated @Collab-
oration annotation (Listing 2:2–4), in conjunction with
the constraints (Listing 2:7–8), enables the middleware to
recreate the collaboration specification at run time. Consider
a small scenario with 3 subsystems S1 to S3; S1 has the
Lecturer role type, S2 and S3 have the Student role type. All
have complementing players, which were retrieved using
the @Player annotation, as well as respective Context
Providers, which were registered to the Context Management.

S1 starts and broadcasts a RoleAnnouncementMes-
sage, comprising, i.a., the lecturer role type, the originating
subsystem and the available context information. Once S2

launches, S1 will detect a change in the infrastructure and
send the message to S2 again. S2 broadcasts a RoleAn-
nouncementMessage as well. The same applies to S3.

Thus, discovery knowledge is established in a decen-
tralized way, which is a prerequisite for composition. The
composition process is triggered by instantiating the gen-
erated collaboration class (cf. Listing 2). The coordinating
Lecturer role may have been instantiated prior to that point,
thus, instantiating the collaboration; otherwise it will be
instantiated with the collaboration and bound to its player.

Next, the Planner is provided with the collaboration, its
context (ctxC), and the obtained discovery information, i.e.,
{(S2, Student, ctx2), (S3, Student, ctx3)}. It matches the
contexts ctxi against ctxC and returns a set of composition
instructions, i.e., the roles to be instantiated, their respective
subsystem and context. If ctx3 does not match ctxC , e.g., if
the student is interested in a different lecture than that the col-
laboration is used for, it could return {(S2, Student, ctx2)}.

Please note that both composition and adaptation are
centralized on-demand and coordinated by the system the
collaboration is triggered on, denoted as Pervasive Collabo-
ration Coordinator [4]. The reliable exchange of messages
allows to instruct other subsystems to instantiate roles
and bind players. A protocol to achieve composition and



adaptation in a coordinated way is a remaining task. Before
composition is completed, dispatch information, similar
to composition instructions, is shared with the respective
subsystems, enabling the Dispatcher to dispatch method calls
between systems.

5. Discussion & Related Work

Advantages of the role concept have been discussed in the
context of the Two-Phase Development Methodology [4]. At
run time, we continue to benefit from the independence of a
role and its player, as they can be bound and unbound, which
results in varying behavior. It is, moreover, an advantage to
distinguish between types and instances, as a playing entity
thus can intuitively participate in several collaborations using
multiple instances of the same role type.

Decentralization has been addressed two-fold: The ho-
mogenous middleware architecture does not rely on a pre-
defined, static master node. All information that has to be
shared is replicated and subsequently used solely locally. In
order to avoid decentralized decision-making, e.g., calculating
the composition plan, which is a challenging task [12] and
expected to be time-consuming, we centralize coordinated
composition (and subsequent adaptation) on-demand, thereby
avoiding a statically predefined central coordinator.

In contrast to SOSSs, such as GOPRIME [3], we maintain
a complex service structure within a pervasive collaboration
as long as it needs to operate or until it fails because its
specification’s constraints are violated.

In DEECo [13], component communication and bindings
are extracted from the implementation and implicitly speci-
fied in an ensemble specification, comparable to our RBCS.
DEECo is limited to coordinator-to-member interactions
and vice versa. It implies predefined processes and its
components solely operate on local knowledge shared with
other components by a common middleware layer. Recently,
a notion of roles was added [14], however, they only act as
a shared interface and have no behavior. Hence, there is no
support for serendipity. Components are known in advance
to the ensemble. DEECo defines context-based membership
predicates, i.e., functions that evaluate context features, in
order to restrict the collaborators of the collaboration, which
are more fine-grained than our basic context matching.

The Helena Approach [15] provides a formal foun-
dation for modeling distributed systems by teaming up
roles into ensembles. It is a component-based approach,
which provides an ensemble specification similar to DEECo.
An ensemble specification of Helena, however, does not
result in a distributed system with automated discovery and
composition [16]. Additionally, players in Helena have no
intrinsic behavior, thus, exchanging a player does not result
in a different performance of a role.

6. Conclusion

We presented the architectural details of RoleDiSCo,
our middleware for coordinated on-demand composition of

Smart Service Systems in decentralized environments. The
RoleDiSCo middleware completes the overall RoleDiSCo
idea (cf. Figure 1), in which a smart service system is speci-
fied as collaboration of roles. Existing services simply adopt
these roles. The role’s associated collaboration specification
enables the proposed middleware to perform automated dis-
covery, coordinated composition and subsequent adaptation,
all by preserving the individual development lanes.

In the future, a generic planner solution needs to be
developed. A protocol for coordinated composition and
subsequent adaptation is a current work in progress.

Acknowledgments

This work is funded by the German Research Foundation
(DFG) within the Research Training Group “Role-based
Software Infrastructures for continuous-context-sensitive Sys-
tems” (GRK 1907).

References
[1] Open Connectivity Foundation, Inc., “UPnP Device Architecture

2.0,” Tech. Rep., 2015.
[2] G. Di Marzo Serugendo et al., “Self-Organisation: Paradigms and

Applications,” in Engineering Self-Organising Systems, G. Di Marzo
Serugendo et al., Eds. Springer, 2004, pp. 1–19. DOI: 10.1007/978-
3-540-24701-2_1.

[3] M. Caporuscio et al., “GoPrime: A Fully Decentralized Middleware
for Utility-Aware Service Assembly,” IEEE Trans. Softw. Eng.,
vol. 42, no. 2, pp. 136–152, 2016. DOI: 10.1109/TSE.2015.2476797.

[4] M. Wutzler et al., “Utilizing Role-based Models for Distributed On-
Demand Service Composition,” in Comp. Proc. of Programming’17,
ACM, 2017. DOI: 10.1145/3079368.3079390, in press.

[5] M. Wutzler et al., “Role-Based Models for Building Adaptable
Collaborative Smart Service Systems,” in 2017 IEEE Intl. Conf.
on Smart Computing (SMARTCOMP), IEEE, 2017, pp. 1–6. DOI:
10.1109/SMARTCOMP.2017.7947041.

[6] M. Wutzler, “Exploring On-Demand Composition of Pervasive
Collaborations in Smart Computing Environments,” in OTM 2016
Workshops. OTMA 2016, Rhodes, Greece. I. Ciuciu et al., Eds.
Springer, 2017, pp. 305–314. DOI: 10.1007/978-3-319-55961-2_31.

[7] G. Boella and F. Steimann, “Roles and Relationships,” in Proc. of
the 2007 Conf. on Object-Oriented Technology, Springer, 2007.

[8] P. Leach et al., “A Universally Unique IDentifier (UUID) URN
Namespace,” IETF, RFC 4122, 2005, pp. 1–32.

[9] JGroups. [Online]. Available: http://www.jgroups.org.
[10] N. Taing et al., “A Dynamic Instance Binding Mechanism Supporting

Run-time Variability of Role-based Software Systems,” in Comp.
Proc. of the 15th Intl. Conf. on Modularity, ACM, 2016, pp. 137–142.
DOI: 10.1145/2892664.2892687.

[11] OptaPlanner. [Online]. Available: https://www.optaplanner.org.
[12] D. Weyns et al., “On Patterns for Decentralized Control in Self-

Adaptive Systems,” in Softw. Eng. for Self-Adaptive Systems II, R.
de Lemos et al., Eds., Springer Berlin Heidelberg, 2013, pp. 76–107.

[13] J. Keznikl et al., “Towards Dependable Emergent Ensembles of
Components: The DEECo Component Model,” in 2012 Joint Conf. on
Software Architecture and European Conf. on Software Architecture,
IEEE, 2012, pp. 249–252. DOI: 10.1109/WICSA-ECSA.212.39.

[14] T. Bureš et al., “Towards Intelligent Ensembles,” in Proc. of the
2015 European Conf. on Software Architecture Workshops, ACM,
2015. DOI: 10.1145/2797433.2797450.

[15] R. Hennicker and A. Klarl, “Foundations for Ensemble Modeling
– The Helena Approach,” in Specification, Algebra, and Software,
Springer, 2014, pp. 359–381. DOI: 10.1007/978-3-642-54624-2_18.

[16] A. Klarl et al., “From Helena Ensemble Specifications to Executable
Code,” in Formal Aspects of Component Software, Springer, 2014,
pp. 183–190. DOI: 10.1007/978-3-319-15317-9_11.

https://doi.org/10.1007/978-3-540-24701-2_1
https://doi.org/10.1007/978-3-540-24701-2_1
https://doi.org/10.1109/TSE.2015.2476797
https://doi.org/10.1145/3079368.3079390
https://doi.org/10.1109/SMARTCOMP.2017.7947041
https://doi.org/10.1007/978-3-319-55961-2_31
http://www.jgroups.org
https://doi.org/10.1145/2892664.2892687
https://www.optaplanner.org
https://doi.org/10.1109/WICSA-ECSA.212.39
https://doi.org/10.1145/2797433.2797450
https://doi.org/10.1007/978-3-642-54624-2_18
https://doi.org/10.1007/978-3-319-15317-9_11

	Introduction
	Foundations
	Two-Phase Development Methodology
	Scenario

	Middleware Architecture
	Infrastructure Abstraction Layer
	Local Repositories & Knowledge
	Discovery
	Context Manager
	Dispatcher
	Planner

	Towards Coordinated Composition
	Discussion & Related Work
	Conclusion

