
A Concept for Flexible Event-Driven Invocation of Distributed Service
Compositions

Karen Walzer, Jürgen Anke, Alexander Löser
SAP Research

Chemnitzer Strasse 48
01187 Dresden, Germany

{karen.walzer, juergen.anke, alexander.loeser}@sap.com

Huaigu Wu
SAP Research

111 Duke Street, Suite 2100
Montreal (Quebec) H3C 2M1, Canada

huaigu.wu@sap.com

Abstract

Currently, flexible service compositions are invoked in
a centralised manner by process execution engines. Al-
though this approach is widely used for orchestrating web
services, it lacks scalability and incurs considerable over-
head in network communication. This is especially disad-
vantageous in scenarios with embedded systems and other
resource-constrained devices, mainly due to restrictions in
network bandwidth or power supply. We present an appli-
cation scenario to illustrate the drawbacks of centralised
service invocation in these cases. Decentralised invocation
mechanisms are a promising approach to overcome these
problems. Based on the identification of service compo-
sition characteristics in distributed environments, we pro-
pose a decentralised mechanism using events and subscrip-
tions. This mechanism can be employed for invoking dis-
tributed service compositions while offering improved scal-
ability and efficiency. We conclude with discussing the ad-
vantages and restrictions of our solution compared to the
centralised approach.

1 Introduction

Smart items are physical products that include product
embedded information devices (PEIDs), e.g. embedded
systems, or RFID tags. For application domains such as
Product Lifecycle Management (PLM), enterprise applica-
tions can benefit greatly from accessing data on smart items.
This can replace error-prone manual data input with auto-
matic data aquisition to support maintenance planning, re-
cycling decisions, and even improvements in product de-
sign. As it is not reasonable to integrate mechanisms for ac-
cessing PEIDs into business applications, placing this func-
tionality into a middleware is a useful approach. The mid-
dleware and the PEIDs form the smart item environment.

The middleware functionality is logically separated and
physically distributed among a number of nodes. Besides
hosting parts of the middleware functionality, they provide
an execution environment for components that offer ser-
vices for data processing. These components are of rela-
tive small granularity and function-oriented. They can be
flexibly deployed onto all of the nodes, including suitably
equipped PEIDs. This allows for early processing of PEID
data, and reduces the amount of data which has to be trans-
mitted from the PEID to the backend systems [3]. To ac-
commodate for different application-specific data process-
ing requirements, available services can be combined into
service compositions. Service compositions describe how
distributed services need to interact in order to achieve a
common desired result.

An example service composition is shown in Figure 1
in form of a service dependency graph. In this scenario,
a number of processing steps are performed on data from
various data sources available at the PEID of a vehicle (oil
pressure sensor, engine speed sensor, engine temperature
sensor, mileage counter). The service composition is used
to monitor the vehicle’s operational status. More details on
this example in the context of deployment planning for the
used components can be found in [2].

To facilitate flexible composition of services provided by
distributed components, two key functionalities have to be
provided by the infrastructure:

1. Definition of Service Compositions: The cooperation
of services must be described in a way that is machine-
readable and allows for easy configuration, i.e. it must
be possible to add, modify, and remove service com-
positions without access to component source code.

2. Invocation Mechanism: Once service compositions
are defined, they have to be invoked by a mechanism
that allows the coordinated execution of services based
on the composition description.



Figure 1. Service composition for the moni-
toring of a vehicle’s operational status

There are two main paradigms for invocation of service
compositions: Request/Response and Event-Driven. In the
first case, a client application places a request to retrieve the
current operational status of the vehicle, i.e. it ”pulls” the
data. With the event-driven paradigm, the services would
be executed when they receive an event notification they are
subscribed to. In our example, all services would subscribe
for a notification of ”DataChange” events at the services
they depend on. Therefore, the data would be ”pushed”
from the source to the sink. For instance, if the Oil Pressure
changes in the scenario depicted in Figure 1, the DataBuffer
1 service receives an event notification with the new sensor
data. This changes the data in the buffer, causing a notifica-
tion to be sent to the FormatOP service, and so on.

Figure 2. Invocation Mechanims for Service
Compositions

Figure 2 shows side-by-side comparison (b) centralised
request/response and (c) event-driven invocation for a sim-
ple composition depicted in Figure2a. The numbers on

arrows denote the sequence of invocations and therewith
the number of steps required to invoke the composition.
Whereas event-based invocation requires setting up sub-
scriptions initially, the number of steps during execution is
much smaller.

Request/response-based invocation has limitations in
terms of scalability and network load, which are particu-
larly disadvantageous for applications that access data from
PEIDs. Event-driven invocation promises to mitigate these
problems by decentralised control and improved network
efficiency.

In this paper, we present a concept for decentral event-
driven service invocation, and discuss its benefits and limi-
tations. The remainder of the paper is structured as follows:
First, we analyse the drawbacks of request/response-based
invocation based on a central execution engine, formulate
a problem statement, and derive requirements. Afterwards,
the related work is reviewed, followed by the presentation
of our solution. The proposed solution is put in the context
of our current work, along with an evaluation of its practi-
cal applicability. The paper concludes with a discussion on
limitions and future work.

2 Problem Analysis

Service compositions used for data processing in smart
item environments possess some characteristics that have
to be taken into consideration when evaluating invocation
mechanisms. Firstly, they are run in an environment where
network capacity is limited, especially between smart items
and middleware nodes. Secondly, these network connec-
tions might be intermittent, i.e. only temporarily available.
This is problematic when a service becomes unavailable
during an ongoing invocation, because the node hosting the
service gets disconnected from the network. Thirdly, there
are services that depend on data sources that change in dif-
ferent intervals. In applications that monitor the status of
smart items, it seems a more natural approach to let the
change of underlying data trigger the invocation of data pro-
cessing. If client applications trigger the invocation of ser-
vice compositions, the underlying data might be unchanged
since the previous request. Fourthly, there are potentially a
number of service compositions to be executed in parallel,
therby affecting several nodes.

2.1 Request/Response-based invocation

The coordination of service invocation in a service com-
position is accomplished by a central execution engine ac-
cording to a composition description that is interpreted by
the engine (see Figure 2b). The central engine uses a re-
quest/response invocation mechanism to communicate with



the services of the composition. It invokes the required ser-
vices and waits for their response to continue in its work-
flow. The central engine is responsible for the complete
coordination of data and control flow between the com-
ponents. This concept of execution is referred to as cen-
tralised orchestration, which naturally allows for a cen-
tralised management of data and states. Therefore, sophis-
ticated control-flow constructs such as loops, and complex
conditions can be easily realised. The benefits of this ap-
proach are:

• The service composition description can be directly
used to control the invocation.

• Central state management is possible in the execution
engine.

• Sophisticated control flow is possible, e.g. loops and
complex conditions.

When a centralised orchestration of service composi-
tion is employed, the control and data flow between the
distributed components and the central execution engine
places considerable overhead on the network. In the case of
monitoring applications, a request/response-based invoca-
tion would lead to ”polling” of data, as the client application
might regularly check for data. If no new data is available,
expensive resources are used without additional benefit at
the application level in form of updated information. More-
over, the method only provides low scalability, as the central
execution engine can only handle a limited number of con-
current requests. For our case, the request/response-based
invocation with a central execution engine has the following
drawbacks:

• The result of an invocation of a service that is an in-
put for another service has to be transferred to the en-
gine and back to the second service, which causes ad-
ditional network load.

• Placed requests might not retrieve updated information
but require network resources for the invocation as ap-
plications are unaware of changes in the data sources.

• As there is a central component for coordination, the
parallel execution of multiple service compositions
leads to a decrease in response times due to the result-
ing overload of the component.

2.2 Event-driven service invocation

Event-driven invocation does not require a central execu-
tion engine. Instead, it is based on the asynchronous trans-
mission of messages between components. Upon occurence
of an event such as an update of data, a message is sent to
all services that subscribed to this event. The subscribers

in turn perform their service with the new data and possibly
lead to the notification/invocation of other services that sub-
scribed to them, and so on. This means the data is pushed
to the interested parties.

There are several variants to implement an event-driven
invocation mechanism. For example, the exchanged mes-
sages can either be a notification, which triggers the request
of updated data, or contain the changed data already. Fur-
thermore, central as well as decentral handling of notifica-
tions is possible. In the first case, a central notification com-
ponent receives all event notifications in the systems and
sends them to all subscribers. This component is then the
only place where subscriptions are managed. In the sec-
ond case, each node would individually handle incoming
events its local services are subscribed to as well as sending
out the notifications of locally ocurring events that others
subscribed to. When decentral handling of notifications is
used, and messages contain the changed data already, event-
driven invocation offers the following benefits:

• Low network overhead as messages with current data
are directly send to interested nodes.

• Service invocation only takes place when new data is
available.

• Good scalability due to distributed processing which
leads to a high degree of parallelization.

These benefits come at the cost of additional complexity
in the overall system. More precisely, the drawbacks are:

• Decentralised systems require the usage of notifica-
tion engines that maintain subscription lists and trans-
mit the occurring messages to the corresponding sub-
scribers. Possible mechanisms to ensure that no events
get lost also need to be implemented there, eg. using
acknowledgements or retry logic.

• Decentralised management of state is more difficult
compared to a central invocation.

• Sophisticated control logic like loops are very difficult
to realise.

• Service composition descriptions can not be used di-
rectly as basis for execution, instead subscriptions have
to be set up to reflect component dependencies.

• Ill-designed event-driven service invocation can lead
to reciprocal invocations of services and therefore infi-
nite loops resulting in node overload.



2.3 Problem Statement

Request/response-based invocation of service composi-
tions by a central execution engine has significant draw-
backs, when it is used in applications for monitoring of
smart items. The central component creates a bottleneck
that restricts concurrency as well as scalability. Further-
more, the unneccessary data transfer through the central
component leads to additional network load and therefore to
higher transfer and response times. We argue that an invoca-
tion mechanism based on the principle of event-driven invo-
cation can mitigate these drawbacks, but has to be adapted
to the specifics of distributed components in smart item en-
vironments.

2.4 Requirements

The required decentral event-driven invocation mecha-
nism has to fulfill various requirements, which are derived
from the analysis in the previous sections.

1. Network efficiency: The required network bandwidth
should be as low as possible. This can be achieved by
the following sub-requirements:

(a) No polling: Client applications do not poll for
data.

(b) No broadcasts: Notifications are not send to ev-
ery other component but only to the ones that
have subscribed to the respective event.

(c) Reduced data flow and control flow: Notifica-
tion messages contain the changed data already
to avoid additional requests for the updated data.
Moreover, messages are send directly to the sub-
scribers.

2. Scalability: Multiple concurrently executed composi-
tions shall affect response times as little as possible.
Decentralised execution control allows for concurrent
invocations and does not create a processing bottleneck
like central execution.

3. Robustness: As some network connections in smart
item environments are intermittent, the execution of a
service composition should ideally pause when a con-
nection is lost, and resume once the connection has
been restored.

4. Flexibility: Finally, the desired mechanism needs to
be easily adaptable by offering flexible configuration
possibilities. No change of code and no compilation
shall be necessary for components to use the event-
driven invocation mechanism.

3 Related Work

Previous work has been conducted on related topics,
such as flexible service composition, event-driven systems,
and decentralised workflows. We review contributions in
these areas and discuss how they are related to our ques-
tion.

3.1 Flexible Service Composition

In the area of Web Services, the Business Process Exe-
cution Language (BPEL) [1] is commonly used to describe
service compositions. BPEL defines the workflow as well
as the control of logic of process invocation such as condi-
tions that need to be fulfilled, etc. Service operations can
be called in sequence or parallel. Typically, service compo-
sitions are invoked using the request/response paradigm by
a central BPEL engine, which is used for calling the Web
Services involved in the BPEL description.

Tang et al. propose a comprehensive method for ser-
vice composition and allocation based on workflows [11].
Their main contribution is a method for dynamic alloca-
tion of services to service requests based on an economic
objective function. It integrates costs for adaption, avail-
ability, and performance. The composition mechanism they
use is based on XML, and the invocation is done on a re-
quest/response basis.

In the area of resource-constrained embedded systems,
BPEL has been used to orchestrate OSGi bundles [4]. The
focus of this work is on easy integration integration of dis-
tributed OSGi bundles on embedded systems with other
enterprise-level business processes. It does not address re-
quirements stated in section 2.4.

3.2 Event-driven systems

A comprehensive review of event-driven systems in gen-
eral can be found in [7]. The Common Object Request
Broker Architecture (CORBA) [9], for instance, offers an
Event Service and a Notification Service that allow for pub-
lish/subscribe communication in this middleware architec-
ture.

In respect to supporting event-based communications
for web services, two competing specifications exist cur-
rently, namely WS-Eventing1 and WS-Notification2. WS-
Eventing was submitted to the W3C in March 2006. OA-
SIS, another international standards consortium, approved
WS-Notification version 1.3 as an Standard in October
2006. Also in march 2006, another specification called WS-
EventNotification was announced with the objective of uni-

1http://www.w3.org/Submission/WS-Eventing/
2http://docs.oasis-open.org/wsn/



fying WS-Eventing and WS-Notification. However, a rati-
fication is not to be expected before 2008.

In [8], a Coopetition-Based Distributed System (CBDS)
is suggested where distributed programs invoke, coordinate,
and synchronize distributed services, as well as enable ser-
vice competition and cooperation. The coopetition mech-
anisms - binary semaphore, counting semaphore, mailbox,
and event-channel - are implemented as stateful web ser-
vices, i.e. multiple service instances can be created on a
node. The event-channel coopetition mechanism provides
support for event-driven processing models by offering a
channel where events are published and relayed to their sub-
scribers. However, the solution relies on stateful web ser-
vices, which limits its scalability.

3.3 Decentralised workflow execution

Chafle et al. [5] suggest the partitioning of a BPEL spec-
ification to achieve a decentralised orchestration with dis-
tributed multiple engines that execute parts of the original
BPEL specification and communicate directly. This leads
to better scalability as well as concurrency and performance
improvements. However, it also creates higher complexity,
especially in handling and propagation of errors. Cottenier
and Tzilla [6] developed an architecture for an Executable
Choreography Framework (ECF). Service Refinement Lay-
ers are used to adapt instance interfaces and to allow for a
decentralised orchestration.

4 Proposed Solution

The solution we propose describes an event-driven invo-
cation mechanism, which addresses the requirements elab-
orated in section 2.4. One of the main features in our so-
lution is a Messaging component, which handles incoming
and outgoing messages (notifications) for components on
the local node.

4.1 Extensions to the Middleware

Event-based invocation requires additional functional-
ity for sending and receiving messages at every compo-
nent. However, as described in the problem statement, there
should be no or only little changes to existing components.
In order to fulfill that requirement, we propose an additional
infrastructure component for generic message handling on
every node, called MHC (Message Handling Component).
It provides the following functionality and therefore acts as
an Event Notification Engine:

1. Manage subscriptions: The MHC has to maintain a
list of subscribers for all available components on the
node. This includes methods for adding and removing
subscriptions.

2. Process incoming messages: Incoming messages
from components are handled by the MHC. Every
message contains a recipient identifier and a method
(service) on the recipient. The MHC can invoke the
specified method on the local component. Methods for
congestion control such as suggested in [10] need to be
implemented by the MHC. They ensure that the MHC
is not overloaded with the processing of the incoming
events.

3. Send notifications: After the invoked service call is
completed, the MHC sends out notification messages
to all components that have subscribed to the ”Data-
Changed” event for the invoked service.

We foresee a generic messaging component, which can
be used on every node hosting components to be invoked
(see Figure 3). As the invocation is indirect, it is possible
to have different messaging components for different com-
ponent technologies, e.g. one for OSGi bundles and one
for Web Services. A composition of these services would
still be possible if the messaging components on all nodes
is based on the same messaging technology.

Figure 3. MHC provides messaging between
nodes

4.2 Service Composition

As explained before, the composition of services is
achieved by setting up subscriptions for events. Every ser-
vice operation in a composition that depends on the data
of another service operation needs to subscribe for the data
events from it (cf. Figure 2c). Logically, subscriptions are
established between services. Technically, they are set up
between nodes by the MHC, which maintains a list of all



subscriptions for the services on the respective node. This
list should include the SenderID, RecipientID, the Service-
Name, its parameters and the related CompositionID. Table
1 shows the structure and example data of a subscriber list.

Recipient Sender ServiceName Parameters Composition
C1 C2 processData() 10,20,* F3C
C2 C3 calcMovAvg() 15,* F3C
.. .. .. .. ..

Table 1. Structure of the subscriber list main-
tained by MHC

The SenderID denotes the component identifier to which
the service identified by RecipientID has subscribed. When
the MHC receives a message from component C1, it calls
its service specified by ServiceName. However, more in-
formation is needed than just the services of components
and their subscriptions. A decentral event-driven invoca-
tion mechanism poses new challenges on the handling of
data and contextual information.

When using a central invocation mechanism, all neces-
sary information, such as the states, are kept in one location.
With the proposed event-driven decentral invocation mech-
anism, the component needs to be either sent the necessary
state information or it has to keep it locally. Keeping states
locally, i.e. in stateful components, leads to multiple in-
stances of a component for each state (such as SessionBeans
in J2EE). This creates serious scalability issues and is there-
fore not an option. The alternative are stateless components
which are sent their state with every invocation. Therefore,
the parameters are used to store the values that are passed to
the service for every invocation. A typical example for pa-
rameters are settings for thresholds for a service that checks
whether a time series is within a certain range. The ”*” ex-
presses that the data included in the message will be passed
to the service as third parameter. Each subscription list en-
try must have at least the ”*” in the ”Parameters” field.

Finally, the ”CompositionID” is used to distinguish the
subscriptions between the same services in different com-
positions. This allows for the possibility to set different pa-
rameters for each composition even though they may use
the same services.

When a new service composition has to be set up, all
affected nodes have to add the required subscription list en-
tries. Such entries have to be maintained at the MHC for
every local service that receives or sends messages. Each
composition is assigned the ”CompositionID”, e.g. a 3 Byte
alphanumerical code, which is assigned to each composi-
tion to identify the event source of the notification and the
composition it belongs to.

4.3 Invocation Process

An invocation is triggered by the change of a data source.
This is detected by a Device Access layer, which translates
the device specific protocol into a device independent pro-
tocol. It contains functionality similar to the MHC to pro-
duce notification messages to all subscribed components.
The current location (node) of components is resolved us-
ing a local cache that contains assignments of components
to nodes. If a component location is not in this cache, it
can be requested from a central middleware service. In en-
vironments, where the location of components frequently
changes, it is useful to put an expiry date on these assign-
ments in order to refresh caches in appropriate intervals.

When a MHC receives such a message, it finds the sub-
scription list entry that contains the sender of the message
in the ”SenderID” and then compares the given ”Compo-
sitionID”. Afterwards, the service specified in ”Service-
Name” is called using the parameters from the ”Parameters”
field and the data from the received message at the position
given in the parameters. Now the MHC is the client of the
service and gets the result returned. If the subscriber list
contains entries where the respective component is in the
”SenderID”, a message including the result from the service
invocation will be send to all remote components specified
by ”RecipientID”. However, if the ”RecipientID” refers to
a local component, its service will be directly invoked by
the MHC, followed by the look-up of affected components
in the subscriber list, as just described.

If a node receives a message before an ongoing invoca-
tion has ended, the message will be stored in a queue and
subsequently processed. This ensures that the MHC service
is not overloaded and avoids losing messages.

5 Implementation

Within the PROMISE3 project, we have investigated us-
ing OSGi containers as runtime environment for distributed
components. Flexible composition of services provided by
distributed components is currently done by using BPEL
on OSGi bundles that are exposed as Web Services utilis-
ing Apache Axis [4]. This implementation provides flexible
composition and invocation of distributed services but does
suffer from the identified drawbacks like limited scalability
and unnecessary network load.

The concept for event-driven invocation presented in this
paper may serve as the basis for future developments in the
PROMISE middleware. In our implementation, the mes-
saging will be based on the Java Message Service (JMS),
which is an established technology for asynchronous mes-

3PROduct lifecycle Management and Information tracking using Smart
Embedded systems, http://www.promise.no



saging. It has built-in publish/subscribe-functionality that
will be used as foundation for the MHC component.

6 Conclusions

We have presented our concept for a decentralised event-
based invocation for service compositions. It improves net-
work efficiency (requirement 1), as client applications get
notified of data changes so that polling is not required. Fur-
thermore, notifications are only sent to subscribers instead
of broadcasted, and method invocation results are included
in the notification message to avoid additional requests for
changed data. Scalability (requirement 2) is enhanced by
introducing a Message Handling Component (MHC) on ev-
ery node to decentralise execution control and distribute
load while improving the degree of parallelization. Robust-
ness (requirement 3) is achieved by using a reliable messag-
ing system such as JMS to exchange notifications between
nodes. If a node is unavailable the notification message
will be delivered upon reconnection to resume execution
of the service composition. Flexibility (requirement 4) is
addressed through configurable subscriptions at the MHC,
which do not require changes in the invoked components.

We have shown that decentral event-based service
invocation does provide benefits over traditional cen-
tral request/response-based invocation in application cases
where the invocation is triggered when the state of data
sources has changed. However, there are cases where a
request/response-oriented invocation is more suited, e.g. if
sophisticated execution control like loops and complex con-
ditions are required. Another drawback of event-driven in-
vocation is that decentralised invocation brings additional
complexity to the system in terms of error recovery and
fault handling. Further, incorrect design of a decentralised
system can lead to potential deadlock or non-optimal us-
age of system resources [5]. Ideally, a smart item middle-
ware should be able to handle both invocation mechanisms.
Future work will have to address the question of how to
achieve a flexible system offering both mechanisms to fa-
cilitate a suitable realization for each service composition.

The practical evaluation of the proposed concept through
an implementation is currently under way. Once it is com-
pleted, a quantitative evaluation of the anticipated effects of
event-based invocation can be conducted. As shown in [5],
we expect performance improvements in terms of increased
throughput and scalability and lower response time.

7 Acknowledgement

This work is partially based on the PROMISE project,
which is funded by the European Union IST 6th Framework
program under project number 507100. We would like to
thank Kay Kadner for the helpful discussions.

References

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S.Thatte, I. Trick-
ovic, and S. Weerawarana. BPEL: Business Process Execu-
tion Language for Web Services Specification (BPEL4WS)
- Version 1.1, 2003. BEA, IBM, Microsoft, SAP, and Siebel.

[2] J. Anke and K. Kabitzsch. Cost-based Deployment Plan-
ning for Components in Smart Item Environments. In 11th
IEEE International Conference on Emerging Technologies
and Factory Automation, Prague, Czech Republic, 20-22
September 2006.

[3] J. Anke and M. Neugebauer. Early data processing in smart
item environments using mobile services. In INCOM 06:
Proceedings of the 12th IFAC Symposium on Information
Control Problems in Manufacturing, St. Etienne, France,
17-19 May 2006.

[4] J. Anke and C. Sell. Seamless Integration of Distributed
OSGi Bundles into Enterprise Processes using BPEL. In
Kommunikation in Verteilten Systemen (KiVS), Kurzbeiträge
und Workshop der 15. GI/ITG-Fachtagung Kommunikation
in Verteilten Systemen (KiVS 2007), Bern, Switzerland, 26.
Februar - 2. März 2007.

[5] G. Chafle, S. Chandra, V. Mann, and M. Nanda. A frame-
work for the integration of functional and non-functional
analysis of software architectures. In Proceedings of the
13th international World Wide Web conference on Alternate
track papers & posters, New York, NY, USA, May 2004.

[6] T. Cottenier and T. Elrad. Adaptive Embedded Services for
Pervasive Computing. In Workshop on Building Software
for Pervasive Computing as part of OOPSLA’05, San Diego,
USA, October 2005.

[7] G. Mühl, L. Fiege, and P. R. Pietzuch. Distributed Event-
Based Systems. Springer-Verlag, Berlin Heidelberg, 2006.

[8] A. Milanovic, S. Srbljic, D. Skrobo, D. Capalija, and
S. Reskovic. Coopetition mechanisms for service-oriented
distributed systems. In Proceedings of the 3rd Interna-
tional Conference on Computing, Communication and Con-
trol Technologies, Vol. 1, Computer Technologies, pages 24–
27 July, Austin, TX, USA, 2005.

[9] Object Management Group. The common object request
broker: Architecture and specification, version 3.0. OMG
document formal/02-06-33, 2002.

[10] Peter R. Pietzuch and Sumeer Bhola. Congestion Control
in a Scalable Reliable Message-Oriented Middleware. In
4th ACM/IFIP/USENIX International Conference on Mid-
dleware (Middleware’03), Rio de Janeiro, Brazil, June 2003.

[11] J.-F. Tang, B. Zhou, Z.-J. He, and U. Pompe. Adaptive
workflow-oriented services composition and allocation in
distributed environment. In Proceedings of 2004 Interna-
tional Conference on Machine Learning and Cybernetics,
volume 1, pages 599 – 603, Shanghai, 26-29 August 2004.
IEEE.


