
WatchMyPhone - Providing Developer Support for Shared User Interface Objects in
Collaborative Mobile Applications

Sven Bendel
Institute of Computer Science III

Rheinische Friedrich-Wilhelms-Universität Bonn
Bonn, Germany

bendel@cs.uni-bonn.de

Daniel Schuster
Computer Networks Group

Technische Universität Dresden
Dresden, Germany

daniel.schuster@tu-dresden.de

Abstract—Developing collaborative mobile applications is a
tedious and error-prone task, as collaboration functionality
often has do be developed from scratch. To ease this process,
we propose WatchMyPhone, a developer toolkit being focused
on the creation of collaborative applications on mobile devices,
especially sharing user interface components like text views
in a multi-user setting. We provide an implementation of the
toolkit as well as a demo application for shared text editing
based on Android. WatchMyPhone is integrated in the Mobilis
open source framework thus adding another facet to enable
fast and efficient development of mobile social apps.

Keywords-CSCW, collaborative work, developer toolkit, mo-
bile computing, awareness, shared editing

I. INTRODUCTION

Many mobile applications today include social features
like exchanging messages, location-awareness, content shar-
ing, or access to remote objects on other user’s devices [1].
Collaborative mobile applications take it to the next level and
provide a more integrated and focused way of interacting
with other users in real-time. Collaboration means working
towards a common goal in a sort of shared environment.
Building collaborative mobile applications still remains a
challenge as we discovered during work on extending two
existing location-based games (Mister X Mobile [2] and
GeoQuest [3]) with collaborative features.

While the developer can build upon a lot of well-
established concepts and algorithms in this field, software
development support for collaborative mobile applications
is rather weak. By this term we mean synchronizing two or
more instances of the same mobile applications on different
devices to be able to work on common artifacts. This
functionality, which is often called replicated application
sharing, can not be added transparently to single-user ap-
plications. It effects all layers of mobile applications like
user interface (collaboration awareness), application logic
(data synchronization), as well as network communication
(collaborative network protocols). Thus, developer support
should include all these layers which is not the case with
existing collaboration frameworks.

To ease the development of collaborative mobile appli-
cations we present an approach to easily enhance single-
user versions of user interface objects (widgets) to multi-
user versions which can be used in almost the same way by
the developer as their single-user predecessors. The state of
these widgets is modeled as an XML data structure which is
then synchronized among the participants of a collaboration
session using XML-based Operational Transformation (OT).
Support on the network layer is given by using XMPP-based
presence and communication.

We implemented the proposed approach in a toolkit called
WatchMyPhone (WMP). This client-centered toolkit allows
the app developer to focus on the development of core
features, using Developer Components, which are part of the
application GUI, and Support Components, which provide
the data synchronization and network protocols needed for
collaboration.

Section III explains the general architecture behind our
solution. Section IV sketches the two WMP components.
Finally, we present a prototype implementation in Section V
which is used as a proof of concept.

II. RELATED WORK

There is a number of existing systems or toolkits for
mobile social applications like SAMOA [4], MobiSoc [5]
and MobiClique [6] providing collaborative functionality on
mobile devices. But these systems are mainly targeted at
message exchange, media sharing, and social networking
yet not offering the application sharing functionality as
mentioned above. Our own work, the Mobilis framework [7],
also does not support application sharing yet, but offers a
service for shared editing of XML objects, which may make
a good starting point for synchronizing application state.

Middleware and programming environments for mo-
bile applications like M2MI [8], MoCA [9], or Ambi-
entTalk [10], [11] offer means to access remote objects
(or context tuples like in LIME [12]) on other devices in
a network-aware way. Network-awareness means abstrac-
tion over networking technologies, reactions upon network
(un)availability, and dynamic adaptation of network behavior



(e.g., resize picture before transmission). This solves mo-
bility problems on the network level and enables access to
remote objects such as media files, but again offers no direct
support for sharing applications, esp. synchronizing UIs.

Looking at the research area of application sharing, there
are three approaches to what is called “retrofitting” collabo-
rative features in existing applications [13]: at the operating
system level, at the application level, and at the programming
environment level. The first approach is what is known by
many popular VNC implementations, like RealVNC [14] or
TightVNC [15], i.e., sharing the actual output of an applica-
tion using hooks inside the operating system. Besides VNC,
collaborative video viewing has already been demonstrated
on mobile devices [16] and could also be used for application
sharing at the application level. While this works with almost
every application from scratch, the data rate to be used is
tremendous.

The second approach (application level) uses APIs of
existing single-user applications (e.g., in CoWord [17] or
CoMaya [18]). This is suitable if these APIs are already
existing, offer comprehensive access to the applications, and
are well-documented. As such APIs do not exist for most
mobile apps, there is a big effort for the developer in creating
and maintaining such APIs.

The third approach of retrofitting at the programming
environment level seems most promising for mobile appli-
cations. Early attempts like Flexible JAMM [19] tried to
add collaborative features transparently for the developer by
replacing single-user UI components of desktop applications
with their collaborative counterparts at runtime. As stated in
the introduction, this often proves to be impossible due to the
many effects of collaboration at different system levels. Later
approaches thus tend to relax the transparency requirement
by using Aspect Oriented Programming like in Zipper [13].
While AOP is a quite good solution for desktop applications,
it is only poorly supported on mobile platforms. E.g., the
popular AspectJ [20] framework generally can be used on
the mobile OS Android, however, as Android doesn’t allow
bytecode modification at runtime it can only be applied to
user-generated code. Thus it is not possible to weave code
into system libraries like UI components.

Our approach also works at the programming environment
level, but retrofits collaboration aspects by providing collab-
orative versions of system libraries on the mobile platform
(esp. Android). In the next sections, we will outline why this
approach fits best for mobile application development.

III. ARCHITECTURE OVERVIEW

Although the WMP toolkit is supposed to be used on
the client side of an application, the general concept behind
WMP also consists of a server component. Figure 1 gives
an overview of the general architecture of WMP.

Client and server both operate in the same WMP network.
Within the WMP network every user has a unique ID of the

form client@server. This identification is used by all
WMP services, i.e., for collaboration by WMP views (see
below) and communication by chat. At every point in time
every user additionally has a unique status, which can be
offline, online or busy. The status defines which sorts of
interactions are possible with this particular user.

The status is set automatically by the client application
depending on whether he is logged into the network (which
means he is online) or he is already taking part of a
collaboration session (busy). The state can be retrieved from
the communication server. If a user is online, he may enter
an already existing collaboration session of a busy user. Both
users have to use the same client application to do this
- as WMP may be used by many applications this is not
necessarily always the case. At every point in time a user
may only take part at most at one session. Chatting is always
available for all online and busy users.

The developer of a collaborative mobile app doesn’t have
to set up a server on his own. He may use a generic server
which is shared by all applications backed by WMP in the
beginning. Of course, with a growing user community, the
setup of an own server is preferable. This should result
in more developers starting to implement new collaborative
mobile apps.

The server side consists of two independent entities: the
communication server and the collaboration server. The
communication server is solely responsible for commu-
nication among the clients and between clients and the
collaboration server. In our impementation, we selected an
XMPP server as communication server, but other (propri-
etary) communication servers may be used as well.

The collaboration server implements the server part of the
collaborative editing framework being used for concurrent
modifications on the same object (e.g., CEFX [21] or Google
Wave [22]). In addition to this, the collaboration server also
manages a map with a reference to the session a user is
currently taking part of. This is used to determine the status
of each user.

The WMP toolkit itself is solely used on the client. The
next section will give an overview of the components of the
toolkit and how they work together.

IV. WMP COMPONENTS

The WMP toolkit consists of two main components: the
Developer Components and the Support Components.

A. Developer Components

The Developer Components are used by the developer
while implementing his app. The most important part of the
Developer Components is made of the WMPViews. WM-
PViews are collaborative versions of their stock OS view
pendants. As an example, consider a simple text editing field
(in Android this is called EditText). When a developer
wants to have a collaborative text editor, he has to use the



Client

WMP App

WMP Toolkit

Developer Components

Collaborative Views, Widgets and Utilities

Support Components

Collaborative Editing Client Service

Communication Library

Collaboration Library

Mobile OS

Server

Server OS

Communication
Server

Collaboration
Server

Communication
Library

Collaborative
Editing
Service

Collaboration
Session

Documents

Figure 1. WMP architecture

WMPEditText view. This view will now automatically take
care of all things needed for collaboration by making use
of the Support Components assuming that we are already
in a session (MU-Mode, short for Multi-User-Mode). But
this doesn’t mean, that this view doesn’t work in SU-Mode
(Single-User-Mode) as well. In fact, as we’re subclassing the
stock OS view, all features of these views are still available
ensuring a consistent feature set in both modes. However,
when in MU-Mode, the user expects more of the view. This
is, where Awareness Widgets come in.

Awareness Widgets in general provide an enhanced user
experience by unveiling the actions of other members of
the collaboration sessions. WMP distinguishes between two
sorts of Awareness Widgets: internal and external ones.
Internal Awareness Widgets are directly built into their
referencing WMPViews. Following the example from above
this could be the highlighting of foreign text changes. Ex-
ternal Awareness Widgets are independent GUI components.
They obtain their information from their subject WMPViews
which in turn are informed about changes by the Support
Components.

A good example for an external Awareness Widget is the
so-called Radar View. A Radar View displays the complete
document in a condensed form and overlays it by the
viewports of all participants. A user’s viewport is simply
the part of the document which is currently viewed by this
specific user. Awareness Widgets ease the process of collab-
oration and help avoiding collisions when editing the same
document. At this point it is important to emphasize, that not

only text documents may be edited collaboratively, but also
pictures, maps or even videos, provided that WMPViews and
Awareness Widgets have been implemented for these tasks.

Moreover, the WMP concept allows for selective appli-
cation sharing, i.e., sharing only part of the application
state. This is especially useful in our mobile gaming use
cases, where game state and locations of players should be
synchronized among the participants but the rest of the UI
elements are for individual use only.

In addition to WMPViews and Awareness Widgets, the
Developer Components also consist of what we call Col-
laboration Utilities. Collaboration Utilities are not really
that important for the proper functioning of collaboration
sessions themselves, but rather provide support in the setup
phase or during direct participant-to-participant communica-
tion. Examples for Collaboration Utilites are:

• Login View, which takes care of logging the user into
the WMP network.

• Buddy List, showing the local user’s friends together
with their current status and allowing direct interaction
such as initiating/taking part in chats or collaboration
sessions.

• Chat, exchanging text messages between the session
participants.

These utilities do not necessarily have to be used in WMP
apps. One could think of scenarios, where ad-hoc session
creation and one-time logins could be advantageous which
would make Login View and Buddy List obsolete.



B. Support Components

In contrast to the Developer Components, Support Com-
ponents are not directly used by the app developer, but
by the Developer Components. As indicated above they
provide the technical backbone for collaboration and com-
munication matters. The core of the Support Components
is the Collaborative Editing Client Service. This service
provides the link between the libraries within the Support
Components and the Developer Components and it holds
the XML representation of the current session. This session
XML consists of the XML representations of the content
of all active collaborative views splitted up in nodes each
corresponding to one collaborative view.

The two libraries are the Communication Library and the
Collaboration Library. The first one handles all things re-
lated to communication between clients and between clients
and server, providing a reliable way to communicate 1:1
and 1:many. We do not specify the communication libary in
more detail, as it is exchangeable and not the main focus
of our work. We decided to use the XMPP protocol for our
implementation, but a mobile distributed middleware like
the ones mentioned in Section II can also be used with our
concept. In case of a P2P system, the communication server
will disappear and there needs to be a mechanism to find a
peer who takes over the role of the collaboration server.

The communication library also includes handling of
network connectivity problems. It contains a message queue
for phases of disconnection to be able to provide reliable
data transfer. Nevertheless, in some cases it may be better
to propagate this information to the app developer so he may
react if he desires to.

The collaboration library mainly consists of the client-
side implementation of a framework for shared editing of
XML documents (including operational transformation), like
Google Wave or CEFX. The idea behind this functional
separation enables to easily change both libraries while
leaving the Developer Components untouched. This provides
a rather flexible solution.

C. Adding a new Developer Component

To give a hint about how to add new developer com-
ponents, we are going to outline the theoretical develop-
ment process for a collaboratively usable Canvas. The only
prerequisite for a collaborative view is, that it’s content
can be represented by an XML structure which may be
synchronized by the Collaborative Editing Client Service. So
the component developer has to find an XML representation
of the drawing, which he would probably also want to do,
if he developed an ordinary single-user canvas.

Then he creates a subclass of an appropriate view from
the system library which implements the WMPView inter-
face. This interface allows the binding of the view to the
Collaborative Editing Client Service, so that the view may
be informed about changes and informs the respective views

on other devices of it’s own changes. The latter is done by
calling various collaboration related methods (like INSERT,
UPDATE and DELETE) at the service which modify this
specific view’s node in the session XML held by the service.
So if the user draws a line the service is informed by the
view of the INSERTion of a new line which then takes
care of adding this information to the canvas’ node in the
session XML (after having applied OT on it) and propagating
the change to the other devices. On these devices the local
Collaborative Editing Client Service also INSERTs the new
line into the appropriate node in the XML session document
and informs the canvas view about the change which then
draws the new line.

V. IMPLEMENTATION AND USAGE

We implemented a prototype implementation of the con-
cept explained above using the Mobilis framework [7] and
CEFX [21] for the mobile OS Android version 1.6. Ad-
ditionally, a prototype application was written which shall
serve us as a showcase of what is possible and how easy
a developer may use our toolkit for the implementation of
collaboratively usable mobile applications.

A. Implementation of WMP

The current version of the WMP toolkit makes use of
the Mobilis framework to gain access to its very sleek and
intuitive XMPP protocol implementation for Android. This
is used for communication means between the clients as
well as the clients and the server. An unmodified Openfire
XMPP server [23] controls the communication. The Mobilis
framework also already incorporates the CEFX framework
for collaboration on XML documents.

The Collaborative Editing Service may be used by all
WMP based applications on the device to handle collab-
oration. While the Mobilis Framework already provided a
Collaborative Editing Service based on CEFX before we
started work on WMP, we greatly overhauled and extended
the service to meet our needs. The needed features of the
aforementioned support libraries are provided by CEFX
(collaboration/shared editing) and the “Mobilis XMPP for
Android” implementation (communication).

It is important to mention that while our implementation
is based on the Mobilis framework for simplicity reasons, it
does not depend on it, as we already pointed out in Sections
III and IV. Modularization of the implementation enables
to exchange both, the communication service as well as the
collaboration service, easily.

B. Integrating WMP in Android applications

If a developer wants to use WMP, he has to embed the
WMP Android library. This library provides all necessary
Developer Components, such as the WMPEditText being
a subclass of the stock Android view for text editing, or
the RadarView as a sample Awareness Widget. Their



purpose is outlined in V-C. In case of the WMPEditText all
user input (when in multi-user mode) is trapped and routed
through the CEFX Operational Transformation framework.
During this process the event is propagated to the other users
using an XMPP multi-user chat [24], which was generated
by the server.

The Collaborative Editing Service holds a local XML
document which mirrors the state of the shared view, by as-
signing a node to every WMPView. For the WMPEditText
the content of the node would be an XML representation of
the text field’s content. An update of this document by the
local or a remote user triggers an event which is processed by
the Collaborative Editing Service which eventually updates
the associated WMPView, after the XML session document
has been updated. This helps maintaining a consistent state.
When in single-user mode this obviously doesn’t apply, as
there is no session document maintained. Thus in single-user
mode the application just works as if WMP had not been
there.

As explained above, external Awareness Widgets are
tied to a subject view which is always a WMPView. This
view informs its WMPAwarenessWidgets about changes.
Based on the specific type of change the Awareness Widget
decides, whether it reacts on it or not.

To Android developers it will be of particular interest,
that in case of the Android OS, the binding process between
Awareness Widget and WMPView can be directly initiated
from the XML file describing the Activity layout. This can
be done by referencing the collaborative view’s ID from
the Awareness Widget definition via the app:subject
attribute (see Listing 1, line 11). The figure also shows how
easily collaborative Views and widgets may be integrated
into an application when using WMP on Android. In many
cases most of the integration effort is done by just declaring
them in the XML file like any other Android View. They
will work out of the box without any additional Java code,
although there is always the possibility to (un-)bind them
from there, too.

1 <edu.bonn.cs.wmp.views.WMPEditText
2 android:id =”@+id/main edit text collab”
3 android:layout width =” fill parent ”
4 android:layout height =” fill parent ”
5 </edu.bonn.cs.wmp.views.WMPEditText>
6
7 <edu.bonn.cs.wmp.awarenesswidgets.RadarView
8 android:id =”@+id/main radar view”
9 android:layout width =” fill parent ”

10 android:layout heigth =” fill parent ”
11 app:subject =”@+id/main edit text collab”>
12 </edu.bonn.cs.wmp.awarenesswidgets.RadarView>

Listing 1. Binding an Awareness Widget to a WMPView with WMP on
Android

In contrast, internal Awareness “Widgets” are directly
maintained within the WMPViews code and need no binding.

(a) Collaborative text field (b) Radar View

Figure 2. Prototype screenshots

C. Demo application

We implemented a basic collaborative text editor which
acts as a proof-of-concept. The editor makes use of all
up to now implemented Developer Components of WMP.
These are a collaboratively editable text field with integrated
awareness widget (highlights text changed by remote users)
and a hideable Radar View to display the viewports of all
users. As it relies completely on WMP technology it can be
used in multi-user as well as in single-user mode without
loosing any functionality - even the Radar View is fully
functional. For screenshots see Figure 2. The implementation
is straight-forward and contains just a few lines of Java and
XML code, with both mainly handling the UI.

Running the application on a Google Nexus S with An-
droid 2.3.7 and a HTC Desire with Android 2.2.1 we found
the performance to be rather good. On input of arbitrary
words response time (= time between input and output on
the display) most of the time stayed below the mark of 100
ms. Performance over longer time periods and with longer
documents remain to be tested.

VI. CONCLUSIONS

We have outlined WatchMyPhone as a developer toolkit
which supports mobile application developers in integrating
collaborative components into their applications. This is
done via a set of views, Awareness Widgets and utilities (De-
veloper Components) backed by a service utilizing a collabo-
ration and a Communication Library (Support Components).
The developer uses only the Developer Components while
the Support Components take the responsibility for handling
communication and collaboration issues which means that
the developer doesn’t have to care about these aspects.
This enables broader usage of collaborative technologies in
mobile applications.

The current implementation is just for Android devices
and is based on the Mobilis framework. A standalone version
(also for other mobile operating systems) would be desirable.



There are also just a handful of Developer Components at
the moment and no utilities implemented. We would like to
extend this set in the future.

Nevertheless, WMP is just the first step towards providing
easy-to-use general-purpose collaboration for mobile apps.
It would be interesting to see a UI-centered approach like
WMP be combined with network-aware mobile middleware
better dealing with network connectivity problems, provid-
ing ad-hoc connectivity, and adaptation to changing network
conditions. The question of how much of these issues should
be handled by the app developer remains an open research
question.

REFERENCES

[1] T. Springer, D. Schuster, I. Braun, J. Janeiro, M. Endler, and
A. Loureiro, “A flexible architecture for mobile collaboration
services,” in ACM/IFIP/USENIX Middleware’08 Conference
Companion, Leuven, Belgium, 2008.

[2] Qeevee UG, “Mister X Mobile,”
http://qeevee.com/projects/misterx, 2011.

[3] Software Architecture and Middleware, Uni-
versity of Bonn, “GeoQuest,” http://sam.iai.uni-
bonn.de/projects/geoquest/index.html, 2012.

[4] D. Botazzi, R. Montanari, and A. Toninelli, “Context-Aware
Middleware for Anytime, Anywhere Social Networks,” IEEE
Intelligent Systems, vol. 22, no. 5, pp. 23–32, 2007.

[5] A. Gupta, A. Kalra, D. Boston, and C. Borcea, “MobiSoC:
a middleware for mobile social computing applications,”
Mobile Networks and Applications, vol. 14, no. 1, pp. 35–
52, 2009.

[6] A.-K. Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, and
C. Diot, “MobiClique: middleware for mobile social net-
working,” in 2nd ACM workshop on Online social networks
(WOSN’09), Barcelona, Spain, 2009.

[7] R. Lübke, D. Schuster, and A. Schill, “A Framework for
the Development of Mobile Social Software on Android,”
in The 3rd International Conference on Mobile Computing,
Applications, and Services (MobiCASE), Los Angeles, CA,
USA, 2011.

[8] A. Kaminsky and H. Bischof, “Many-to-many invocation:
a new object oriented paradigm for ad hoc collaborative
systems,” in Companion of the 17th annual ACM SIGPLAN
conference on Object-oriented programming, systems, lan-
guages, and applications (OOPSLA), Seattle, WA, USA,
2002.

[9] V. Sacramento, M. Endler, H. Rubinsztejn, L. Lima,
K. Goncalves, F. Nascimento, and G. Bueno, “Moca: A mid-
dleware for developing collaborative applications for mobile
users,” Distributed Systems Online, IEEE, vol. 5, no. 10, pp.
2–2, 2004.

[10] T. Van Cutsem, S. Mostinckx, E. Boix, J. Dedecker, and
W. De Meuter, “Ambienttalk: Object-oriented event-driven
programming in mobile ad hoc networks,” in XXVI Interna-
tional Conference of the Chilean Society of Computer Science
(SCCC ’07), Iquique, Chile, 2007.

[11] K. Pinte, D. Harnie, and T. D’Hondt, “Enabling cross-
technology mobile applications with network-aware refer-
ences,” in 13th International Conference on Coordination
Models and Languages (COORDINATION), Reykjavik, Ice-
land, 2011.

[12] A. Murphy, G. Picco, and G. Roman, “LIME: A coordination
model and middleware supporting mobility of hosts and
agents,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 15, no. 3, pp. 279–328, 2006.

[13] L.-T. Cheng, J. Patterson, S. L. Rohall, S. Hupfer, and
S. Ross, “Weaving a Social Fabric into Existing Software,”
in 4th International conference on Aspect-oriented software
development (AOSD ’05), Chicago, USA, 2005.

[14] RealVNC Limited, “RealVNC - VNC remote control soft-
ware,” http://www.realvnc.com/index.html, 2012.

[15] TightVNC Group, “TightVNC: VNC-Compatible
Free Remote Control / Remote Desktop Software,”
http://www.tightvnc.com/, 2012.

[16] G. Shen, Y. Li, and Y. Zhang, “MobiUS: enable together-
viewing video experience across two mobile devices,” in 5th
international conference on Mobile systems, applications and
services (MobiSys ’07), San Juan, Puerto Rico, 2007.

[17] C. Sun, S. Xia, D. Sun, D. Chen, H. Shen, and W. Cai,
“Transparent adaptation of single-user applications for multi-
user real-time collaboration,” ACM Trans. Comput.-Hum.
Interact., vol. 13, no. 4, pp. 531–582, 2006.

[18] A. Agustina, F. Liu, S. Xia, H. Shen, and C. Sun, “CoMaya:
incorporating advanced collaboration capabilities into 3D
digital media design tools,” in ACM conference on Computer
supported cooperative work (CSCW), San Diego, CA, USA,
2008.

[19] J. Begole, R. B. Smith, C. A. Struble, and C. A. Shaffer,
“Resource sharing for replicated synchronous groupware,”
IEEE/ACM Trans. Netw., vol. 9, no. 6, pp. 833–843, 2001.

[20] The Eclipse Foundation, “The AspectJ Project,”
http://www.eclipse.org/aspectj/, 2012.

[21] A. R. S. Gerlicher, “Transparent Extension of Single-User
Applications to Multi-User Real-Time Collaborative Systems
- An Aspect Oriented Approach to Framework Integration,”
in Ninth International Conference on Enterprise Information
Systems (ICEIS), Funchal, Madeira, Portugal, 2007.

[22] D. Wang, A. Mah, and S. Lassen, “Google Wave Op-
erational Transformation - Google Wave Federation Pro-
tocol,” http://www.waveprotocol.org/whitepapers/operational-
transform, 2010.

[23] Jive Software, “Ignite Realtime: Openfire Server,”
http://www.igniterealtime.org/projects/openfire/, 2011.

[24] P. Saint-Andre, “XEP-0045: Multi-User Chat,”
http://xmpp.org/extensions/xep-0045.html, 2008.


