
Power Consumption Estimation Models for
Processors, Virtual Machines, and Servers

Christoph Möbius, Waltenegus Dargie, Senior Member, IEEE, and Alexander Schill

Abstract—The power consumption of presently available Inter-
net servers and data centers is not proportional to the work they
accomplish. The scientific community is attempting to address
this problem in a number of ways, for example, by employing
dynamic voltage and frequency scaling, selectively switching
off idle or underutilized servers, and employing energy-aware
task scheduling. Central to these approaches is the accurate
estimation of the power consumption of the various subsystems
of a server, particularly, the processor. We distinguish between
power consumption measurement techniques and power con-
sumption estimation models. The techniques refer to the art of
instrumenting a system to measure its actual power consumption
whereas the estimation models deal with indirect evidences (such
as information pertaining to CPU utilization or events captured
by hardware performance counters) to reason about the power
consumption of a system under consideration. The paper provides
a comprehensive survey of existing or proposed approaches
to estimate the power consumption of single-core as well as
multicore processors, virtual machines, and an entire server.

Index Terms—Power consumption models, energy-efficiency,
server’s power consumption, processor’s power consumption,
virtual machine’s power consumption, power consumption es-
timation

I. INTRODUCTION

The energy consumption of computing devices and systems
has always been a research issue. In the past, it mainly
concerned battery-operated mobile devices and embedded
systems, but at present the prevailing focus is on large-scale
Internet servers and data centers. According to Koomey, the
amount of power consumed by data centers (servers, storage,
communication, and cooling infrastructure) worldwide was
70.8 TWh in 2000 and 152.5 TWh in 2005 (a 115% rise in 5
years) [1], amounting in respective order, to 0.53 and 0.97%
of the overall worldwide energy spending at the time. The
latest study by the same person estimates the worldwide power
consumption between 2005 and 2010 due to data centers to
have been between 203.4 TWh and 271.8 TWh. Compared to
the overall worldwide energy spending of 2005, this amounts
to 33% to 78% increment. The corresponding portion of the
total worldwide power consumption is estimated to have been
between 1.12% (2005) and 1.50% (2010) [2].

Figure 1 provides a compact summary of these numbers.
As can be seen in the figure, the power consumption of data
centers increased year by year, even though there has been a
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Figure 1:  Worldwide electricity use for data centers (2000, 2005, and 2010)  
 
 

Figure 1. The estimated worldwide energy consumption for data centers
between 2000 and 2010 [2].

gradual slowdown in the energy consumption beginning from
the year 2007. One of the reasons for the slow down is the
adoption of resource virtualization by the ICT industry. While
this is encouraging, there is still a crucial need to significantly
reduce the energy consumption of Internet servers, particularly,
since high energy consumption does not necessarily corre-
spond to high performance (quality of service) [3] .

The existing or proposed approaches to achieve energy
efficiency encompass hardware as well as software solutions.
Examining the hardware solutions falls beyond the scope of
this paper. The software solutions, however, can be broadly
categorized into scaling [4], scheduling [5], and consolidation
[6] approaches.

The scaling approaches primarily target the processor sub-
system of a server and aim to adapt its operational voltage and
frequency according to the task arrival rate at the processor.
This approach reduces the idle power consumption of the
processor and forces the task scheduler in the operating system
to avoid over-provisioning of resources and to execute less
time critical jobs at a slower speed.

Scheduling approaches can be low-level or high-level. The
low-level approaches refer to energy-aware schedulers within



the operating system whereas the high-level approaches refer
to load-balancing (or load management) approaches at the ap-
plication layer. Energy-aware schedulers aim to schedule tasks
(jobs) in a way hardware resources are efficiently utilized and
unnecessary contention between jobs for hardware resources
(such as memory or CPU) are avoided. The load-balancing
solutions at the application layer are relevant to a cluster
environment (such as a data center) where multiple servers are
used to handle a large amount of user requests simultaneously.
Hence, an energy-efficient load-balancer aims at selecting m
out of n servers, m ≤ n, that can handle the overall workload
of the entire cluster without violating a service-level agreement
(SLA). Ideally, m is chosen such that ∀i, i < n, i 6= m it is
not possible to improve energy-efficiency and not to violate
SLA at the same time.

The last category of approaches, consolidation, particu-
larly concerns virtualized environments. Similar to the load-
balancing approaches, the aim is to balance the demand for
computing resources with the supply of resources, but this
is mainly achieved through a runtime migration of virtual
machines (which encapsulate services or applications) away
from overloaded, underutilized, or idle servers to servers which
can execute at their maximum capacity. Then, the idle or
the underutilized servers are switched off and the overloaded
servers are relieved of a portion of their load.

All of these approaches require the estimation (predict) of
(1) the short and middle term workload of a server or a data
center; and (2) the energy that can be saved as a result of the
adaptation strategy they aim to carry out. Since energy is a
function of the power consumed by the system times time,
it is often sufficient to estimate the power consumption of
the system. Consequently, the approaches require mechanisms
for quantifying the power consumption of a system: Energy-
aware schedulers require models for accounting for the power
consumption of multicore processors; the approaches aiming
at optimal service consolidation require models for accounting
for the cost of running and migrating virtual machines; and
application layer load-balancing strategies require models for
accounting for the power consumption of individual servers. In
this paper, we provide a comprehensive survey of the existing
or proposed models for estimating the power consumption of
multicore processors, virtual machines, and servers in data
centers.

The rest of the paper is organized as follows: In section II,
we will give a brief overview of the direct measurement
approaches. In section III, we will discuss performance moni-
toring counters and benchmarks as the essential components of
a wide range of existing or proposed power estimation models.
In section IV, we will present some of the proposed models
to estimate the power consumption of the CPU of a server.
In section V, we will present power estimation models that
reason about the power consumption of virtual machines. In
section VI, we will present power estimation models for an
entire server. In section VII, we will give a detailed analysis
of the estimation models and the associated estimation errors
- the deviation between model output and true values. Finally,
in section VIII, we will give concluding remarks.

II. DIRECT MEASUREMENTS

The power consumption of a computing system can be
measured or estimated. The first requires the instrumentation
of a hardware device, which in turn be direct or indirect. In a
direct instrumentation, the electric lines supplying power to the
system are intercepted and either power measuring devices [4],
[7] or shunt resistors (< 100mΩ) [8] are inserted in between.
In an indirect instrumentation, the induction law (often with
lossless inductors) is employed to measure the electromagnetic
fields induced by the current drawn by a system [9], [10].

Estimation approaches use hardware-provided or OS-
provided metrics to reason about the power consumption of a
system, assuming that there is a correlation between the values
of these metrics and the power consumption. The hardware-
provided inputs generally refer to performance monitoring
counters (PMC) provided by the CPU or similar subsystems
[11], [12], [13]. The OS-provided inputs refer to metrics
indicating the utilization level of a system. A typical example
is the CPU utilization indicator. Such metrics are not directly
provided by the hardware, but are rather computed by the
operating system [9], [14], [15]. Models that employ both
PMC and OS-provided inputs are referred to as hybrid [16],
[17].

The measurement and modeling approaches have their mer-
its and demerits. Direct measurements make few assumptions
about the architecture of or the type of workload processed
by a system, but they can be expensive and obtrusive. More-
over, their installation can be complex. Likewise, the indirect
measurement mechanisms can be sensitive to interference.
Estimation models, on the other hand, have several amenable
features, but they can be inaccurate and their scope and
usefulness is determined by the underlying system architecture
as well as the type of workload processed by the system. In this
section, we shall focus on existing measurement approaches.

Bohrer et al. [18] use the direct measurement approach to
quantify the DC power consumption of a web server. They
assert that five of the power rails (lines) in the motherboard of
the server they considered are sufficient for the task. These are
a 3.3V line supplying power to the memory, the video card,
and the network interface card (NIC); a 5V line supplying
power to the CPU; a 5V line supplying power to the disk
drive’s controlling mechanism; a 12V line supplying power to
the disk drive’s mechanical parts; and a 12V line supplying
power to the processor’s cooling fan. They inserted a shunt
resistor between each line to measure the voltage drop across
the shunt resistor. The voltage drop is supplied to a 10KHz
low pass filter and amplified by custom hardware. The output
of the amplifier is then supplied to a National Instruments
PCI-6071E data acquisition card. The authors claim that the
measurement error is within 5% range and associate the error
with the shunt resistors and the amplifier offset voltage. The
same approach is employed by Elnozahy et al. [19].

Similarly, Economou et al. [20] develop custom hardware
to measure the power consumption of the subsystems of a
blade server. They use four power rails to carry out the
measurements: a 12V line that is predominantly used by
the processor and memory; a 5V line that supplies power



to the disk drive; and a 5V auxiliary line and a 3.3V line
supplying power to the remaining components. The 12V line is
branched to provide the processor and the memory subsystems
with power. The authors report modifying the motherboard’s
network structure to insert an extra shunt resistor, but do
not provide information regarding the modification process.
Neither do they describe where exactly the shunt resistor
is added. Furthermore, details are missing pertaining to the
employed measurement devices and the acquisition board.

Dargie and Schill [4] investigate the power consumption
of the various subsystems of a multimedia server (Fujitsu-
Siemens D2641) cluster under different load balancing poli-
cies. They first investigate how the voltage regulators of the
different subsystems are supplied with DC power and observe
that the main voltage regulator that generates the processor
core voltage predominantly uses a separate 12V line while
the voltage regulator of the memory unit predominantly uses
a 5V line. Likewise, the voltage regulator of the Southbridge
uses a 12V line. All the I/O controllers draw current through
the 3.3V line. Unfortunately, some of the power rails supply
multiple voltage regulators with power while some of the
voltage regulators use multiple rails as their input source
complicating the measurement task. For the components that
are not accessible (for example, the NIC which is connected to
the PCI Express slot), the authors provide a custom made raiser
board and intercepted the 3.3V power line of the raiser board
to measure the power consumption. Dargie and Schill analyze
the relationship between the probability distribution functions
of the workload of the server and the power drawn through
the various power rails to estimate the power consumption of
the various subsystems.

Bircher et al. [8] measure the power consumption of an
IBM x440 server using on-board current-sensing resistors that
are originally used by the inherent server management system
for overcurrent protection1. They identify five such resistors
for the CPU, the memory, the Southbridge, the disk drives,
and the chipset. Measuring the voltage drop across these
resistors enables to compute the power consumption of the
respective subsystems. To reduce the effect of noise and to
improve the sampling resolution, the authors developed an
amplifier board and amplified the voltage drops across the
shunt resistors. The amplifier outputs are then quantized by
a National Instruments AT MIO-16E-2 card, which is able
to sample 8 channels in parallel at 10KHz. Pre-instrumented
server hardware such as this simplifies the measurement task.
However, not all server architectures are produced with ready-
to-use and cleanly separated measurement points.

Measurement techniques, both direct and indirect, reach
limits due to several constraints: Firstly, measuring the power
consumption of a system as proposed by [18], [20], [4] does
not easily scale to clusters or data centers. Secondly, inter-
cepting and instrumenting power rails manually requires effort
and may affect the performance of the physical machines.
Thirdly, acquiring reliable and precise measurement devices is
expensive; the cost becomes pronounced if several subsystems

1Most voltage regulators provide a lossless current sensing inductor to
enable overcurrent protection.

are measured in parallel (for example, modern server boards
usually employ a distinct power supply for each processor
socket and each power supply provides multiple 12V power
lines for safety reason [21]). Fourthly, the approaches require
insight into the mainboard layout to ensure that power supply
lines are associated with the correct subsystems. Usually such
knowledge is not available to the customer, but is rather a
protected asset of the board manufacturer. Finally, some of the
components whose power consumption should be measured
may not be physical at all. This is typically the case in
virtualized environments where the power consumption of
virtual machines should be estimated. Therefore, developing
models using alternative approaches can be a meaningful
solution.

III. ESTIMATION MODELS

A power consumption estimation model takes indirect evi-
dences pertaining to the utilization (activity) of a system under
consideration and reasons about its power consumption. There
are two essential steps to carry out this task: the selection of
the model input parameters and the identification of a tool
to train and test the model. In this section, we introduce
hardware performance counters as model input parameters and
benchmarks as training and testing programs.

A. Model Inputs

Power estimation models rely on information such as the
utilization of a subsystem (for example, CPU and memory)
or on information delivered by performance monitoring coun-
ters (PMC), referred to in the literature also as hardware
performance counters (HPC). The utilization information is
not a quantity that can be obtained directly from a hardware
subsystem itself, instead, it is a quantity computed and pro-
vided by the operating system. For example, the Linux kernel
computes the CPU (and core) utilization, the disk utilization
in terms of read and written bytes, and the network bandwidth
utilization. We refer to such metrics as OS-provided (model)
inputs or metrics. These inputs are relatively easy to obtain
and transferable across heterogeneous platforms, but they can
be inaccurate2.

Unlike the utilization information, performance monitoring
counters are provided directly by the CPU. We refer to such
metrics as hardware-provided (model) inputs or metrics. A
contemporary CPU may provide one or more model-specific
registers (MSR) that can be used to count certain micro-
architectural events – performance monitoring events (PME).
For example, such an event will be generated when the
processor retires (“finishes”) an instruction or when it accesses
the cache. The types of events that should be captured by
a PMC is specified by a performance event selector (PES),
which is also a MSR. The amount of countable events has
been increasing with every generation, family, and model of
processors. At present, a processor can provide more than
200 events [22]. Repeated investigations demonstrate that
accounting for certain events offers detailed insight into the

2https://www.kernel.org/doc/Documentation/cpu-load.txt, 2013-04-11

https://www.kernel.org/doc/Documentation/cpu-load.txt


power consumption characteristics of the processor and similar
subsystems [23], [24].

The usage of performance monitoring counters is not
straightforward, however. To begin with, the number of events
that can be counted simultaneously is both limited and differ-
ent from architecture to architecture. For example, the Intel
Core Solo/Duo processors provide at most five counters per
core whereas the Intel Sandy-Bridge processor family can
provide up to 11 counters per core [22] for core events
and 2 counters per C-Box3 for uncore events. For the AMD
Bulldozer family, each core provides six counters for events
generated by the core and additional four counters to count
the events generated by the Northbridge [25]. Hence, it is
important to select the counters that correlate best with the
power consumption of the processor.

Secondly, the selection of the specific counters depends on
the type of benchmark (or application) – A benchmark that
frequently generates integer operations will not use the CPU’s
floating point unit and, therefore, the events referring to the
fetched, retired, or finished floating point operations will not
be useful as input parameters to the estimation task. Likewise,
the estimation model used for the integer workbench will not
be appropriate to determine the power consumption of the
processor when a workload that frequently generates floating
point operations is employed. In general, models that are
trained with benchmark applications are biased to the training
set [26], [27].

Thirdly, since events are architecture-specific, the estimation
models may not transfer well from one architecture to another
architecture and even processors belonging to the same man-
ufacturer may not support all events. For example, Intel dis-
tinguishes between architectural and non-architectural events
[22]. Accordingly, an event is architectural if its characteris-
tics are consistent across different processor families. There
are seven architectural events available for Intel processors:
Unhalted Core Cycles, Unhalted Reference Cycles, Instruc-
tion Retired, LLC Reference, LLC Misses, Branch Instruction
Retired, and Branch Misses Retired, but the way the events
can be programmed and counted may change with extensions
to the version of the architectural events monitoring (cf.
Architectural Events Monitoring Version 1 to 3 in [22]). Non-
architectural events, on the other hand, do not have consistent
characteristics across processor families and their availability
is not guaranteed at all.

Fourth, some events can be generated more than once per
clock cycle (multi-events) and different counters may capture
different numbers of multi-events [25]. Finally, the use of the
same PME sets may not guaranty the reproduction of the same
event count values even when identical instruction sequences
are repeatedly executed on the same platform [25].

B. Training Models with Benchmarks

Most approaches involve benchmarks to train and test the
power estimation models. It is therefore appropriate to briefly

3C-Box is Intel’s term for the coherence unit between a core and the L3
cache.

discuss benchmarks and the reasons why they are used in
power consumption estimation models.

Benchmarks are software programs specifically designed
to stress some of the subsystems of a server in a com-
prehensible and repeatable manner. While a benchmark is
running, specific sets of performance indicators are sampled
and evaluated to establish a relationship between the utilization
of the subsystem and its performance or power consumption.
Since the stress (utilization) level of the subsystem induced by
the benchmark is well defined, results for different instances
of the subsystem (such as different CPU models) that run
the same benchmark are expected to be comparable. For
example, for a CPU benchmark undertaking several rounds of
integer multiplications, the results of different CPUs can be
compared in terms of the amount of multiplications they can
perform in a fixed time interval. Benchmarks that generate
a workload for a fixed time interval are called throughput-
based. The complementary types of benchmarks are time-
based with which a fixed workload is executed and the time
the subsystem takes to process the workload is measured.
Benchmarks that combine aspects of throughput-based and
time-based workloads are called hybrid [28].

Most benchmarks are standardized to ensure that they are
not optimized to favour some specific products. For example,
the Standard Performance Evaluation Corporation (SPEC),
which is responsible for the SPEC benchmarks, prohibits
the submission of benchmarks by member companies, their
associates, or a corporation entity. But member companies
may freely evaluate submitted benchmarks. SPEC provides
a variety of benchmark suites for various evaluation tasks:
CPU performance during integer and floating point operations,
graphics and workstation performance, performance of server-
side and client-side Java execution, file server performance,
performance of virtualized hardware and operating systems,
etc. Some of the benchmarks have also been extensively
used to evaluate the power consumption of processors, vir-
tual machines, and servers. Despite the variety of evaluation
opportunities, however, existing benchmarks are mainly CPU-
and memory-bound.

There are also non-standardized benchmarks for evaluating
hard disk resources. Examples of these are iometer4, iozone5,
bonnie++6 and stream7. Likewise, some have developed cus-
tom (micro) benchmarks to generate workloads that have
predefined stochastic properties (probability density functions)
[29], [30], [31], [7].

Understandably, a model trained and tested with a variety of
benchmarks may have a larger estimation error than a model
trained and tested with a limited number of benchmarks: In the
former case, the model has to capture with a limited number
of model input parameters a wide range of power consumption
characteristics whereas a model trained with a limited number
of benchmarks (such as the SPEC suites) will tend to get
biased towards these benchmarks [26].

4http://www.iometer.org, 2013-04-11
5http://www.iozone.org, 2013-04-11
6http://www.coker.com.au/bonnie++, 2013-04-11
7http://www.cs.virginia.edu/stream/, 2013-04-11
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IV. CPU MODELS

The CPU of a server consumes a considerable amount
of power. In most situations, it is in fact the prime power
consuming component. Therefore, quantifying its power con-
sumption can be useful for several purposes, such as for
developing energy- and thermal-aware task scheduling and
low-level dynamic power management policies.

Isci and Martonosi [31] express the power consumption of
a Pentium 4 CPU as the sum of the power consumption of
the processor’s 22 major subunits. These are: the Bus control,
L1 and L2 cache, L1 and L2 branch prediction unit (BPU),
TLB (instruction lookaside buffer) & fetch, instruction decode,
instruction queue 1 and 2, memory order buffer, memory
control, data TLB, integer and floating point execution unit,
integer and floating point register file, trace cache, microcode
ROM, allocation, rename, schedule, and retirement logic. A
separate power model is defined for 16 of the subunits and
a combined model can be defined for the trace cache, the
allocation unit, the rename logic, the schedule logic, and the
instruction queues 1 and 2. Altogether, the authors employ 24
different events for their model. Since the processor provides
only 18 PMC, some counters are reconfigured or rotated
during the experiment.

The values obtained for the single subunits are weighted
and combined to estimate the power consumption of the entire
CPU:

P (Ci) = aR(Ci)× aS(Ci)×mP (Ci) + nGCP (Ci) (1)

where Ci is the subunit, aR is a subunit-dependent metric
measuring the access to the respective subunit, aS is the rela-
tive size of the subunit, mP is the subunit’s maximum power
consumption, and nGCP accounts for non-linear behavior of
some of the subunits (trace cache, rename logic, and retire
logic). The CPU’s total power consumption is then expressed
as the sum of all subunit power values plus the idle power:

PowerCPU =
22∑
i=1

Power(Ci) + idlepower (2)

A modification to the model is given by Bui et al. [32] in
which transistor counts are used as architectural scaling factor.

The idea of Isci and Martonosi is further refined in [26]
where a methodology to develop PMC-based models for
multicore processors is also proposed. Similar to Isci and
Martonosi the authors first determine the architectural compo-
nents of the processor, identifying more than 25 components
and classifying them into three categories, namely, in-order
engine, out-of-order engine, and memory. The authors assert
that the activity of some of the components in the in-order
engine cannot be detected with distinct PMEs. As a result this
engine’s activity is captured as a whole with the exception
of the branch prediction unit. The memory engine is further
divided into three parts – L1 cache, L2 cache, and the main
memory; the latter includes the front side bus. Likewise, the
out-of-order engine is divided into three parts - INT unit, FP
unit, and SIMD unit. This way, the authors identify 8 so called
power components.

The authors develop a set of 97 micro-benchmarks to stress
each of these components in isolation under different scenar-
ios. The aim is to detect those PMEs that reflect the activity
level of these components best. Based on this approach, the
power consumption of the single-core of the CPU is expressed
as:

Ptotal =

(
i=comps∑
i=1

ARi × Pi

)
+ Pstatic (3)

where ARi denotes the activity ratio in the i-th component and
Pi is the corresponding power consumption of the component
so that ARi×Pi yields the component’s dynamic power con-
sumption. Pstatic is the CPU’s idle state power consumption.
The activity ratio is given by the value of the designated PMC,
normalized by the count of the cpu_clk_unhalted event.

For the multi-core scenario the CPU power is expressed as:

Ptotal =

j=cores∑
j=1

((
i=comps∑
i=1

ARij × Pi

)
+ Pstatic

)
(4)

where ARij refers to the activity ratio of the i-th component of
the j-th core. For the single-core model the average estimation
error for individual benchmarks is between 0.32% and 6.87%,
and 1.89% when all the benchmarks are considered.

For the multi-core model, the average estimation error for
the individual benchmarks is between 1.47% and 10.15%;
and 4.63% when all the benchmarks are considered. The
authors also evaluate the model’s accuracy when the proces-
sor operates at different frequencies, ranging from 800MHz
to 2.533GHz. The results suggest that the estimation error
decreases with increasing frequency implying that the model
poorly captures nonlinear characteristics due to dynamic volt-
age and frequency scaling (DVFS) techniques.

Likewise, Bircher et al. [33] propose a simplified linear
model for estimating the power consumption of a Pentium
4 CPU. The authors argue that the amount of fetched µ-ops
(micro-operations) per cycle minimizes the model’s estima-
tion error whereas considering the amount of µ-ops retired
increases the estimation error; since the number of fetched µ-
ops comprises both retired and canceled µ-ops. The estimation
model has the following expression:

power = 35.7 + 4.31 · (fetched_µ− ops/cycle) (5)

To train and test the power consumption model, the authors
use the SPEC2000 benchmark suite, which they split into
ten clusters. Six of these comprise more than one benchmark
program. From each cluster one program is used for training
the model while the remaining are used to test the model.
For clusters comprising only a single benchmark, the same
benchmark serves both as a training and as a test program. In
addition to the SPEC2000 suite, the authors employ custom-
made benchmarks to examine the minimum (with minimum
IPC) and the maximum (with maximum IPC) power consump-
tion of the CPU.



Even though the model is trained with five SPEC-INT and
five SPEC-FP benchmarks (with an average error of 2.6%), the
authors remark that the model performs best with benchmarks
that mostly produce integer operations. As a result, the authors
refine their model to take advantage of the fact that floating
point operations consist of complex microcode instructions
[31]. For the Pentium 4 processor, this metric can be obtained
with the uop_queue_writes event (with the event mask 0x06
[22]). To account for the difference in power consumption
between the µ-ops delivered by the trace cache and the µ-
ops delivered by the microcode ROM, Bircher et al. assign
two counters to the events: one for the event mask 0x02
and the other for the event mask 0x04. The resulting model
expression is as follows:

power = 36.7 + 4.24 · deliver − 11.8 ·microrom (6)

where deliver denotes µ-ops delivered by the trace cache
and microrom denotes the µ-ops delivered by the microcode
ROM. The average error of the model is reduced from 2.6%
to 2.5%.

Singh et al. [27] propose a model to estimate the power
consumption of individual cores in an AMD Phenom 9500
multi-core processor. The processor provides 4 PMC to
be sampled simultaneously. Thus, the authors identify the
four events that best represent the processor’s power con-
sumption: L2_cache_miss:all (e1), retired_uops (e2), re-
tired_mmx_and_fp_instructions:all (e3) and dispatch_stalls
(e4). e1 is selected to monitor the usage of the L3 cache (the
authors claim that misses in the L2 cache often result in L3
misses as well). e2 is selected because it provides information
about the overall processor performance. e3 is selected to
account for the difference in power consumption between INT
and FP units. e4 is selected because it indicates the usage of
out-of-order logic units, which is the case if the core stalls (for
example, due to branches or full load/store queues). The stall
event can indicate a reduction as well as an increase in power
consumption. The latter is true if the core stall is caused by
the reorder buffer or by a reservation station. For the proposed
model the authors compute the event rate, ri = ei/cycles
and apply linear weights to estimate the power consumption
of an individual core. To obtain a model that is not biased
towards certain benchmark applications the authors train the
model with microbenchmarks (cf. [26]) and observe different
code behaviors for low values of the L2_cache_miss:all event
count. Therefore, they suggest a two-part model where the
particular function, F1 or F2, is chosen depending on the
L2_cache_miss:all event rate, r1 . The resulting model is given
by:

P̂core =

{
F1(g1(r1), . . . , gn(rn)) if condition
F2(g1(r1), . . . , gn(rn)) else,

(7)

where Fj = p0 +p1 ·g1(r1)+ · · ·+pn ·gn(rn)|j = {1, 2} and
condition defines the threshold for r1.

Chen et al. [29] deal with modeling the performance and
power consumption of a multi-core system when running

several processes in parallel. In other words, “given k pro-
cesses running on N cores with some of the cores having
multiple processes and some of them being idle” their aim
is to estimate “the core and processor power consumption
during concurrent execution”. Similar to [27], Chen et al.
determine the five events that correlated most with power
consumption. For an Intel Pentium Dual Core E2220 (“2-
core”) and an Intel Core2 Q6600 quad core (“4-core”), the
events are L1R (L1 references), L2R (L2 references), L2M
(L2 misses), BR (branch instructions retired), and FP (floating
point instructions retired). For a single process running on a
core the authors find that a linear model for the event counts
per second (PS) is appropriate:

Pcore =Pidle + c1 · L1RPS + c2 · L2RPS

+ c3 · L2MPS + c4 ·BRPS + c5 · FPPS (8)

where ci are the weighting factors. However, for multiple
processes running on a single core, the authors propose a
different power model considering event counts per instruction
(PI) rather than per second. The model is given by the
equation: Pprocess = P1 + P2,

with

P1 =Pidle + (c1 · L1RPI + c2 · L2RPI+

c4 ·BRPI + c5 · FPPI)/SPI (9)

and

P2 = c3 · L2MPR · L2RPI/SPI (10)

where SPI stands for Seconds per Instruction. P1 comprises
“process properties” that are independent of interaction with
other processes, whereas P2 represents the influence of other
processes through cache contention. The core power consump-
tion is then calculated as the weighted sum of the overall
process power values for that core:

Pcore =
1

k

k∑
i=1

Pi (11)

where k is the number of processes running on the respective
core. For a set of cores 1 to N that share the same last level
cache, the model is given as:

Pcore−set =

∑
pi∈S1

· · ·
∑
pN∈SN

P (p1, · · · , pN )∏N
i=1 |Si|

(12)

where Si is the set of processes running on core i.
Unlike the previous approaches, Molka et al. [7] model the

power consumption of data transfers and arithmetical oper-
ations for an AMD Opteron 2435 and an Intel Xeon X5670
processors. They consider LOAD, ADD, MUL for each of packed
integer, packed single and packed double data types, and AND
for packed integer and packed double types. Determining the
power consumption of single instructions this way is too fine-
grained and may not be applicable for estimating the power
consumption of a server.



As a summary, most of the CPU power consumption models
require knowledge of the architecture of the CPU and the
nature of the benchmark (application) to select the appropriate
performance monitoring counters. The predominant mathemat-
ical tool employed to establish a relationship between the
power consumption of the CPU and the events emitted by
the counters is the linear regression. A summary of the CPU
power consumption models is given in Table I.

V. VM MODELS

A virtual machine (VM) is a software abstraction of a real
hardware server. It is capable of running a full-fledged operat-
ing system thereby freeing an application or a service from the
concern of knowing where (i.e., on which physical machine) it
is actually running. Encapsulating software entities in a virtual
machine has two advantages. First of all, multiple virtual
machines can run in parallel on the same physical machine
regardless of the operating system or hardware platform they
require for their operation. This has the manifest advantage
of utilizing computing resources efficiently. Secondly, virtual
machines can be moved from one physical machine to another
without the need to stop their execution. This facilitates
dynamic workload consolidation. Because running virtual ma-
chines incurs resource cost (including power), estimating this
cost enables to better organize and schedule them.

Bohra and Chaudhary [12] study the use of PMC to model
and reason about the power consumption of individual virtual
machines in a virtualized environment. Particularly, the au-
thors investigate counters for busy cycles cpu_clk_unhalted,
memory accesses dram_accesses, fetched instructions instruc-
tion_cache_fetches and fetched data data_cache_fetches in an
AMD Opteron processor. To gain insight into I/O accesses, the
authors utilize the disk monitoring tool iostat. The decision
for an external disk monitoring tool is motivated by (a) the
absence of a PMC that directly account for disk accesses and
(b) the restriction on the number of simultaneously readable
performance counter values. The authors distinguish between
CPU-intensive and I/O-intensive workloads (the latter includes
also memory-bound workloads). For these workload types,
they propose separate linear models and, then, estimate the
system’s total power consumption as the weighted sum of both
models:

Pcpu,cache = a1 + a2 · pcpu + a3 · pcache
Pmem,disk = a4 + a5 · pmem + a6 · pdisk (13)

Ptotal = αPcpu,cache + βPmem,disk

where a1 and a4 represent the idle power consumption of
the different workload types (though it is not clear why these
values should be different in both equations). a2, a3, a5 and a6
are coefficients obtained through linear regression and pcpu,
pmem , and pcache are the PMC values for the respective
components and pdisk is the utilization metric for the disk
drive. α and β are determined by observing the mean increase
in total power consumption when an idle machine runs a CPU-
or I/O-bound workload, respectively.

For a server running several virtual machines the total power
consumption is given by

Pserver = Pidle +

N∑
k=1

Pdom(i) (14)

where Pdom(i) is the power consumption of a VM, including
dom0, the VMM, and is given by:

Pdom(i) = α(a2pcpu(i) + a3pcache(i)) +

β(a5pmem(i) + a6pdisk(i)) (15)

The model is evaluated with CPU-bound (BYTEmark, dense
matrix multiplication), I/O-bound (Iozone, Bonnie++), and
combined benchmarks (NAS NPB, cachebench, gcc). The
reported average error is 7% with a median of 6%.

Similarly, Krishnan et al. [13] present a linear model to
compute the power consumption of virtual machines. They
use PMC as model inputs but point out that the mapping
of inst_retired/s to CPU power consumption is not straight
forward, since memory references that hit in different cache
levels consume slightly different amounts of power. Therefore,
instructions that execute without cache references or that hit in
L1 cache consume less power than instructions with hits in the
last level cache. To account for power consumptions caused by
hits in different cache levels, the authors define bounds to limit
the model’s error. A lower bound is defined for instructions
that hit at most in L1 cache and an upper bound for instructions
that hit in LLC. A second class of bounds reflects the level
of memory parallelism. For the system under test used by the
authors the power consumption of the memory is between 15
W for maximum memory level parallelism (MLP) and 45 W
in cases where MLP cannot be exploited. Combining these
boundary cases, the authors define four bounds:

B1 = PL1 + PMLP (16)
B2 = PLLC + PMLP (17)
B3 = PL1 + PNO_MLP (18)
B4 = PLLC + PNO_MLP (19)

Based on this classification, the authors observe that most of
the SPEC2006 benchmarks they used to evaluate their model
are close to one of these bounds. For CPU-bound benchmarks
with high hit rate in L1 (bzip2, namd, h264ref), the power
consumption is expected to be close to either B1 or B3.
Using the B1 bound the power estimation error is 6% on
average, for the B3 bound no estimation error is reported,
but since the memory power consumption is larger when no
memory level parallelism can be used, one can assume the
estimation error to be larger. For CPU-bound benchmarks
with a high hit rate in LLC (gobmk, sjeng, povray), power
consumption is approximated to be close to either B2 or
B4. An average estimation error of 10% is observed for
the B2 bound, however, similar to the previous case, no
estimation error for the B4 bound is reported. For memory-
bound workloads with high MLP (libquantum, milc, lbm), the
power consumption is estimated to be close to either B1 or
B2, and results show that the model’s estimation error is 7%
on average with the B1 bound. For a memory-bound workload



Approach System Under Test Model Inputs Training Technique Benchmarks/Applications Estimation Error
Isci & Martonosi
[31] Intel Pentium 4 15 PME in sum (4 PES

reconfigurations)
piecewise linear regres-
sion

custom µ-benchmarks (training);
SPEC2000 suite (evaluation) 3 Watt avg1

Bircher et al. [33] Intel Pentium 4 Fetched µ-ops; deliv-
ered µ-ops linear regression SPEC 2000 suite 2.5% avg

Bui et al. [32] Intel Itanium 2
(Madison)

instructions retired;
cache accesses

piecewise linear regres-
sion see [31] GenIDLEST [34] –

Singh et al. [27] AMD Phenom X4
9500 (Agena)

L2MPS; retired µ-
ops; dispatchStalls;
retiredMMXandFP
instructions

linear regression with
nonlinear parameter
transformation

custom µ-benchmarks (training);
SPEC2006, SPEC-OMP, NAS
(evaluation)

7.2% med (SPEC2006);
3.9% med (SPEC-
OMP); 5.8% med
(NAS)

Chen et al. [29]

Intel Core 2 Q6600
(Kentsfield); Intel
Pentium Dual Core
E2220 (Allendale)

L1RPS; L2RPS;
L2MPS; BRPS; FPPS linear regression custom µ-benchmarks (training);

SPECcpu2000 (evaluation)

2-Core: [5.32%, 6,65%]
avg; 4-Core: [3.39%,
5.51%] avg

Molka et al. [7]

Intel Xeon X5670
(Westmere); AMD
Opteron 2435 (In-
stanbul)

Machine instructions linear regression custom µ-benchmarks –

Bertran et al. [26] Intel Core 2 Duo
T9300 (Penryn)

12 PME in sum (4 PES
reconfigurations) multiple linear regression

custom µ-benchmarks (training);
SPECcpu2006, NAS [35], LM-
BENCH [36] (evaluation)

Single Core: 1.89%
avg; Multicore: 4.63%
avg; 20% max

1 The actual power consumption was not given in numbers, so that a percentage could not be computed.
Table I

A SUMMARY OF THE MODELS FOR THE ESTIMATION OF CPU POWER CONSUMPTION.

with no MLP (omnetpp), the power consumption is estimated
to be close to B3 or B4, and the average estimation error is 1%
with the B4 bound. The same model is tested by combining
the previous benchmarks (namd + lbm; povray + omnetpp;
povray + namd + h264ref + lbm) and an average estimation
error of 5% is observed for all the cases.

Dhiman et al. [10] employ CPU utilization and PMC
– instructions per cycle (IPC), memory accesses per cycle
(MPC), cache transactions per cycle (CTPC) – along with
a Gaussian Mixture Model (GMM) to estimate the power
consumption of a virtual machine. The input values form a
vector x = (xipc, xmpc, xctpc, xutil, xpwr) which are assigned
to different classes (or bins). Depending on the CPU utiliza-
tion, bin sizes range from 20% utilization (5 bins) to 100%
CPU utilization (1 bin). Within every bin the data vectors
are quantized using a Gauss Mixture Vector Quantization
(GMVQ) technique [37]. The output of this quantization are
multiple Gaussian components gi that are determined by their
mean mi = {mipc,mmtc,mctpc,mutil,mpwr}, covariance
Ki(xipc, xmpc, xctpc, xutil, xpwr), and probability pi. To train
the model, the xpwr component is removed from the x vectors
and the resulting vectors are compared with those in the
training set. A GMVQ algorithm then finds the nearest vector
m in the training set to the input vector, and the value for the
mpwr component is retrieved. The retrieved value is compared
to the original xpwr value from which the accuracy of the
model is determined. This part of the training phase is repeated
multiple times with different sizes of utilization bins. The bin
size resulting in the smallest error is selected as the model
parameter.

The same method is applied during the running phase:
PMC values are obtained and the vector is compared to the
model where the GMVQ algorithm finds the nearest (training)
vector and returns the average power value. The approach is
tested against several benchmarks from the SPEC2000 suite.
Depending on the utilization level, the average error of the

model is between 11% (for 50% CPU utilization) and 8% (for
100% CPU utilization). Nevertheless, even at 100% utilization
level, the absolute error is between 1% and 17%, depending on
the benchmark. The smallest error is obtained with the art and
mcf benchmark while the largest error is observed with the
gcc benchmark. Furthermore, the model accuracy is affected
by the system configuration. For example, for a machine with
8GB memory the model error is between 8% and 11%. For an
increased memory capacity (24GB), the error ranges between
8.5% and 9%.

In the same way, Kansal et al. [16] combine PMC and
CPU utilization to estimate the power consumption of a virtual
machine. While CPU utilization is used to calculate the power
consumption of the CPU by a VM, the power consumption of
the memory by the same VM is estimated by counting the
Last Level Cache Misses (LLCM).

Zhu et al. [38] propose a power-aware workflow scheduling
mechanism for a virtualized heterogeneous environment. The
authors employ the Kernel Canonical Correlation Analysis
(KCCA, [39]) to determine the mapping of the resource
utilization of a VM (each VM runs a single task in a workflow)
to power consumption and performance (i.e., execution time)
indicator metrics. For every task, the authors record ten time
series samples of the CPU, memory, disk, and network utiliza-
tion and for each of the parameters they obtain a statistical
signature comprising the maximum value and the variance.
In addition to these, the server’s capacity for the respective
resources is added into the model. Altogether, the authors
consider 52 parameters (features) in a feature space X . For the
same observation interval, the server’s power consumption and
execution time for all tasks are recorded, resulting in another
two-dimensional feature space Y . Nevertheless, a few features
are accountable for most of the data’s total variance so that
these few features are sufficient to explain the entire data.
This advantage is used to reduce the dimension of X without
losing too much information. The CCA then finds a linear



transformation of X and Y such that the transformation of Y
is sufficiently explained by the transformation of X .

To account for nonlinear properties, the CCA is kernelized.
A kernel in this context is a function that maps some point in
a lower dimensional feature space A to a higher (potentially
infinite) dimensional feature space B in a nonlinear fashion.
The idea behind is that nonlinear relations in A are linearized
in B. This means that X and Y are mapped to a higher di-
mensional feature space in which (linear) CCA can be applied.
Two of the challenges in applying this approach are finding the
appropriate kernel function and tuning its parameters properly.
As Schölkopf and Smola [39] point out, “the kernel is prior
knowledge about the problem at hand”. In the absence of such
knowledge one may choose a Gaussian kernel as Zhu et al.
do. The authors report an average estimation error of 3.3%.

As a summary, unlike the CPU power consumption mod-
els, the VM power consumption models include the CPU
utilization into the estimation model. We find that this is
appropriate, since in a virtualized environment a diversity of
services (applications) can be hosted by one and the same
physical server. Hence, relaying on a selected number of
performance monitoring counters alone may not provide an
adequate insight into the power consumption characteristic
of the CPU. Moreover, the CPU utilization can easily be
obtained. Therefore, including this additional metric into the
model certainly enriches the model.

Table II summarizes the models for estimating the VM
power consumption.

VI. SERVER MODELS

Even though the CPU is the predominant power consumer
of a server, the main memory, data storage, and networking
devices also consume a considerable amount of power that
cannot be disregarded. Developing distinct models for all these
components is not trivial. The alternative is to estimate the
overall power consumption of the entire server or even the
entire cluster or the data center. One of the merits of this
approach is the possibility of realistically budgeting power
and undertaking a high level dynamic power management
decisions (for example, selectively switch off underutilized
servers and distributing the workload of overloaded servers).

Heath et al. [30] propose an energy model for a hetero-
geneous server cluster. The power consumption of individual
servers is estimated with a linear model that solely employs
utilization metrics. The model for each server i is given by:

Pi = Piidle +
∑
r

Mr
i ·

Uri
Cri

(20)

where Piidle is the idle power consumption, Mr
i is a matrix of

maximum power consumption values for named resources r,
Uri is the utilization of the resource r, and Cri is the server’s
capacity matrix for the resource r. Whereas it is straightfor-
ward to determine the utilization level of a resource for a single
server (cf. subsection III-A), the intra-cluster communication
between the web servers necessitates an individual model.
Hence, to determine Uri , the resource consumption due to the
fraction of requests served locally, the cost of sending requests

to other nodes and the cost of serving requests on behalf of
other nodes should be summed together:

uri =
∑
t

F tiRtiiLrti +DiF
t
i

∑
j

RtijS
rt
ij +

∑
j

DjF
t
jR

t
jiA

rt
ji

 (21)

Uri =throughput · uri (22)

where i denotes a local server in the cluster, j denotes
a remote server, t denotes the request types, and thruput
denotes the number of requests being served per second by
the cluster. Moreover, the variables have the following mean-

ing:

F partition matrix of requests into types
L resource cost matrix for locally served requests
S resource cost matrix for sending requests
A resource cost matrix for accepting remote requests
R request distribution matrix
D request distribution vector

The values for the Cr, Lr, Ar, Mr, and Sr matrices are
determined using microbenchmarks for different types and
sizes of requests. The term “request distribution” in R and D
should not be confused with probability distribution functions.
Instead, both terms represent the solutions to an optimization
problem: Requests are distributed such that the utilization of
every resource on every server is below its respective capacity
and the cluster’s overall power consumption is minimized.
The authors apply simulated annealing to find near-optimal
solutions. The model is evaluated against traces of requests
made to real servers hosting the 1998 World Cup events. The
model is evaluated as a function of D and R. The estimation
error is 1.3% on average, with the maximum error of 2.7%.

Likewise, Economou et al. [20] propose a linear model
to estimate the power consumption of a server in a cluster
using utilization metrics as inputs. These metrics refer to the
utilization of the CPU (ucpu), the main memory accesses
(umem), hard disk I/O rate (udisk), and the network I/O rate
(unet). The authors employ custom made benchmarks to stress
the components in isolation each time measuring the reference
power of the respective subcomponents. A blade server with an
AMD Turion processor and a server with four Intel Itanium
2 processors are used to train the model and to obtain the
coefficients of the linear model.

For the blade server, the power consumption is expressed
as:

Pblade =14.45 + 0.236 · ucpu − (4.47E − 8) · umem
+ 0.00281 · udisk + (3.1E − 8) · unet (23)

The power consumption for the Itanium server is given by:

Pitanium =635.62 + 0.1108 · ucpu + (4.05E − 7) · umem
+ 0.00405 · udisk + 0 · unet (24)

Both models are evaluated with SPECcpu2000,
SPECjbb2000, SPECweb2005, matrix multiplication, and
stream the benchmarks. For the Itanium server, the model
error is between 0% and 15% on average and for the Turion
blade the error is below 5%.

Fan et al. [15] propose a nonlinear model using CPU
utilization as the model input. The model training phase is



Approach System Under Test Model Inputs Training Technique Benchmarks/Applications Estimation Error
Beloglazov et al.
[14] n.n. CPU utilization linear interpolation n.n. –

Bohra et al. [12] AMD Opteron (not
specified)

CPU_clk_unhalted;
DRAM_accesses; in-
struction_cache_fetches;
data_cache_fetches

linear regression
NAS NPB, Iozone, Bonnie++,
BYTEMark, Cachebench, Dense
Matrix Multiplication, gcc

6% med; 7% avg

Dhiman et al.
[10]

Intel Xeon E5507
(Gainestown)

CPU utilization; instruc-
tions; memory accesses;
cache transactions

Gaussian Mixture Vector
Quantization SPEC2000 suite

[8%, 11%] avg (resp.
[8.5%, 9%] avg); [1%,
17%] abs

Kansal et al. [16] Intel Xeon L5570
(Gainestown)

CPU utilization; LLCM;
Hyper-V-reported metrics linear regression SPEC2006 suite [1.6 W, 4.8 W] avg1

Zhu et al. [38]

AMD Opteron 250
(Sledgehammer);
Intel Xeon E5345
(Clovertown)

automatically selected kernelized canonical
correlation analysis

weather forecasting workflow
comprising: gMM5, gWaterLevel,
gTurbulentStress, gNetHeatFlux,
gGridResolution, gPOM2D,
gPOM3D, gVis

3.3% avg

Krishnan et al.
[13]

Intel Core i7 (Ne-
halem); Intel Core
2 Quad-Core (York-
field)

instructions retired; LLC
Misses correlation analysis SPEC2006 suite [1%, 10%] avg

1 The actual power consumption was not given in numbers, so that a percentage could not be computed.
Table II

A SUMMARY OF THE MODELS FOR THE ESTIMATION OF THE POWER CONSUMPTION OF VIRTUAL MACHINES.

similar to that of [20], but to account for nonlinear relationship
between the performance and the power consumption, they
extend the structure of a linear model with an error correction
factor. The resulting model has the form:

Pidle + (Pbusy − Pidle)(2ucpu − urcpu) (25)

where Pbusy denotes the power consumption of a 100% uti-
lized CPU, r is the correction or calibration factor minimizing
the squared error of the model. The size of the correction factor
depends on the system characteristics and has to be learned
during a calibration phase. The authors state that the correction
factor minimizes the model error by a value of 1.4 for r. Model
evaluation was done using “a few hundred” servers, but it is
not clear from the paper which benchmarks are used for this
purpose. Regardless, the authors report an average estimation
error of below 1%.

Gandhi et al. [40] investigate the optimality of different
power management policies of a server farm that trade energy
for performance in individual servers as well as in multi-server
environments. They model a server as an M/M/1 system
[41]. Unlike the previous models, the workload of a server
is modeled as a random variable having a Poisson arrival
rate and an exponentially distributed size. The server can be
configured to enter different power modes when it does not
process a workload; but when a workload arrives, the system
transits to an active state and the transition from these power
modes produces a corresponding performance penalty. The op-
erational state of the server is labeled as SON and the various
idle states are labeled as S0, · · · , SN , where SN denotes the
off state. Corresponding levels of power consumption are
denoted by PON , PS0

= PIDLE , P1, · · · , PSN
= POFF . It

is assumed that PON > PIDLE > · · · > POFF = 0. The
transition from any lower power state Si to any higher power
state Sj requires a transition time TSi , a duration which is
assumed to be independent of the target state. As an upper
bound estimation, the power consumed during a transition is
PON . Moreover, TIDLE < TS1

< · · · < TSN−1
< TOFF .

For transitions from any higher power state to any lower
power state, the transition duration is assumed to be 0 and
the same assumption holds for the power consumption of the
server during transitions of this kind. A server will transit to
a lower power state Si with a probability pi as soon as it
becomes idle and it will not wakeup immediately to SON as
soon as a request (or “job”) arrives; instead, it stays in Si
with a probability qij until j jobs are waiting in the queue.
The time between two consecutive idle situations is called a
renewal cycle or simply a cycle. Such cycle comprises three
parts:

1) A time spent in sleep state Si until j jobs arrive in
the queue. The expected duration is determined by the
Poisson distributed request rate λ and is ,therefore, j

λ ,
and the energy consumption during this phase is j

λPSi .
2) A time TSi spent during a wake-up with an energy

consumption of TSi
PON .

3) A time to serve all j requests that are in the queue when
starting the wake-up plus the X jobs that queued up
during the wake-up phase. The mean response time of
the system for one job is given by 1

µ−λ and the expected
duration for serving all jobs is j+X

µ−λ , and the energy
consumption is j+X

µ−λPON .
The expected power consumption is the expected total energy
consumption for all the three parts of the cycle normalized by
the expected cycle duration, formally:

E[P ] =

∑N
i=0 pi

∑∞
j=1

[
j
λ
PSi

+ TSi
PON +

j+λTSi
µ−λ PON

]
∑N
i=0 pi

∑∞
j=1 qij

[
j
λ
+ TSi

+
j+λTSi
µ−λ

] (26)

where λTSi
is the mean value for the Poisson-distributed

value X . The authors do not provide an evaluation result of
the model.

As a summary, similar to the VM power consumption
models, the server power consumption models take a di-
versity of input parameters for the estimation task. Among



these are utilization indicators pertaining to the CPU and
the memory subsystems, which indicate that these subsystems
are the predominant consumers of the overall power supplied
to the server. Table III summarizes the power consumption
estimation models for an entire server.

VII. DISCUSSION

In all of the models we considered so far, there are devia-
tions between the estimated power consumption and the actual
power consumption obtained by some means (direct or indirect
measurement). We refer to this deviation as an estimation
error. The margin of this error is between 0% (reported in
[20]) and 15% (reported in [45], [20]). This section discusses
three of the factors that affect the estimation error significantly,
namely, (A) the choice of model input parameters, (B) the
model training techniques and the choice of benchmarks or
applications for the training and the evaluation purposes, and
(C) the reference power with which the estimated power is
compared.

A. Model Parameters

The estimation error strongly depends on the parameters
chosen as model inputs – all of the models use either OS-
provided metrics, PMC, or a mixture of these. In a contempo-
rary CPU, a large amount of hardware related events can be
captured with performance monitoring counters, but knowl-
edge of the application/benchmark is necessary to choose the
appropriate ones and to establish a meaningful correlation
between them and the power consumption of the system
under consideration. Whereas there are means to automatically
identify the appropriate parameters, only a few of the proposed
approaches select model parameters this way: McCullough
et al. [44] employ canonical correlation analysis (CCA) to
select the most relevant events out of 884 countable events and
metrics for an Intel Core i7-820QM processor running a Linux
2.6.37 kernel. The authors include all of the OS-provided
metrics because of the flexibility associated with them during
event reading. Zhu et al. [38] employ kernelized CCA to select
the most relevant OS-provided metrics. Unlike McCullough
[44], they do not consider performance monitoring counters,
however.

Bertran et al. [26] point out that automatic selection of PME
does not necessarily lead to a reduced estimation error. How-
ever, conventional benchmarks – such as the SPEC benchmark
suites – stress several architectural components of a CPU in
parallel but not in equal proportions. An automatic selection of
PME will choose those events that represent the most stressed
components. Thus, the model gets biased towards the training
applications. As a solution they propose to train the model with
microbenchmarks that stress CPU components in isolation.
Their results shows a comparatively small and predictable
estimation error – from <1% to 6%. Their approach is tested
using the entire SPECcpu2000 suite. Nevertheless, for the
LMBENCH benchmark that is deigned to test the memory
bandwidth, their model produces a larger estimation error –
up to 20%. This is explained by the presence of active power
components in the CPU that are not captured by their model.

Of all the employed PMEs, the one most frequently used
and which is highly correlated with the power consumption of
a processor is the instructions retired event [32], [13], [42],
[27]. Nevertheless, Bircher et al. [33] argue that the event
does not account for instructions that are aborted even though
aborted instructions may have their own share of the CPU
power consumption. The authors show that the instructions
fetched is a more accurate choice in this case.

Interestingly, all of the considered CPU power consumption
models employ hardware-provided model inputs (PMCs). In
contrast, all except one of the models for server power con-
sumption employ OS-provided metrics as their input parame-
ters. This is most probably due to the fact that OS-provided
metrics are much easier to obtain and yet provide sufficient
insight into the overall power consumption characteristics of a
server. Hence, the quality of a model does not depend on the
model input parameters alone, but also on how well the chosen
inputs reflect workload variability. Bertran et al. [26] define
the term responsiveness as the model’s ability to capture or
reflect changing features in a power consumption. Where little
variation is expected, simple models can be sufficient, because
workload bias as criticized in [26], [27] has little effect on the
estimation error. A clear advantage of OS-provided metrics is
their portability. In contrast, availability of PMEs metrics is
only guaranteed for a very small set of events [22], even so,
consistent semantics is not usually guaranteed across all CPU
models and families [25].

B. Choice of Model Training Techniques

Another factor that influences the estimation error is the
statistical tool chosen to establish a relationship between the
input parameters and the power consumption. Most of the pro-
posed models apply linear regression to fit model parameters.
The minimum average estimation error that is reported for a
linear model is 1.5% while the maximum is 10% [13]. For the
nonlinear models the minimum estimation error is < 1% [15]
and the maximum is 6.67% [11]. It must be remarked that there
is a trade-off between the estimation accuracy and the com-
putational complexity. Linear models are simpler to process
than nonlinear models. Lewis et al. [46] show that linearity
does not hold for all cases and that nonlinear behavior of a
time series is inherently chaotic8. Therefore, they propose a
technique called Chaotic Attractor Prediction, complementary
to conventional auto-regressive or moving-average methods.
Depending on the benchmark and the system under test, their
approach produces an improvement on the average estimation
error between 0.1% and 4.8% compared to the linear auto-
regressive method, and between 1.4% and 8.3% compared to
the auto-regressive moving average (ARMA) method.

In two separate cases linear and nonlinear models are com-
pared [44], [42]. In the first case, Rivoire et al. [42] evaluate
three different power consumption models: The first model is
a nonlinear model and uses the CPU utilization as a metric for
the estimation task (as proposed by [15]), the second is a linear
model (as proposed by [30]) using CPU and disk utilization,
and the third model is a linear model (“MANTIS”) using PMC

8Small variations in the input variables lead to very diverse outcomes.



Approach System Under Test Model Inputs Training Technique Benchmarks/Applications Estimation Error

Heath et al. [30] Intel Pentium 3

CPU utilization, network
bandwidth, disk
bandwidth, maximum
number of concurrently
open sockets

linear regression micro benchmark (not speci-
fied) 1.3% avg; 2.7% max

Economou et al.
[20]

Intel Itanium 2 (Madi-
son); AMD Turion 64
ML-40 (Lancaster)

CPU utilization; memory
accesses; disk I/O rate;
network I/O rate

linear programming
SPECint2000, SPECfp2000,
SPECweb, SPECjbb, stream,
matrix multiplication

Itanium: [0%, 15%]
avg; Turion: < 5%

Fan et al. [15] Intel Xeon Netburst
(not specified) CPU utilization n.n. Google Web Search, GMail,

Mapreduce < 1% avg1

Abbasi et al. [9] Intel Xeon Dual Core
(Yonah) CPU utilization linear regression SPECweb2009 –

Rivoire et al. [42]

Intel Xeon E5345
(Clovertown); Intel
Itanium 2 (Madison);
AMD Turion 64
ML-34 (Lancaster)

CPU utilization; unhalted
clock cycles; instructions
retired; LLC references;
memory bandwidth; float-
ing point instructions

linear regression
SPECcpu (year not specified),
SPECjbb, stream, ClamAV,
Nsort

8% avg (SPECfp);
9.5% avg (SPECint);
1.5% avg (stream)2

Gandhi et al. [40]
Simulation; reference
values from Intel Xeon
E5320 (Gainestown)

request arrival rate λ; state
transition times; number
of queued jobs

calculation of expected
value of power con-
sumption E[P ]

n.n. –

Petrucci et al.
[43]

Intel Core i7 (Ne-
halem); Intel Core i5
(Nehalem); AMD Phe-
nom II X4; AMD
Athlon 64 X2, Intel
Core 2 Duo (not spec-
ified)

CPU utilization, CPU fre-
quency

quadratic relationship
between utilization and
frequency assumed

httperf
CPU util: ≤ 1.5% avg,
8.3% max; CPU freq:
≤ 1.7% avg

1 According to [42] the average estimation errors are 2.25% for SPECfp, 4.25% for SPECint, and 14.25% for stream, respectively.
2 According to [44] the average estimation error is 15% for SPECfp.

Table III
A SUMMARY OF THE MODELS FOR THE ESTIMATION OF THE POWER CONSUMPTION OF AN ENTIRE SERVER.

in addition to CPU and disk utilization (as proposed in [20]).
All models are intended to estimate the power consumption of
an entire server. The models are tested on several platforms,
among others, a high-performance Xeon server (2x Intel
Xeon E53459). On each system, five benchmarks are run to
evaluate the models: SPECfp, SPECint and SPECjbb (as CPU-
intensive workloads), stream (as a memory-bound workload);
and ClamAV virus scanner, Nsort, and SPECweb (as an I/O-
intensive workload). For the Xeon-based system, MANTIS is
reported to have an average estimation error ranging between
1.5% (for the calibration phase and the stream benchmarks)
and 9.5% (for the SPECint benchmark suite). It is remarkable
that for the CPU-intensive SPEC benchmark, MANTIS –
which includes PMC –, results in a higher estimation error
than a nonlinear model that solely uses CPU utilization [15]:
For SPECint benchmark the estimation error of the nonlinear
model is 4.25% while it is 2.25% for the SPECfp benchmark.
In contrast, the error in MANTIS is 8%. This indicates that
PMC-based models are not necessarily more accurate than
models based on OS-provided inputs, but that accounting
for nonlinear properties reduces the estimation error even
when abstract model inputs are employed. However, MANTIS
performs better for the stream benchmark (1.5% average
estimation error) while the nonlinear model of [15] has an
average estimation error of 14.75%. This is most likely due
to the fact that the CPU utilization is not a good indicator of
the memory power consumption.

MANTIS is also evaluated by McCullough et al. in [44]. For
best comparison, we consider their results for the multi-core

9Quad-core CPU from the Clovertown series, based on the Core microar-
chitecture

system (Intel Core i7-820QM10) and the SPECfp benchmarks
(povray, soplex, namd, zeusmp, sphinx3). The average estima-
tion error is 4.23% which agrees with the observation made
in [42]. However, for other benchmarks, MANTIS performs
poorly – up to 15% estimation error. McCullough et al. explain
that this is due to the existence of “hidden states” in the
multi-core CPU producing nonlinear behavior that cannot be
captured by the model.

C. Reference Power
The reference power with which a model’s output is com-

pared should also be taken into account to understand how the
estimation error is quantified. Most of the proposed models
take the overall AC power consumption as their reference
point [27], [42], [6], [12], [15], [30], [13]). This may work
well for estimating the overall power consumption of a server,
but for the CPU and VM models, this approach disregards
the inefficiency of the power supply unit, which amounts to a
loss of up to 35% of the AC power drawn by a server [47].
Commercially available power supplies are designed to have
an optimal efficiency when operated at full load, which is not
always the case with most real world servers. Therefore, the
best approach is to take as a reference the power that leaves
the voltage regulators supplying the core voltages to the CPUs.
This, however, complicates the measurement task and does not
scale well for estimating the power consumption of multicore
processors.

In view of the three factors we considered, while all the
models we presented exhibit competitive qualities, we find

10Quad-core CPU from the Clarksfield series, based on the Nehalem
microarchitecture. Nehalem is the succesor of the Core microarchitecture.



that three models stand out in terms of reproducible results
and portability. These are, the model of Zhu et al. [38] for
estimating the power consumption of virtual machines and
the models of Fan et al. [15] and Economou et al. [20] for
estimating the power consumption of an entire server. These
models have been tested on different server platforms and
with different types of benchmarks and proved to be reliable.
Moreover, the estimation error for these models reported by
different authors have been consistent.

VIII. CONCLUSION

This paper provided a comprehensive survey of the proposed
power estimation models. Most existing models take hardware
performance counters as their input and apply regression tech-
niques. The selection of model inputs is strongly dependent
on the workload type and the processor architecture. Whereas
most of the models are trained and tested with standard
benchmarks (for example, SPECcpu2000, SPECcpu2006), in
reality, the workload of Internet-based servers is variable both
in terms of its type and size. While this is the case, to the
best of our knowledge, very few models employ variable
workloads. None of them were tested, for example, with the
SPECpower2008 benchmark.

Furthermore, the relationship between the input parameters
and the power consumption is static. Some models provide
alternative expressions for different workloads, but the useful-
ness of this approach is limited when the workload is dynamic.
Instead, a feedback system or a belief revision mechanism
is more realistic to implement as is done in probabilistic
parameter estimation. For example, recursive estimation and
error correction approaches using Bayesian Estimation or
minimum Mean-Square Estimation [48] can be very useful.
This also means that instead of pursuing elaborate and detailed
deterministic approaches only, probabilistic approaches should
also be investigated in future. Another missing aspect in the
literature is examining the complexity of proposed models and
the latency of estimation – a model’s usefulness should be
qualified not only by its accuracy but also by its resource
consumption and the latency of estimation. Therefore, equal
emphasis should be given to these nonfunctional aspects.
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