
1

Extending the Cutting Stock Problem for
Consolidating Services with Stochastic Workloads

Markus Hähnel, John Martinovic, Guntram Scheithauer, Andreas Fischer, Alexander Schill, Waltenegus Dargie,
Senior Member, IEEE

Abstract—Data centres and similar server clusters consume
a large amount of energy. However, not all consumed energy
produces useful work. Servers consume a disproportional amount
of energy when they are idle, underutilised, or overloaded. The
effect of these conditions can be minimised by attempting to
balance the demand for and the supply of resources through
a careful prediction of future workloads and their efficient
consolidation. In this paper we extend the cutting stock problem
for consolidating workloads having stochastic characteristics.
Hence, we employ the aggregate probability density function of
co-located and simultaneously executing services to establish valid
patterns. A valid pattern is one yielding an overall resource utili-
sation below a set threshold. We tested the scope and usefulness of
our approach on a 16-core server with 29 different benchmarks.
The workloads of these benchmarks have been generated based
on the CPU utilisation traces of 100 real-world virtual machines
which we obtained from a Google data centre hosting more
than 32 000 virtual machines. Altogether, we considered 600
different consolidation scenarios during our experiment. We
compared the performance of our approach – system overload
probability, job completion time, and energy consumption – with
four existing/proposed scheduling strategies. In each category,
our approach incurred a modest penalty with respect to the best
performing approach in that category, but overall resulted in a
remarkable performance clearly demonstrating its capacity to
achieve the best trade-off between resource consumption and
performance.

Index Terms—Bin-packing problem, cloud computing, con-
solidation, cutting stock problem, data center, energy-efficient
computing, workload consolidation, server consolidation.

I. INTRODUCTION

As cloud computing takes roots within the fabrics of the
Internet, a good portion of the IP traffic will be processed
and stored in data centres. According to Cisco Systems, the
global data centre IP traffic has been exhibiting a rapid and
sustained rise in the past several years. For example, in 2017
the amount of cloud data centre IP traffic was 8190 exabytes

Revised manuscript was received on 19 March 2018.
Revised manuscript was received on 26 January 2018.
Manuscript was first received on 1 October 2017.
M. Hähnel, A. Schill and W. Dargie are with the Technische Universität

Dresden, Chair of Computer Networks, 01062, Dresden, Germany.
E-mail: {markus.haehnel1, alexander.schill, waltenegus.dargie}@tu-
dresden.de

J. Martinovic, G. Scheithauer, and A. Fischer are with Technische
Universität Dresden, Institute of Numerical Mathematics, 01062, Dresden,
Germany.
E-mail: {john.martinovic, guntram.scheithauer, andreas.fischer}@tu-
dresden.de

This work has been partially funded by the German Research Foundation
(DFG) in the Collaborative Research Center 912 “Highly Adaptive Energy-
efficient Computing” (HAEC).

Fig. 1: The normalised traffic of Google Search for Germany. The normalised
traffic is obtained by computing the ratio of Germany’s request rate to the
worldwide request rate, resulting in a number between 0 and 1. Then Google
multiplies the number by a constant, which normalises but does not change
the shape of the graph. The same approach was adopted in Fig. 2.

for the year and it is expected to increase to 19 509 exabytes
per year by 2021 [1]. This inevitably requires the deployment
of more capable processing and storage servers in the coming
years. On the other hand, however, independent studies suggest
that existing servers are not utilised optimally, as platform
providers tend to over-provide resources in order to guarantee
high availability at peak load [2]–[4].

The magnitude of data centre workload for different appli-
cations fluctuates significantly as a function of time [5]–[7].
For some applications, nevertheless, the pattern appears to be
persistent or even deterministic over several years. For others,
sufficient statistics can be gathered in a short time, so that
accurate predictions can be made on hourly basis or even on
shorter time scales. This aspect can be employed to balance
the demand for and the supply of computing resources in data
centres and large-scale server clusters (in other words, both
underutilisation and overloading of servers can be avoided
without violating a Service Level Agreement during peak
load).

Fig. 1 displays a recent statistics we obtained from Google
Transparency Report1. The statistics refer to the normalised
workload handled by the Google Search application in Ger-

1https://www.google.com/transparencyreport/traffic/data/ (Last visited on
September 12, 2017, 11:45 AM CET)

Fig. 2: The normalised traffic of YouTube for Germany.

https://www.google.com/transparencyreport/traffic/data/


2

mean=19.0% mean=16.9% mean=19.1% mean=21.8% mean=16.9% mean=16.3%

mean=16.1% mean=15.6% mean=14.0% mean=16.7% mean=15.5% mean=16.1%

mean=16.0% mean=14.4% mean=16.0% mean=14.9% mean=16.7% mean=17.8%

mean=16.0% mean=13.4% mean=16.4% mean=22.7% mean=15.3% mean=17.0%

Fig. 3: A histogram summary of the CPU utilisation of 24 virtual machines from the Google data trace2.

many between June 30 and September 3, 2017. As can be
easily seen, at a micro scale, the data centre workload behaved
as a random process whereas at a macro scale, the pattern is
almost deterministic. Similarly, Fig. 2 shows the traffic pattern
of YouTube Germany from April 30 to May 6, 2013. Here,
too, one sees a significant short term fluctuation, but with a
macro scale statistics which can be regarded as a wide-sense
stationary stochastic process. It is also worth noting that the
workloads of the two applications have different statistics as
well as resource utilisation characteristics. Fig. 3 summarises
the resource utilisation statistics (histogram) of 24 of the
32 000 virtual machines which we have analysed for this study.
The virtual machines ran on 12 500 physical servers on a
Google data centre2 for a period slightly exceeding a month in
May 2011. As can be seen in the figure, the resource (CPU)
utilisation fluctuated over time clearly suggesting that it has
to be regarded as a random process or a random variable.

We assert that the short and long term statistics of co-located
services can be employed to consolidate servers at runtime, so
as to achieve high energy efficiency in data centres. The short-
term behaviour enables to model the workload of a service as
a random variable whilst the long-term pattern can be used
to determine the probability density function of the work-
load. Furthermore, the convolution of the density functions of
multiple services provides insight into the resource utilisation
characteristics when these services are scheduled to execute
on one and the same platform. In other words, the outcome
of a convolution is sufficient to predict the extent of overload
during service consolidation.

In this paper we propose a service consolidation strategy by
extending the Cutting Stock Problem (bin-packing problem)
for stochastic workloads. Originally proposed for the econom-
ical use of material at the cutting stage [8], the strategy has
found a wide range of applications dealing with assortment
problems. The prevailing idea is that given a set S of n
services, to generate m ≤ n disjoint subsets, so that the
services in a subset can be executed simultaneously on one and
the same platform without actually exceeding the maximum
computing capacity of the platform.

2https://github.com/google/cluster-data

We summarise the contribution of this paper as follows:
• To the best of our knowledge ours is the first to apply the

cutting stock problem for stochastic, arbitrary workloads.
• We determine, both analytically and experimentally, the

conditions in which a deterministic and a probabilistic
cutting stock problem (CSP) yield comparable perfor-
mance.

• We verify the scope and usefulness of our approach
with practical experiments. By employing actual resource
utilisation traces of more than 32 thousand virtual ma-
chines from a Google data centre to generate realistic
workload for 29 different benchmarks, we compare the
performance of our approach with the performance of
four baseline schedulers: the Linux scheduler, a random
scheduler, a scheduler proposed in [9], and a deterministic
CSP scheduler, by defining different performance and
execution metrics.

The rest of the paper is organised as follow: In Section II,
we discuss related work and in Section III, we put in place
the background of our work. Section IV describes the extended
CSP which is proposed to consolidate services having stochas-
tic workloads. Section V describes the experimental set-up for
the evaluation of our approach. The evaluation itself is given
in Section VI. Finally, Section VII gives concluding remarks.

II. RELATED WORK

Tailoring the available computing resources (such as the
number of CPUs) to the amount of anticipated workloads in
data centres and large-scale server clusters to manage a large
number of virtual machines (VMs) is an ongoing research area
[10]–[13].

Yi et al. [14] propose a new cloud-based computing
paradigm named Cocoa. The basic idea is to organise different
jobs with complementary resource demands into groups so that
they can be allocated to group buying deals as pre-defined
by cloud providers, in order to be executed in virtualised
containers accordingly. The major challenge, of course, is
to identify appropriate job groups based on their expected
resource demands. In this paper, the initial static group or-
ganisation is modelled as a variable-sized vector bin-packing

https://github.com/google/cluster-data


3

problem, whilst the subsequent dynamic group organisation
problem is represented as an online multidimensional knap-
sack problem. The effective combination and interaction of
both phases enables significant performance improvements
during workload consolidation. This is confirmed by the de-
tailed simulation-based evaluation that considers the different
strategies, compares them with existing approaches, and also
provides interesting different viewpoints, for example, from
the perspective of the end user versus the perspective of the
cloud provider. In our work, we employ a different optimisa-
tion approach that can be applied in real time more readily,
with the goal to validate it based on a real implementation
rather than a simulation.

Yu et al. [15] define a probabilistic threshold of exceeding
the capacity of a server in a cloud environment hosting a large
number of VMs. If this threshold is crossed, the server is
labelled as a “hotspot”. Subsequently, they order the hotspots
by decreasing overload risk. Then, the authors go through each
hotspot, starting with the server with the highest overload risk.
The VMs on each server are sorted as well as grouped by
a decreasing metric describing the potential of reducing the
server’s overload risk. Finally, the VMs from the group with
the highest potential but lowest migration cost are migrated
until the server is no longer a hotspot. Similar to our approach,
the authors adopt assigning a “capacity exceeding probability”
in their algorithm. Furthermore, they propose a modified First
Fit Decreasing (FFD) algorithm in order to load balance the
workload from the hotspots. However, they focus only on
overloaded servers as a result of which the algorithm optimises
only locally, whereas we strive to find a global near-optimum
solution. Additionally, we investigate the influence of the
probability threshold on the power consumption as well as
the performance.

Beloglazov and Buyya [16] consider VM consolidation
consisting of three subtasks: (1) the detection of overloaded
and underutilised servers, (2) the selection of candidate VMs
for migration, and (3) the identification of target servers to
which VMs can be migrated. As heuristic for overloaded and
underutilised servers they use thresholds based on the statis-
tical analysis of historical, real workload traces of the CPU
utilisation. Thus, in (1), the threshold of overload situation is
adaptively defined by the median of the absolute deviations
from the median of the data set. For underutilised situations
the difference of the first and third quartiles of CPU utilisation
is considered. In (2), the future CPU utilisation is estimated
by the previous observation via a local regression method.
For identifying VMs for migration they investigate three
algorithms. In the first, the VMs with the shortest migration
time are chosen. In the second, a high correlation of the
CPU utilisation signalises the source VMs. The third algorithm
chooses VMs randomly. Finally in (3), the VM consolidation
is described as a CSP with CPU utilisation as item length and
power consumption as costs. All three subtasks are evaluated
using the CloudSim simulation framework3 considering more
then 1000 VMs having only a single core assigned to each. The
authors report that the combination of the regression and the

3https://code.google.com/p/cloudsim/

minimum migration time approaches produces the best results
when both energy saving and minimisation of Service Level
Agreement (SLA) violation are considered at the same time.
The combination of the fixed threshold overloading heuristic
with the minimum migration time produces the highest energy
saving but at the price of higher SLA violations. The experi-
ment of Beloglazov and Buyya [16] is based on real workload
traces including the fluctuations of the VM. The evaluation
itself is, nevertheless, performed in a simulator, whereas we
validate our concept by real measurements. Moreover, our
approach endeavours to assign as many jobs as possible to
a single core in order to avoid underutilisation at a core level
whilst here a single job is assigned to a core.

In contrast to [16], Verma et al. [9] assume that there
already exists a mechanism for predicting the optimal resource
consumption of a VM to meet its SLA. Furthermore, they
demand that it is possible to order all servers monotonously
with respect to a global power-efficiency for all services.
Then they order the servers by decreasing energy-efficiency
and the VMs by decreasing optimum resource consumption.
Subsequently, they assign the VMs from the list to the most
energy-efficient server until its capacity is reached. In the
next iteration they assign the remaining VMs from the list
to the second most energy-efficient server and so on until all
VMs are mapped to a server. Indeed, Verma et al. [9] covers
heterogeneous computing resources (e. g. physical machines
(PMs) or cores) with individual power profiles but assume
static resource consumption. Thus, workload with random
resource consumption, as we address in this paper, exceeds
the resource capacity quite often. We make an experimental
comparison with this approach in Section VI.

Xu et al. [17] consider 50 single-core as well as quad-
core VMs on 10 PMs while minimising energy consumption
and avoiding SLA violations. For the latter they include
interference aspects on CPU, network I/O, CPU cache and
memory bandwidth described by a multi-dimensional supply-
demand model. The approach was tested with several static
workloads such as SPEC CPU20064 and netperf5. CPU and
memory intensive workloads could be improved by 16 to 28 %
and network-intensive workloads by 45 to 65 % in comparison
to the strategies in [9]. Even though the proposed approach is
self-sufficient, its interference aspect can be integrated into
existing load balancing strategies.

Eichhorn et al. [18] investigate the power consumption,
throughput and latency of a distributed video streaming server.
They compare four different strategies for workload consol-
idation. First, all nodes are turned on without performing
any migration or load-balancing as reference. Second, still all
nodes are powered up but throughput and latency is improved
by distributing popular videos for optimised network usage.
Third, only nodes are powered on which host currently or
recently demanded videos. Fourth, always powered on nodes
host popular videos, and nodes with predominantly unpopular
videos are turned on on demand while the load of all active
nodes is balanced. None of these strategies yields an optimum

4https://www.spec.org/cpu2006/
5https://hewlettpackard.github.io/netperf/

https://code.google.com/p/cloudsim/
https://www.spec.org/cpu2006/
https://hewlettpackard.github.io/netperf/


4

solution for power consumption, throughput and latency at the
same time. However, the fourth strategy, with the selection of
the appropriate threshold for popularity, can achieve most of
these goals. While this approach yields good results for video
platforms thanks to the prediction techniques employed, these
techniques, nevertheless, are difficult to reuse for arbitrary
workloads.

Homsi et al. [19] take a similar approach as we do. Here,
the expected performance is expressed as an M/M/1 queuing
problem and the service-to-VM assignment uses the FFD
algorithm. However, their approach does not admit arbitrary
workloads because the characteristic of each service must be
one of a predefined set. Furthermore, a service rate determines
the resource consumption. Thus, there is no black-box schedul-
ing based on generic parameters such as the CPU utilisation
possible. By contrast, our approach admits any workload as
well as computing resource. Arroba et al. [20] also use the
FFD algorithm in combination with Dynamic Voltage and
Frequency Scaling (DVFS) [21]. Thus, their solution always
prefers the lowest feasible frequency for each server, since the
power consumption of the server is proportional to the fre-
quency of the CPU. For our case, we disabled DVFS in order
to quantify the merits and demerits of service consolidation in
isolation.

In summary, the proposed approaches are tested with ei-
ther simulation environment, scaled down hardware, or static
benchmarks. Often, the power and energy consumptions are
estimated instead of measured. By contrast, our approach
includes the dynamic fluctuations of resource consumption and
is performed on a real multi-processor server. In particular,
the inclusion of the resource consumption fluctuations in our
model enables a lower consolidation frequency because it
already considers the aspects which can change at runtime.

III. BACKGROUND

Before we delve into the description of our concept, we shall
discuss some preliminaries concerning the FFD algorithm and
random variables in order to establish a shared understanding.

A. Consolidation with First Fit Decreasing

The prevailing idea is that given a set S of n services,
to generate m ≤ n disjoint subsets S1, . . . Sm, so that the
services in a subset can be executed simultaneously on one
and the same computing platform without actually exceeding
the maximum computing capacity of the platform. As a basic
example, consider Fig. 4. Suppose we have n services each
having a static resource demand (workload) expressed by µi.
We wish to determine the optimal amount of computation
resource for handling the overall workload generated by the n
services. We describe a subset Si of services, named a pattern,
as a binary vector of n elements corresponding to the indices
of services contained in a subset – for example, for the first
two subsets in Fig. 4, we have:

~a1 = (1, 0, 1, . . .)
ᵀ
, ~a2 = (0, 1, 0, 1, 1, . . .)

ᵀ
. (1)

A feasible pattern ~ai is defined by a subset Si of services
the collective resource consumption of which does not exceed

Fig. 4: Given a set S of n services, each service having a resource demand
of µi, the CSP aims to generate m disjoint subsets, so that the services in
a subset form a pattern and can be executed simultaneously on one and the
same platform.

the available capacity of the node on which they are executed
simultaneously. If each unit computing node (for example, a
single processor core or a unit server) has a maximum capacity
of C and the workload µi requires a portion of C, then the
overall resource consumption of the entire subset should not
exceed C or should exceed only by a margin foreseen in an
SLA. In this sense, a feasibility criterion describes whether a
pattern is feasible or not:∑

k∈Si

µk ≤ C. (2)

Hence, the set A of all feasible patterns for a consolidation
assignment can be described by

A =
{
a ∈ Bn|~aᵀ~µ ≤ C

}
(3)

where ~µ = (µ1, µ2, . . . , µn)
ᵀ is a vector containing the

resource demands of all the services to be consolidated.6 In
order to ensure that the computing node is not overloaded
during consolidation, the capacity C can be replaced by an
effective capacity c < C.

Solving the CSP for obtaining an exact, optimal solution is
NP-hard [22]. Nevertheless, there are models and algorithms
which can yield the optimal solution even for a large number of
services, but they require integral input parameters [23]–[25].
Unfortunately, scaling real numbers to integral values is not
simple and often leads to large numbers. Hence, for an efficient
and fast service consolidation, the most feasible approach is
employing an approximation of the optimal solution. One
of these is the FFD algorithm, which yields a near optimal
solution [26], [27].

It is carried out in three steps:
1) Sort all services in S according to their mean resource

utilisation in decreasing order.
2) Initialise an empty pattern ~a1.
3) For each service si ∈ S, find the lowest-indexed pattern

~ak, such that service si can be added to ~ak without
violating a feasibility condition. If such a pattern does
not exist, generate a new (empty) pattern and assign
service si to it.

The FFD first sorts the services according to their expected
resource utilisation, in a decreasing order. As a second step, it

6The CSP is solvable if and only if µi ≤ C,∀i. If this is not the case, then
there is no point assigning this task to a single computing node.



5

creates the first subset (pattern ~a1 = (0, . . . , 0)ᵀ) and assigns
the first service to it. If the resource demand of the second
service still fits into the first subset, it assigns the second
service to the first subset, otherwise, it creates a new subset
(pattern ~a2). If the resource demand of the third service fits into
the first subset, it assigns the third service to the first subset,
otherwise, it tries the second subset. If both subsets cannot
accommodate the third service, it creates a new subset (pattern
~a3), and so on. The detailed implementation of the FFD
algorithm including the assignment of patterns to a computing
node is given in Algorithm 1.

Algorithm 1 CSP by First Fit Decreasing (FFD)

Input: set of all services S
1: Sort all services S according to non-increasing mean

values, i. e. µ1 ≥ µ2 ≥ · · · ≥ µn.
2: Initialise an empty pattern ~a1.
3: for all service si ∈ S do
4: for k = 1 to number of current initialised patterns do
5: if < feasibility criterion > then
6: Add i to pattern ~ak.
7: Assign service si to core k.
8: break
9: end if

10: end for
11: if service si is not assigned yet then
12: Initialise a new empty pattern ~ak+1.
13: Add i to pattern ~ak+1.
14: Assign service si to core k + 1.
15: end if
16: end for

B. Workload as random variable

Since the resource utilisation of a service at any instance
of time may not be known except in a probabilistic sense, we
model services by the statistics of their resource consumption
characteristics. In other words, we regard them as random
variables. We use boldface (for example, u) to express a
random variable. The probability that the utilisation of the
random variable u is below or equal to a certain real value u
is expressed by the cumulative distribution function: F (u) =
P {u ≤ u} ≥ 0. Likewise, the probability that the random
variable u will have a value between (u, u+ du) is given by
the probability density function (pdf): f(u) = d/ du F (u).
If we have either the distribution or the density function,
then we have sufficient information to characterise a random
variable. Two of the properties of a random variable which
can be determined by either of these functions and have great
statistical significance are the mean (µ) and the variance (σ2).
The variance, in particular, expresses the uncertainty, for our
context, about the resource utilisation of the service. The
bigger the variance, the bigger is the uncertainty.

If we schedule two or more services to share a single
computing node (for example, a processor core), their overall
resource utilisation should likewise be characterised as a
random variable. To demonstrate this: Suppose the resource

0 50 100

≈8.2 %

ov
er

lo
ad

CPU utilisation [%]

pr
ob

ab
ili

ty
de

ns
ity

Service s1
f1 = N (µ1 = 45,σ2

1 = 225)

Service s2
f2 = N (µ2 = 30,σ2

2 = 100)

Consolidated
f = N (µ1 + µ2,σ2

1 + σ2
2)

Fig. 5: The execution of two services with normally distributed resource
utilisation characteristics. The shaded area demonstrates the probability of
exceeding the maximum capacity of the processor.

utilisation characteristics of service s1 and s2 can be described
by u1 and u2, respectively. Suppose also at any instance of
time service s1 utilises 12 percent of the CPU cycles with a
probability of 0.2 and 30 percent with a probability of 0.8.
Similarly, service s2 utilises 10 percent of the CPU cycles
with a probability of 0.6 and 50 percent with a probability
of 0.4. Now if we observe the CPU load for 1 second, how
does the CPU utilisation look like? Since the overall CPU
utilisation is the summation of two random variables, we have:
u = u1 + u2. This will yield four different outcomes with
different probabilities: 12 % + 10 % = 22 % (P = 0.12),
12 % + 50 % = 62 % (P = 0.08), 30 % + 10 % = 40 %
(P = 0.48), or 30 % + 50 % = 80 % (P = 0.32). Thus, the
overall CPU utilisation has its own probability distribution. If
the resource utilisation of the two services is continuous, the
probability distribution of the overall CPU utilisation is also
continuous and is determined by the convolution operation:

f(u) =

∫
f1(α) · f2(u− α) dα (4)

where f(u) is the pdf of the overall CPU utilisation, f1(u)
and f2(u) are the pdfs associated with the utilisations of the
first and the second service, respectively.

Often, the convolution operation is computation intensive
when a large number of services is involved. An exception
to this is when the pdfs of the individual services assume
Gaussian or normal distribution, even though each service may
have a different mean and variance. In this case, the overall
resource utilisation is also normally distributed with mean and
variance as the summations of the means and variances of the
k individual services7:

µ =

k∑
i=1

µi, σ2 =

k∑
i=1

σ2
i

Fig. 5 displays the pdf of the CPU utilisation when two
services both having normal pdfs are simultaneously executed
on one and the same processor. In the subsequent subsections
we assume that the resource utilisation statistics of individual
services (virtual machines) which we wish to consolidate can
be approximated by the normal distribution. This is a common
approach [29][30] and warrantable for the Google data trace
[15].

7Note that f(u) converges to be normal distribution even if the densities of
the individual services are not normal. This is in accordance with the Central
Limit Theorem [28].



6

IV. EXTENDED FIRST FIT DECREASING

The FFD algorithm from Section III-A takes neither the
individual nor the aggregate variance into account when ser-
vices are assigned to a computing node (i.e., to one of the
disjoint subsets). As a result, a consolidation assignment may
result in both underutilisation and overloading situations. In
order to account for these conditions, we propose to examine
the density of the overall resource utilisation and denote this
variant of the CSP as cutting stock problem with nondetermin-
istic item lengths (ND-CSP). The feasibility criterion during
consolidation for this variant is expressed as:

P {u > C} =
∫ ∞
C

f(u) du ≤ ε (5)

where u is the overall resource utilisation of an entire subset
modelled as a random variable, f(u) is its density function,
and ε is the maximum exceeding probability (MEP) which
depends on the Quality of Service (QoS) that should be
achieved8. The MEP describes the theoretical probability of
exceeding the computing node’s capacity within a tolerable
limit. The bigger ε is the more services can feasibly be
consolidated on one platform and, thus, the less computation
resources are necessary. A higher overload probability, on the
other hand, degrades the QoS. Hence, the MEP is a trade-off
between reducing the amount of computing resources and the
QoS in order to fulfil an SLA.

Fig. 5 demonstrates the feasibility criterion with the re-
source consumption characteristics of two normally distributed
services. The consolidation of s1 and s2 is feasible as long as
the MEP satisfies ε & 8.2 %.

With the maximum exceeding (overloading) probability (5)
set in place, it is now possible to modify Equation (3) for the
set A of all feasible patterns as follows:

A =
{
a ∈ Bn|P {~aᵀ~u > C} ≤ ε

}
(6)

where ~u = (u1,u2, . . . ,un)
ᵀ is a vector describing the

collective resource demand of all services. As described in
the section before, the overall resource utilisation of services
simultaneously executing on one and the same node after a
consolidation, i.e., u = ~aᵀ~u, will be normally distributed with
a pdf: f(u) = N (~aᵀ~µ,~aᵀ~σ2). The vectors ~µ = (µ1, . . . , µn)

ᵀ

and ~σ2 = (σ2
1 , . . . , σ

2
n) contain the means and variances,

respectively, corresponding to the resource demand of all the
services. However, Equation (5) still contains an integration
which is often compute intensive. Instead, it is preferable to
employ the quantile qε which can be defined by a random
variable x with a pdf f(x) = N (0, 1):

P {x ≤ qε} = 1− ε. (7)

Note that the values of qε are tabulated for ordinary choices
of ε (“error function”). If these values can be rounded down
by accepting a reasonable amount of error, then the equality

8The ND-CSP is solvable if and only if P{ui > C} ≤ ε, ∀i. If this is
not the case, then there is no point assigning this task to a single computing
node without violating the feasibility criterion.

sign in (7) can be replaced by ≤, which still yields feasible
patterns. Consequently, (6) can be simplified into:

A =
{
a ∈ Bn|~aᵀ~µ+ qε ·

√
~aᵀ~σ2 ≤ C

}
(8)

Thus, the feasibility criterion of potential candidates for a
consolidation task can be determined by simply summing up
the means and variances of these candidates.

V. EXPERIMENTAL SET-UP

A. Benchmarks

We selected 29 benchmarks from the Mälardalen WCET
research group [31] as candidate services for a consolidation
assignment in a 16-core server. The consolidation assignment
is determining the number of physical cores required in order
to handle the workload of the services being consolidated,
so that all idle cores can be put to a low power mode. Our
choice of the benchmarks took into account the workload
they generated and the diversity of their application logic.
Nevertheless, the execution durations of these benchmarks
were typically less than 1 ms. Therefore, we modified them, so
that their execution durations can last several minutes and their
resource consumption statistics can obey an underlying density
function. In order to determine the resource utilisation charac-
teristics (i.e., workload statistics), we relied on the execution
traces of more than 32 000 real-world virtual machines which
we obtained from a Google data centre2. The trace consisted
of, among other things, the CPU utilisation of the virtual
machines. Some exemplary CPU consumption characteristics
are shown in Fig. 3. Using the traces, we computed the
mean µi and variances σ2

i for all the virtual machines in
order to select the first 100 traces which exhibited the highest
variances in their CPU utilisation. Then we determined the
execution patterns of the 100 virtual machines, so that their
CPU utilisation reflected the statistics of the 29 benchmarks.
Hence, with the 29 benchmarks and 100 workload statistics,
we had altogether 2900 services to select for our experiment.

B. Measurement

Our experiment ran on a system with four sockets, each
socket hosting an Intel Xeon E5-4603 quad-core. We disabled
the HyperThreading in order to bind to physical cores only.
The system had an active memory of 64 GB installed in
NUMA-architecture and Ubuntu Server9 (v. 16.04) as its
operating system. With the 16 physical cores (each having
a maximum capacity C = 100 %), we tested our extended
algorithm to consolidate randomly selected n = 5, 10, 15, 20,
25 and 30 services having arbitrary execution characteristics
(statistics). We compared our algorithm with four different
scheduling algorithms. The first algorithm is the classical FFD
which takes the mean resource utilisation of the consolidated
services into account (Section III-A). This algorithm (which
we label as meanCSP) was tested for different effective core
capacities, namely, c = 50, 70 and 90 %. The second algorithm
does a random service-to-core assignment where each service
is pinned to one randomly chosen core. Hence, once assigned

9https://www.ubuntu.com/download/server



7

to a core, the services were not migrated between cores.
The third algorithm is the one proposed by Verma et al. [9]
(labelled as Verma2008) and discussed in detail in Section II.
We implemented and fully integrated this algorithm with our
system. Our choice was influenced by the completeness of the
description of the algorithm for implementation. Finally, we
employed the default Linux scheduler which aims to balance
the load of cores by migrating services during runtime. For
our algorithm (labelled as ND-CSP), we considered different
MEPs, namely, ε = 0.05, 0.1, 0.25 and 0.4. In order to avoid
single best and worst case examples, we generated 10 instances
for each consolidation. Altogether, we had 600 scenarios, each
scenario (experiment) lasting 10 min. Algorithm 2 summarises
our experiment setup.

Algorithm 2 Measurement of services with normally dis-
tributed CPU utilisation. Each acquisition took 10 min while
the CPU utilisation of each core as well as the overall power
consumption were logged.

1: Acquisition of idling system.
2: for all n ∈ {5, 10, 15, 20, 25, 30} do
3: for instance = 1 to 10 do
4: Instantiate n randomly chosen services.
5: Acquisition of the services managed by the Linux

scheduler.
6: Acquisition with services randomly assigned to cores.
7: Acquisition with services assigned to cores according

to Verma et al. [9].
8: for all c ∈ {0.5, 0.7, 0.9} do
9: Acquisition with services assigned to cores accord-

ing to meanCSP with effective capacity c.
10: end for
11: for all ε ∈ {0.05, 0.1, 0.25, 0.4} do
12: Acquisition with services assigned to cores accord-

ing to ND-CSP with MEP ε.
13: end for
14: end for
15: end for

We employed the YOKOGAWA WT210 digital power anal-
yser at a rate of approximately 10 Hz in order to measure
the overall power consumption of the server. We extracted
the average idle power consumption – (187.5± 6.2) W – of
the system before we carried out our analysis. We employed
DSTAT10 at a rate of 1 Hz in order to log the CPU utilisation
of the entire system.

VI. EVALUATION

For each of the 600 scenarios, we extracted the maximum
core overload probability from all cores, the average job
completion time (JCT), and the average power consumption.
Then we averaged each of these three values for all the 10
instances and used them along with their standard deviations
for comparison purpose.

10http://dag.wiee.rs/home-made/dstat/

5 10 15 20 25 30

50

100

number of services n

p
[W

]

Linux scheduler random Verma2008

Fig. 6: Comparison of the average power consumption p for the Linux
scheduler (all cores active), the random service-to-core assignment (unused
cores disabled), and the algorithm proposed by Verma et al. [9] (Verma2008).

A. Power Consumption

Fig. 6 compares the change in the power consumption
of our server as the number of executed services increases.
Three scheduling strategies are used for the comparison,
namely, the Linux scheduler, the random-to-core assignment,
and Verma2008. As can be seen, the power consumption of
the server was fairly invariable and the largest under the Linux
scheduler. Therefore, we shall not refer to it in the subsequent
analysis.

In Fig. 7 the power consumption of the server is plot-
ted against the effective capacity c (for meanCSP) and ε
(for ND-CSP). Since Verma2008 and random are indepen-
dent of these parameters, the power consumptions for these
two schedulers are drawn as horizontal lines. On average,
Verma2008 performed better than ours, but the difference is
not appreciable. The random scheduler, on the other hand,
resulted in a relatively larger power consumption in all the
configurations. In this figure, the parameters c and ε are not
yet correlated. Thus the meanCSP and the ND-CSP strategy
cannot be directly compared with one another in terms of their
performance. Nevertheless, it can be observed that for some
parameter values their power consumptions are lower than the
power consumptions of the other two scheduling algorithms.
In other words, the CSP as a service consolidation strategy can
indeed be applied in order to reduce the power consumption
of the server.

An interesting aspect to investigate is the trade-off between
the power consumption and the performance of the server
during service consolidation. One of the performance metrics
from the service provider point of view is the JCT which is a
direct consequence of the core overload probability. In order
to determine how much of the total capacity we should reserve
in order to accommodate the fluctuation of workloads (in other
words, in order to minimise the exceeding probability), it is
possible to correlate the MEP ε in ND-CSP with the effective
capacity c in meanCSP. This can be achieved by aligning these
parameters to a common criterion, namely, the same power
consumption. Therefore, we approximated the dependency of
the power consumption p of both CSP strategies on their
parameters by a linear regression.

pmeanCSP(c) = ameanCSP · c+ bmeanCSP (9)
pND-CSP(ε) = aND-CSP · ε+ bND-CSP (10)

http://dag.wiee.rs/home-made/dstat/


8

15

20

25

30

p
[W

]

n = 5 n = 10

30

35

40

45

p
[W

]

n = 15 n = 20

0.
05 0.

1

0.
25 0.

4

45

50

55

60

MEP ε

p
[W

]

n = 25

0.
05 0.

1

0.
25 0.

4

MEP ε

n = 30

random Verma2008 ND-CSP meanCSP

0.
5

0.
7

0.
9

effective capacity c

0.
5

0.
7

0.
9

25

30

35

40

effective capacity c

p
[W

]

40

45

50

55

p
[W

]
50

55

60

65

p
[W

]

Fig. 7: Comparison of the average power consumption p. Blue squares of the
ND-CSP belong to the lower x axis of the maximum exceeding probability
(MEP) ε and the green diamonds of the meanCSP belong to the upper x axis
of the effective capacity c. Both ε and c are uncorrelated.

By seeking equality of the two expressions, we get ε̃ which
corresponds to the effective capacity c.

pmeanCSP(c)
!
= pND-CSP(ε̃(c)) ⇐⇒ (11)

ε̃(c) =
ameanCSP · c+ bmeanCSP − bND-CSP

aND-CSP
(12)

As a result, we can compare the maximum core overload
probability and the JCT of the two strategies when consuming
the same amount of power. This approach has an additional
significance: When executable services have static workloads,
the meanCSP yields a near optimal consolidation solution in
terms of reducing the power consumption of the server. By
identifying the point where ND-CSP achieves a comparable
reduction of the power consumption, it is possible to define
ε, so that ND-CSP can be used to schedule services with
stochastic workloads.

Table I and II summarise the normalised power consumption
of the meanCSP and ND-CSP. Compared to the Linux sched-
uler, these two schedulers reduced the power consumption of
the server by more than 61 %. By contrast, they increased the
power consumption by about 5 % compared to Verma2008.
But this increase is negligible considering the relatively high
penalty the latter introduced on the JCT.

B. Maximum Core Overload Probability

Fig. 8 displays the relationship between the maximum
core overload probability (c.o.p.) and the MEP for different
numbers of consolidated services under the condition that the

Table I: The relative power consumption of the meanCSP strategy averaged
for all numbers of jobs n.

reference c = 0.5 c = 0.7 c = 0.9

Linux scheduler 38.0% 36.0% 35.9%
random 88.5% 84.7% 84.6%

Verma2008 105.9% 101.3% 101.2%

Table II: The relative power consumption of the ND-CSP strategy averaged
for all numbers of jobs n.

reference ε = 0.05 ε = 0.1 ε = 0.25 ε = 0.4

Linux scheduler 38.2% 37.6% 35.9% 35.9%
random 89.0% 87.8% 84.3% 84.7%

Verma2008 106.5% 105.0% 100.8% 101.3%

meanCSP and ND-CSP consumed equal amount of power
when these parameters were used during service consolidation.
The horizontal lines display the core overload probability for
the other schedulers as these are not dependent of c and ε.
The shaded regions indicate the standard deviations. Since
the Linux scheduler aims for achieving the best performance
instead of energy-efficiency, it yielded the least maximum core
overload probability of 2 %. By contrast, the random scheduler
yielded the largest core overload probability.

Furthermore, from Fig. 8, it was possible to establish a
correlation between the theoretical ε and the practical core
overload probability, even though exact equating could not be
made, since only the maximum core overload probability is
shown.

C. Job Completion Time

Fig. 9 can be taken as a justification for service consoli-
dation. In the underlying experiment, we varied the number
of simultaneously executing services from 5 to 30, at 30, the
server already reaching its maximum capacity. Even though
there was a considerable difference in the JCT of the different
scheduling strategies, the JCT of each strategy, however,
remained, by and large, invariable as we varied the number of
executed services. An exception to this is Verma2008, which
resulted in the worst JCT.

Fig. 10 displays how the JCT of each scheduling strategy
changed as we varied the configuration parameters for different
amount of executed services. Understandably, apart from the
CSP strategies, all the rest were not responsive to the change in
c and ε. The Linux scheduler and the random scheduler were
always competitive in their performance, since both of them
did not set resource utilisation as their prior goal and achieved
relatively short JCT. However, the figure demonstrates that by
choosing the appropriate effective capacity and the MEP, it
is possible to achieve a competitive or even shorter JCT with
both CSP strategies. By contrast, Verma2008 performed the
worst in all the configurations for want of taking into account
the time-varying nature of incoming workloads.

Tables III and IV summarise the normalised JCT of the
CSP schedulers. Compared to Verma2008, both schedulers
improved the JCT by up to 58 % whereas for ε ≤ 0.1
our scheduler was competitive with the random scheduler
and better than the Linux scheduler clearly demonstrating



9

0

20

40

60
m

ax
.c

.o
.p

.[
%

] n = 5 n = 10

0

20

40

60

m
ax

.c
.o

.p
.[

%
] n = 15 n = 20

0 0.2 0.4
0

20

40

60

MEP ε, ε̃(c)

m
ax

.c
.o

.p
.[

%
] n = 25

0 0.2 0.4
MEP ε, ε̃(c)

n = 30

Linux scheduler random Verma2008
ND-CSP aligned meanCSP

Fig. 8: Comparison of the maximum core overload probability (c.o.p.) for
different number of jobs, n. The meanCSP and the CSP strategies are aligned
to a common power consumption.

5 10 15 20 25 30

400

600

number of services n

av
er

ag
e

jo
b

co
m

pl
et

io
n

tim
e

[m
s]

Linux scheduler random
Verma2008 ND-CSP (ε = 0.05)
meanCSP (c = 0.5) ND-CSP (ε = 0.1)
meanCSP (c = 0.7) ND-CSP (ε = 0.25)
meanCSP (c = 0.9) ND-CSP (ε = 0.4)

Fig. 9: The job completion time of services with normally distributed
workload. The job completion time does not monotonously increase whilst
more services are executed between n = 10 to 25.

that over-provisioning of resources does not necessarily yield
performance improvement.

D. Exponential Workload

As described in Section III, the ND-CSP approximates the
resource utilisation statistics of the consolidated services by
a normal distribution. In Fig. 11 it can be seen how this
approach performs when the services have different resource
utilisation statistics (for our case, they had exponentially
distributed resource consumptions). From the figure it can
be construed that the observation we made with the previous
figures for the normal distribution can also be repeated here,

300

400

500

600

JC
T

[m
s]

n = 5 n = 10

300

400

500

600

JC
T

[m
s]

n = 15 n = 20

0 0.2 0.4

300

400

500

600

MEP ε, ε̃(c)

JC
T

[m
s]

n = 25

0 0.2 0.4
MEP ε, ε̃(c)

n = 30

Linux scheduler random Verma2008
ND-CSP aligned meanCSP

Fig. 10: Comparison of the job completion time (JCT) for the different
numbers of jobs n. The meanCSP and the ND-CSP strategies are aligned
to a common power consumption.

Table III: Relative JCT of the meanCSP strategy averaged for all numbers of
jobs n.

reference c = 0.5 c = 0.7 c = 0.9

Linux scheduler 94.1% 115.1% 155.2%
random 96.8% 117.9% 158.1%

Verma2008 41.9% 51.2% 68.4%

almost value by value. Consequently, the ND-CSP strategy,
which approximates every workload characteristic by a normal
distribution, can be used for services having non-Gaussian
resource utilisation statistics as well. The implication of this
observation is that taking only the means and variances of
consolidated services into account is sufficient for employing
ND-CSP (i.e., it is not necessary to perform convolution in
order to determine the overall resource utilisation density).

VII. CONCLUSION

In this paper we introduced an extension of the FFD
algorithm to consolidate services with stochastic workloads
and experimentally validated the algorithm by employing real-
world workload (CPU utilisation) traces which we obtained
from a Google data centre hosting more than 32 000 virtual
machines. We compared the performance of our algorithm
with four existing consolidation and scheduling strategies.

Table IV: Relative JCT of the ND-CSP strategy averaged for all numbers of
jobs n.

reference ε = 0.05 ε = 0.1 ε = 0.25 ε = 0.4

Linux scheduler 91.1% 98.3% 118.8% 151.3%
random 93.7% 101.0% 121.8% 154.3%

Verma2008 40.6% 43.7% 52.8% 67.1%



REFERENCES 10

0

10

20

30

m
ax

.c
.o

.p
.[

%
] n = 10

150

200

250

300

JC
T

[m
s]

n = 10

0

10

20

30

m
ax

.c
.o

.p
.[

%
] n = 20

200

250

300

JC
T

[m
s]

n = 20

0 0.2 0.4
0

10

20

30

MEP ε, ε̃(c)

m
ax

.c
.o

.p
.[

%
] n = 30

0 0.2 0.4
150

200

250

300

MEP ε, ε̃(c)

JC
T

[m
s]

n = 30

Linux scheduler random Verma2008
ND-CSP aligned meanCSP

Fig. 11: Comparison of the maximum core overload probability (c.o.p.) and the
job completion time (JCT) for the exemplary number of jobs n when services’
resource consumptions are exponentially (instead of normally) distributed.
The meanCSP and the ND-CSP strategies are aligned to a common power
consumption.

Our algorithm takes the overall resource utilisation statistics
to compute the maximum exceeding (overload) probability
during consolidation. Interestingly, our approach was also
useful to identify the effective capacity of a computing node,
so that a deterministic FFD can yield a comparative result.
In other words, by determining the effective capacity during
consolidation, only the expected resource utilisation of the
services being computed suffices to carry out a consolidation
with FFD without suffering from or introducing an overloading
condition.

We employed a 16-core multi-socket system for our ex-
periment. The system served well to consolidate up to 30
services but beyond this number, the effect of overload was
conspicuous. On the other hand, we have observed that our
consolidation strategy and, in general, the CSP performs very
well for a large number of services because it is easier to
establish denser patterns with a large number of services
having high variability of workloads. Furthermore, the way the
cores of the server were supplied with power provided us with
little possibility to power down idle cores. Each socket has its
own Phase-Locked Loop (PLL), but individual cores in each
socket could not be powered down separately or operated with
different clock frequencies. As a result, the power efficiency
of the consolidation strategy could be demonstrated only
marginally. Our recommendation to hardware designers is that
every core of a multi-core, multi-socket system should have
a separate PLL and should be physically turned down in
order to guarantee greater flexibility during dynamic power
management.

Our endeavour was invested to optimise the CPU utilisation
of a server, as it is the most critical resource for many execu-
tion assignments and the most power consuming subsystem.
Our approach can be extended to optimise the utilisation of
multiple resources at the same time, such as IO and MEM.
One way would be to extend the so-called First Fit Decreasing
Height [32]. The success of this and similar approaches
depends on, of course, the extent to which the resources can
be regarded, statistically speaking, as independent. Another
possibility is to jointly optimise the energy cost of data centre
networks, as, indeed, some have already started to do so [33].
In future, we aim to closely examine these and similar aspects.

REFERENCES

[1] S. Cisco Inc., Global data center IP traffic from 2012 to 2020,
by data center type (in exabytes per year), Statista 2018, 2018.

[2] S. S. Manvi and G. Krishna Shyam, “Resource management
for Infrastructure as a Service (IaaS) in cloud computing:
A survey,” Journal of Network and Computer Applications,
vol. 41, no. 1, pp. 424–440, 2014.

[3] C. Mobius, W. Dargie, and A. Schill, “Power consump-
tion estimation models for processors, virtual machines, and
servers,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 25, no. 6, pp. 1600–1614, 2014.

[4] W. Dargie, “A stochastic model for estimating the power con-
sumption of a processor,” IEEE Transactions on Computers,
vol. 64, no. 5, pp. 1311–1322, 2015.

[5] F. Zhang et al., “Evolutionary scheduling of dynamic mul-
titasking workloads for big-data analytics in elastic cloud,”
IEEE Transactions on Emerging Topics in Computing, vol. 2,
no. 3, pp. 338–351, 2014.

[6] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. Netto, and
R. Buyya, “Big data computing and clouds: Trends and future
directions,” Journal of Parallel and Distributed Computing,
vol. 79, pp. 3–15, 2015.

[7] K. Kambatla, G. Kollias, V. Kumar, and A. Grama, “Trends
in big data analytics,” Journal of Parallel and Distributed
Computing, vol. 74, no. 7, pp. 2561–2573, 2014.

[8] L. V. Kantorovich, “Mathematical Methods of Organizing and
Planning Production,” Leningrad State University, 1939.

[9] A. Verma, P. Ahuja, and A. Neogi, “pMapper: Power and
migration cost aware application placement in virtualized sys-
tems,” Lecture Notes in Computer Science, vol. 5346 LNCS,
2008, pp. 243–264.

[10] L. Grigoriu and D. K. Friesen, “Approximation for scheduling
on uniform nonsimultaneous parallel machines,” Journal of
Scheduling, pp. 1–8, 2016.

[11] S. G. Kim, H. Eom, and H. Y. Yeom, “Virtual machine
consolidation based on interference modeling,” The Journal
of Supercomputing, vol. 66, no. 3, pp. 1489–1506, 2013.

[12] A. Forestiero, C. Mastroianni, M. Meo, G. Papuzzo, and M.
Sheikhalishahi, “Hierarchical Approach for Efficient Workload
Management in Geo-Distributed Data Centers,” IEEE Trans-
actions on Green Communications and Networking, vol. 1,
no. 1, pp. 97–111, 2017.

[13] R. W. Ahmad et al., “A survey on virtual machine migration
and server consolidation frameworks for cloud data centers,”
Journal of Network and Computer Applications, vol. 52,
pp. 11–25, 2015.

[14] X. Yi, F. Liu, D. Niu, H. Jin, and J. Lui, “Cocoa: Dynamic
container-based group buying strategies for cloud computing,”
ACM Transactions on Modeling and Performance Evaluation
of Computing Systems (TOMPECS), vol. 2, no. 2, p. 8, 2017.

[15] L. Yu et al., “Stochastic Load Balancing for Virtual Resource
Management in Datacenters,” IEEE Transactions on Cloud
Computing, vol. PP, no. 99, pp. 1–1, 2016.



11

[16] A. Beloglazov and R. Buyya, “Optimal online deterministic
algorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in Cloud
data centers,” Concurrency Computation Practice and Expe-
rience, vol. 24, 2012, pp. 1397–1420. arXiv: 1006.0308.

[17] F. Xu et al., “iAware: Making live migration of virtual ma-
chines interference-aware in the cloud,” IEEE Transactions on
Computers, vol. 63, 2014, pp. 3012–3025.

[18] F. Eichhorn, W. Dargie, C. Möbius, and K. Rybina, “HAE-
Cubie: A Highly Adaptive and Energy-Efficient Computing
Demonstrator,” 24th International Conference on Computer
Communications and Networks (ICCCN 2015), 2015.

[19] S. Homsi et al., “Workload consolidation for cloud data
centers with guaranteed QoS using request reneging,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28,
no. 7, pp. 2103–2116, 2017.

[20] P. Arroba, J. M. Moya, J. L. Ayala, and R. Buyya, “Dynamic
Voltage and Frequency Scaling-aware dynamic consolidation
of virtual machines for energy efficient cloud data centers,”
Concurrency and Computation: Practice and Experience,
vol. 29, no. 10, 2017.

[21] W. Dargie, “Analysis of the power consumption of a multime-
dia server under different DVFS policies,” Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on, IEEE,
2012, pp. 779–785.

[22] M. R. Garey and D. S. Johnson, “’Strong’ NP-Completeness
Results: Motivation, Examples, and Implications,” Journal of
the ACM, vol. 25, no. 3, pp. 499–508, 1978.

[23] M. Delorme, M. Iori, and S. Martello, “Bin packing and
cutting stock problems: Mathematical models and exact algo-
rithms,” European Journal of Operational Research, vol. 255,
no. 1, pp. 1–20, 2016.

[24] J. M.V. V. de Carvalho, “LP models for bin packing and cutting
stock problems,” European Journal of Operational Research,
vol. 141, no. 2, pp. 253–273, 2002.

[25] J. Martinovic, G. Scheithauer, and J. M.V. V. de Carvalho,
“A Comparative Study of the Arcflow Model and the One-
Cut Model for one-dimensional Cutting Stock Problems,”
European Journal of Operational Research, vol. 266, no. 2,
pp. 458–471, 2018.

[26] G. Dósa, R. Li, X. Han, and Z. Tuza, “Tight absolute bound
for First Fit Decreasing bin-packing: FFD (L) ≤ 11/9 OPT (L)
+ 6/9,” Theoretical Computer Science, vol. 510, pp. 13–61,
2013.

[27] J. Martinovic, M. Hähnel, G. Scheithauer, W. Dargie, and
A. Fischer, “Cutting Stock Problems with Nondeterministic
Item Lengths,” Preprint MATH-NM-04-2017, Technische Uni-
versität Dresden, 2017.

[28] A. Papoulis and S. U. Pillai, Probability, Random Variables,
and Stochastic Processes, 4th ed. McGraw-Hill, 2002.

[29] H. Jin, D. Pan, J. Xu, and N. Pissinou, “Efficient VM place-
ment with multiple deterministic and stochastic resources in
data centers,” IEEE Global Telecommunications Conference
(GLOBECOM), 2012, pp. 2505–2510.

[30] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual
machines with dynamic bandwidth demand in data centers,”
INFOCOM, 2011, pp. 71–75.

[31] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The
mälardalen WCET benchmarks: Past, present and future,”
Open Access Series in Informatics (OASIcs), vol. 15, no. Wcet,
pp. 136–146, 2010.

[32] E. G. Coffman Jr, M. R. Garey, D. S. Johnson, and R. E. Tar-
jan, “Performance bounds for level-oriented two-dimensional
packing algorithms,” SIAM Journal on Computing, vol. 9,
no. 4, pp. 808–826, 1980.

[33] K. Zheng, X. Wang, L. Li, and X. Wang, “Joint power opti-
mization of data center network and servers with correlation
analysis,” INFOCOM, 2014 Proceedings IEEE, IEEE, 2014,
pp. 2598–2606.

Markus Hähnel is a doctoral candidate with the
Chair of Computer Networks at the Technische Uni-
versität Dresden (Germany). He holds MSc degree
(2015) and BSc degree (2013) from the Technis-
che Universität Dresden, both in Physics. His re-
search interest is related to energy-efficient com-
puting and data centres. He can be reached at:
markus.haehnel1@tu-dresden.de.

John Martinovic received his BSc degree and his
MSc degree in mathematics both from Technische
Universität Dresden (Germany), in 2012 and 2014.
He is currently working as a doctoral candidate at
the same university within the fields of discrete op-
timisation and operations research. In particular, his
research focusses on cutting and packing problems
and their applications to wireless communications
and energy-efficient computing. He can be reached
at: john.martinovic@tu-dresden.de.

Guntram Scheithauer obtained his PhD in math-
ematics from Technische Universität Dresden (Ger-
many) in 1983, and has been working as a research
associate at the Institute of Numerical Mathemat-
ics since the same year. His research interest is
related to discrete and combinatorial optimisation,
particularly to the theory and applications of cut-
ting and packing problems. He can be reached at:
guntram.scheithauer@tu-dresden.de.

Andreas Fischer is professor of numerical optimi-
sation with the Technische Universität Dresden, Ger-
many. Since 2013 he is the director of the Institute of
Numerical Mathematics. His research concentrates
on the design and analysis of efficient algorithms
within the field of mathematical programming, par-
ticularly complementarity systems, generalised Nash
equilibrium problems, discrete optimisation with ap-
plications, and machine learning. He can be reached
at: andreas.fischer@tu-dresden.de.

Alexander Schill is a professor for Computer Net-
works at Technische Universität Dresden, Germany.
His major research interests include distributed sys-
tem architectures, advanced web technologies, and
mobile and ubiquitous computing. Prof. Schill holds
M.Sc. and Ph.D. degrees in Computer Science from
the University of Karlsruhe, Germany, and received a
Doctor Honoris Causa from Universidad Nacional de
Asuncion, Paraguay. Before his tenure in Dresden,
he also worked at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York. He

can be reached at: alexander.schill@tu-dresden.de.

Waltenegus Dargie (SM’12) is an Associate Profes-
sor and leads the Energy Lab at the Technische Uni-
versität Dresden. He obtained a PhD in Computer
Engineering from the Technische Universität Dres-
den in 2006 and holds MSc degree (2002) from the
Technical University of Kaiserslautern (Germany)
and BSc degree (1997) from the Nazareth Technical
College (Ethiopia), both in Electrical Engineering.
Dr. Dargie is a senior member of the IEEE and
a member of the editorial board of the Journal of
Computer Communication. His research interest is

related to stochastic processes, energy-efficient computing, and ubiquitous
computing. He can be reached at: waltenegus.dargie@tu-dresden.de.

http://arxiv.org/abs/1006.0308

	Introduction
	Related work
	Background
	Consolidation with First Fit Decreasing
	Workload as random variable

	Extended First Fit Decreasing
	Experimental set-up
	Benchmarks
	Measurement

	Evaluation
	Power Consumption
	Maximum Core Overload Probability
	Job Completion Time
	Exponential Workload

	Conclusion
	Biographies
	Markus Hähnel
	John Martinovic
	Guntram Scheithauer
	Andreas Fischer
	Alexander Schill
	Waltenegus Dargie (SM'12)


