
Query Matching for Report Recommendation

Veronika Thost
TU Dresden

Faculty of Computer Science
01062 Dresden, Germany

thost@tcs.inf.tu-
dresden.de

Konrad Voigt
SAP AG

Chemnitzer Strasse 48
01187 Dresden, Germany
konrad.voigt@sap.com

Daniel Schuster
TU Dresden

Faculty of Computer Science
01062 Dresden, Germany
daniel.schuster@tu-

dresden.de

ABSTRACT
Today, reporting is an essential part of everyday business
life. But the preparation of complex Business Intelligence
data by formulating relevant queries and presenting them
in meaningful visualizations, so-called reports, is a challeng-
ing task for non-expert database users. To support these
users with report creation, we leverage existing queries and
present a system for query recommendation in a reporting
environment, which is based on query matching. Target-
ing at large-scale, real-world reporting scenarios, we propose
a scalable, index-based query matching approach. More-
over, schema matching is applied for a more fine-grained,
structural comparison of the queries. In addition to inter-
actively providing content-based query recommendations of
good quality, the system works independent of particular
data sources or query languages.

We evaluate our system with an empirical data set and
show that it achieves an F1-Measure of 0.56 and outperforms
the approaches applied by state-of-the-art reporting tools
(e.g., keyword search) by up to 30%.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—information filtering, selection
process

Keywords
Query Matching; Query Recommendation; Business Intelli-
gence

1. INTRODUCTION
Today, the collection and processing of large amounts of

data has become important in various fields. In line with
this is the need for extracting and preparing the often com-
plex data for analysis and presentation; and, reporting has
become an essential part of everyday business life, recently.
For that reason, however, reporting is more and more done

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2505562.

by business experts themselves (i.e., instead of database ex-
perts) [13]. For them, reports represent a means to visualize
various facts and complex calculations on their specific data
for presenting it to others in everyday business.

Reporting thus makes out an integral part of business. Es-
pecially for non-expert database users, however, the creation
of reports represents a major challenge. In particular, the
report query must cover the relevant Business Intelligence
(BI) data and therefore include more complex constructs
such as filters and groupings in SQL. These specifics of the
data are then to be reflected in appropriate visualizations,
which convey the knowledge as intended.

To ease the complicated task of report creation, the reuse
of reports (i.e., applying the same visualization or query
on different data) has become common practice. People
look for and try to adapt existing queries or copy visual-
izations of colleagues. However, doing so, they encounter
several problems. The first challenge are the large amounts
of existing reports, where the finding of relevant samples to
adapt is hard. It is also not clear how the comparison of
reports and queries in different formats and languages—to
find good samples—can be done independently of specific
tools. In addition, semantic differences and inconsistencies
between queries need to be considered. There are, for ex-
ample, different design possibilities to describe semantically
equivalent concepts. Moreover, the data a query describes
may be domain-specific, which is reflected in the language
used, too. It is not possible to cope with these syntactic and
semantic differences without a fine-grained and comprehen-
sive consideration of the queries.

Today’s reporting tools provide only few means to alle-
viate the difficulties of the users; for instance, with visual
query builders [2]. Additionally, they comprise add-ons such
as keyword search [2] or auto completion mechanisms [3, 2],
and recommender systems are investigated [9, 16]. Never-
theless, predefined example queries are used in practice [6,
4].

In this paper, we take up this practice of the users and
propose a system for automatic recommendation of proven
existing queries, which is integrated in the reporting envi-
ronment Remix [22]. In this way, we encourage collabo-
ration and sharing of reports, motivate reuse, and provide
substantial support for the everyday reporting tasks in busi-
ness. When a user is preparing a data source, Remix com-
pares the query of the user to queries from existing reports
and recommends similar queries and corresponding visual-
izations to the user. The key contribution of this paper is the
automated comparison of queries, the so-called query match-

ing. Instead of a simple syntactic comparison (e.g., keyword
or text search) as it is applied by today’s reporting envi-
ronments, Remix provides a combined, content-based (i.e.,
focusing on the information contained within the queries)
approach for matching queries. Working on an abstract rep-
resentation of the queries, our system is independent of spe-
cific report formats that use particular query languages. To
handle the large numbers of reports to be considered in real-
world reporting environments, our system first uses a scal-
able filtering technique that applies a coarse-grained syn-
tactic query comparison. The specific, nested structure of
report queries is subsequently addressed with a fine-grained
matching step based on schema matching.

We implemented this query matching approach in the
Remix prototype and evaluated it on two empirical datasets
to demonstrate that Remix interactively provides query rec-
ommendations of good quality (i.e., it correctly identifies
queries to be recommendations and ranks them accordingly).
In particular, it achieves an F1-Measure of 0.56 and with up
to 30% outperforms the approaches applied by state-of-the-
art reporting tools.

The paper is structured as follows: Section 2 describes a
motivating example of reporting in Remix, and Section 3
gives an overview of related work. We present the query
matching part of the Remix system in Section 4 and subse-
quently describe the evaluation in Section 5. Finally, Sec-
tion 6 concludes the paper.

2. MOTIVATING EXAMPLE
In this section, we describe a motivating example of using

Remix to support query formulation. Consider the follow-
ing SQL query, from now on called original query, which
was created in a real reporting environment and looks for
the revenue per industry (selected with column BRAN1) of
company org.ai in Chicago. It might be issued by a new
employee who wants to create a corresponding report.

SELECT SUM(”REVENUE”) AS ”REVENUE”,

”BRAN1.description” AS ”BRAN1”

FROM ” SYS BIC”.”org.ai/CA AI RELATIONSHIP”

WHERE (”LOC01” = ’CHICAGO’)

GROUP BY ”BRAN1.description”

ORDER BY ”REVENUE” DESC

LIMIT 100

Note that the names used are rather cryptic and one has
to be familiar with the database (which can contain several
tables with hundreds of columns) or browse through it to
formulate such a query. Also note that we restrict the ex-
amples in this paper for reasons of space and clarity—queries
of real reports are usually much larger (e.g., a word count
of 550 is not unusual).

Assume now, though being entirely valid, the above query
does return an incomplete result obviously missing tuples. If
similar queries were created in the company before (e.g., in
other departments) and stored within the system, Remix—
upon request—would provide them as recommendations. Two
such recommendations are given below.

SELECT SUM(”PROFITMARGIN”) AS ”PROFITMARGIN”,

”BRSCH.description” AS ”BRSCH”

FROM ” SYS BIC”.”org.ai/CA AI RELATIONSHIP”

WHERE (”LOC01” = ’Phoenix’ OR ”LOC01” = ’PHOENIX’

OR ”LOC01” = ’PHoenix’)

GROUP BY ”BRSCH.description”

ORDER BY SUM(”PROFITMARGIN”) DESC

LIMIT 500

SELECT SUM(”GROSSREVENUE”) AS ”GROSSREVENUE”,

SUM(”REVENUE”) AS ”REVENUE”,

”BRSCH.description” AS ”BRSCH”

FROM ” SYS BIC”.”org.ai/CA AI RELATION MONITOR”

WHERE (”NAME1” = ’Lear Technologies Ltd.’)

GROUP BY ”BRSCH.description”

ORDER BY ”GROSSREVENUE” DESC, ”REVENUE” DESC

LIMIT 100

Although these recommendations consider different sections
of the company’s database, they are intuitively similar to
the original query. For instance, the first query contains a
hint of how the filter condition should be adapted in order
to include all the relevant data. Obviously, the spelling of
city names varies within the database of org.ai. The second
recommendation shows that there is a column GROSSREV-

ENUE in the database, which our employee decides to in-
clude in his report, too. The result of adapting the original
query is the following.

SELECT SUM(”GROSSREVENUE”) AS ”GROSSREVENUE”,

SUM(”REVENUE”) AS ”REVENUE”,

”BRAN1.description” AS ”BRAN1”

FROM ” SYS BIC”.”org.ai/CA AI RELATIONSHIP”

WHERE (”LOC01” = ’CHICAGO’ OR ”LOC01” = ’Chicago’

OR ”LOC01” = ’CHicago’)

GROUP BY ”BRAN1.description”

ORDER BY ”GROSSREVENUE” DESC, ”REVENUE” DESC

LIMIT 100

Finally, Remix would recommend a suitable visualization
to our employee and integrate the different components into
a complete report.

Note that the tasks for remix are complex. First, it has to
cope with heterogeneous queries of arbitrary reports (e.g., in
different formats) and to process the possibly large numbers
of queries efficiently. Also, the matching should be fine-
grained and concentrate on different kinds of information
contained within the queries. For instance, a simple keyword
search for ” SYS BIC”.”org.ai/CA AI RELATIONSHIP” would
not retrieve the second recommendation, because the latter
does not contain exactly this relation name. However, the
recommendation is definitely similar to the original query
and, if included, would improve the quality of the result.

In summary, the challenges for a query recommendation
system for Remix are to process the (1) heterogeneous and
(2) large numbers of report queries in the repository effi-
ciently in order to (3) provide content-based query recom-
mendations of good quality. Thus, our requirements extend
those of existing systems, which are described in the next
section.

3. RELATED WORK
In this section, we describe related work in the fields of

content-based query recommendation, auto completion, and
matching. We further review a matching technique that can
be applied for matching queries.

3.1 Query Recommendation
The automated recommendation of similar queries is a

very recent area of research. Database management systems
(DBMS) generally do not offer such functionality. Neverthe-
less, they often maintain query repositories [4, 6] with well-

defined query examples or query logs [2] where the user can
manually search for relevant queries—without being pointed
to selected queries.

In [15], Khoussainova et al. describe a query log with en-
hanced browsing functionality, an extended keyword search;
but the identification of relevant queries in the log, which
is based on rather low-level matching techniques (i.e., the
functionality provided by the underlying DBMS), is only re-
ferred to marginally.

The goal of the QueRIE recommender system [9] is to de-
termine queries in the log that fit into the session of the cur-
rent user. Thereby, the query similarity is computed by com-
paring the parts of the database addressed by the queries.
However, though considering the queries on a more fine-
grained level, by parsing and decomposing them, QueRIE
basically performs a string comparison.

Similar methods are applied by content-based recommen-
der systems for multidimensional databases, which consider
properties of the query as a whole (e.g., result measures,
the selection, etc.) and compute the similarity value for two
queries by using string-based similarity measures [16]. Note
that, in this context, Marcel et al. [16] raise an important
issue by stating that the quality of the recommendations
needs to be assessed based on real users and cases, which
has not been done, to date.

As with query recommendation, query logs are consid-
ered as basis for recommendations by auto completion ap-
proaches, which are another kind of service provided on top
of DBMS.

3.2 Auto Completion
In contrast to recommender systems, which recommend

entire queries, auto completion systems focus on recom-
mending query parts. Several commercial systems provide
auto completion regarding tables or columns [3, 2], but more
elaborate completion approaches are still subject of research.

Yang et al. [24] automatically complete a query with join
operations based on the requested attributes. The paths
of joins are found by mining the query log and applying a
predefined quality measure (e.g., the share of queries in the
log that contain the selected path).

SnipSuggest [14] is an interactive query completion sys-
tem, which takes various parts of the query (e.g., tables
and selection conditions) into consideration. By keeping the
queries from the query log within a single graph structure
capturing structural relations between the queries, valid and
probable completions can be recommended to the user.

FIMIOQR [13] is an auto completion system for multi-
dimensional queries. Similar to the approach of SnipSug-
gest, its recommendation of query parts for a partial query
is based on mining the query log for the parts that most
frequently complement those of the partial query.

3.3 Others
Query matching has been studied early in the area of

query optimization [12]. However, these approaches are usu-
ally exhaustive—and thus complex—comparisons regarding
only a single DBMS and rather simple queries (e.g., Select-
Project-Join queries). Recent works (e.g., [21, 25]) also ap-
ply more efficient methods, but usually focus on physical
properties (e.g., the cost of execution) instead of the intent
of the queries.

Apart from the fields already mentioned, different kinds
of queries (e.g., keywords or natural language sentences) are
completed, compared, and translated in several areas such
as keyword search [18] and natural language interfaces to
databases [17] . However, such queries are of a nature very
different from complex report queries.

The approaches presented above usually address the spe-
cific syntax and semantics of queries by parsing them, and
often also normalizing them, before processing. Instead of
considering the query parts individually, the auto comple-
tion approaches described explicitly take into account struc-
tural similarities between queries by using graphs for query
representation. However, these graphs would be consider-
ably greater in size and more complex if more heterogeneous
queries of arbitrary complexity and data sources were con-
sidered. Also, the comparison of queries is simplified in the
context of a single DBMS, because term equality can be used
for a straightforward comparison of query parts that never-
theless leads to results of good quality. Hence, we need to
consider further methods for Remix.

3.4 Schema Matching
To obtain a more general and at the same time structural

comparison of the queries, we consider schema matching.
Schema matching is a research area in the database commu-
nity, which contains a large body of work on various match-
ing approaches (e.g., based on linguistic methods, structural
analysis, or domain knowledge). Further, there are several
matching systems [8], which could be applied for matching
queries, too. However, for query matching the existing sys-
tems need to be adapted: the missing full automation of
the matchers, which is caused by a lack in preciseness and
completeness, and their ignorance of the semantics of the
query language would otherwise lead to unsatisfactory re-
sults. W.r.t. the scalability required for Remix, the usually
quadratic (or larger) complexity of schema matching needs
to be addressed, too.

Section 2 described the challenges for a query matching
system to interactively provide content-based recommenda-
tions of good quality within Remix. However, this section
showed that the existing approaches usually are either ef-
ficient (for interactivity) or precise (for quality). For that
reason, we combine the methods applied by state-of-the-art
approaches, extend, and augment them, for creating a query
recommendation system for Remix. This is described in the
next section.

4. QUERY MATCHING IN REMIX
In this section, we present the query recommendation part

of Remix, which is based on a combined query matching ap-
proach. Remix itself is a reporting environment with spe-
cial focus on report recommendation and integration, as de-
scribed in Section 2. It maintains a report repository, where
it stores reports created in the past and also separates the
different components of the reports: links to data sources,
queries regarding such data sources, and visualizations of
these queries. Upon request, it matches a given query of a
user to the queries in the repository and provides the most
similar queries as recommendations to the user.

This query matching procedure is shown in Figure 1. Its
input consists of the user-query, and the system itself con-
tains the set of possible query recommendations. First, the
queries are pre-processed to abstract from specific query lan-

Query REL NAMES PRO ATTRS SEL ATTRS

q0 SYS BIC.org.ai/CA AI RELATIONSHIP REVENUE,BRAN1.description LOC01

r1 SYS BIC.org.ai/CA AI RELATIONSHIP PROFITMARGIN,BRSCH.description LOC01,LOC01,LOC01

r2 SYS BIC.org.ai/CA AI RELATION MONITOR GROSSREVENUE,REVENUE,BRSCH.d. . . NAME1

Table 1: Selected features of the example queries

 Matching

I Feature Matcher II Schema Matcher Preprocessing Query Recommen‐
da:on

Queries

Input Output

Figure 1: The query matching approach of Remix

guages. This pre-processing has the goal to prepare and fa-
cilitate the matching phase. In order to enable a comparison,
it parses queries in different source formats and languages
and translates them into a common representation based on
relational algebra. Note that the current implementation of
our system supports only SQL queries, though.

The main processing is then performed by a combina-
tion of two matching algorithms, also called matchers. In
particular, we apply the Feature Matcher and the Schema
Matcher . The former only applies a coarse-grained com-
parison of the queries and serves as scalable filter for the
possibly large amount of queries. The latter, in contrast,
performs a fine-grained and, in particular, structural com-
parison to capture subtle differences and similarities between
the queries.

The output of the system is an ordered subset of the best
recommendations. In the following, we give details about
the two matchers.

4.1 The Feature Matcher
The Feature Matcher is applied in the beginning of match-

ing in order to filter out queries that are not relevant for the
final recommendation, because they are not similar to the
original query. It is based on similarity search, a matching
technique that, given a set of objects, looks for the most sim-
ilar objects (i.e., queries, in our case). In this context, we
introduce features, the characteristics of the queries that are
compared by the matcher. Then, we give a detailed overview
of the comparison and subsequent similarity calculation for
the queries, the actual query matching.

4.1.1 Features
For a coarse-grained comparison of the queries, the Fea-

ture Matcher concentrates on general characteristics of que-
ries, which can be extracted for every query (e.g., the data
sources it addresses, the functions it applies, etc.). We ex-
tract these properties from the queries and record them tex-
tually as so-called features, as it is demonstrated in Exam-
ple 1. A complete overview of the features considered in
Remix is given in Appendix A.

Example 1. Consider the first version of the query given
in Section 2. Table 4 shows several features (i.e., the names
of the relations addressed and those of the attributes in the

projection and selection) we extract from it (q0) and from
the two recommendations (r1 and r2) proposed for q0.

Since we record the features of the queries textually, espe-
cially those of the queries in the repository, and because we
use equality as comparison criterion, we can store them eas-
ily after extraction and apply index search for comparing
them.

4.1.2 Comparison and Similarity Calculation
We apply similarity search as a textual comparison of fea-

tures such that it can be realized with an inverted index
[7], a data structure that generally supports fast full text
search on large databases (e.g., a set of documents). With
this application of index search, which achieves logarithmic
complexity, the Feature Matcher efficiently realizes the com-
parison of the extracted features and can be used as scalable
filter for queries not relevant for the final recommendation.
For that, the features of the queries to be compared are
extracted and stored separately, with references to the re-
spective queries, in an inverted index. For the comparison of
two queries, the index then is queried by transforming one
of the two queries in a search query for the index. This is
demonstrated in Example 2.

Example 2. Below, q0 has been transformed in a query
for index search. The index considered uses the three features
REL NAMES, PRO ATTRS, and SEL ATTRS for index-
ing. This indexing of the repository queries is illustrated for
r1, which is shown how it is represented in the index.

q0:
REL NAMES : SYS BIC.org.ai/CA AI RELATIONSHIP

OR PRO ATTRS :REVENUE

OR PRO ATTRS :BRAN1.description

OR SEL ATTRS :LOC01

r1:
REL NAMES : SYS BIC.org.ai/CA AI RELATIONSHIP

PRO ATTRS :PROFITMARGIN,BRSCH.description

SEL ATTRS :LOC01,LOC01,LOC01

Since the index-based comparison is based on the text
recorded in the features, the function determining the simi-
larity between two queries has to concentrate on this infor-
mation. We consider an extended version of term frequency-
inverse document frequency (TF-IDF), the approach com-
mon in text search, and, as a basis, use the formula described
in detail in [5], which is applied in Apache Lucene [1], a li-
brary for index search. Further, we adapt and extend the
approach of Apache Lucene in three ways, which has been
shown to be of advantage [23]:

• We consider a simplified version of the formula in [5],
because we omit the boosting of specific terms or doc-
uments (i.e., queries). The boosting of specific infor-
mation would make assumptions about the input (i.e.,

what parts are more important), which generally can-
not be made w.r.t. an arbitrary set of queries.
• However, in order to stress similarities between the

queries, the similarity calculation only considers fea-
tures that occur at least once in the search query and
one other indexed query. Considering a particular set
of queries, we thus get more distinct similarity values.
• To relativize the directionality of the similarity calcu-

lation, we restrict the similarity values to be in the
interval [0..1] and can hence adapt them to become
symmetric. For that reason, we divide the value given
by the formula in [5] by the similarity of the search
query to itself and take the average of the two values
for a pair of queries (i.e., the repository query to be
compared is considered as search query, too, and the
user-query is indexed). Note that this also makes the
results of different matchers comparable.

Example 3 demonstrates the similarity calculation.

Example 3. Consider again the queries q0, r1, and r2.
In this example, a similarity value is computed for the queries
r1 and r2 regarding q0 (i.e., we assume, our index contains
only these three queries). For the corresponding formula
fscore, refer to [5]. First the normalizing factor, common
for all values, is calculated as

qNorm(q0) =
1√

idf(SY S . . .) + idf(REV ENUE)2 + . . .

=
1√

3 ∗ (1 + ln 3
2+1

)2 + (1 + ln 3
1+1

)2

= 0.45

Then, the individual values are calculated as for the two
examples below:

fscore(q0, r1) =
2

4
∗ qNorm(q0)

∗ (idf(SY S . . .)2 +
√

3 ∗ idf(LOC01)2)

= 0.61

fscore(q0, r2) =
1

4
∗ qNorm(q0) ∗ idf(REV ENUE)2

= 0.11

Similarly, such values can be computed for all queries stored
within Remix (i.e., q0, r1, and r2, in our case) leading to the
matrix shown below. Note that the values calculated above
correspond to the entries in the first row of the matrix.

q0 r1 r2

q0 2.23 0.61 0.11
r1 0.44 2.56 0.11
r2 0.17 0.17 1.99

After adapting the matrix regarding the interval [0..1] (i.e.,
all values of a row are divided by the maximum of that row)
and taking the average of all matrix entries that should be
symmetric, the matrix looks as follows.

q0 r1 r2

q0 1.00 0.22 0.07
r1 0.22 1.00 0.07
r2 0.07 0.07 1.00

Note that the normalization of the values described above

would not be necessary since we use the Feature Matcher

in Remix only as filter. Hence, the ranking (obtained by
function fscore) would be sufficient for our purpose, which
is to forward the best ranked queries as recommendations to
the Schema Matcher . Also, the normalization requires the
original query to be contained within the index. Thus, the
index has to be recreated if this is not the case. Nevertheless,
the normalization has been shown to be clearly beneficial for
the quality of our system.

In particular, a query r is eliminated and not consid-
ered further as recommendation for a query q if the sim-
ilarity value calculated by the Feature Matcher for a pair
of queries (q,r) is 0. In addition, the Feature Matcher can
be configured with one of two filter-parameters, maxN or
threshold. Configured with a maxN n, it ranks the queries
after calculating the preliminary similarity values as shown
in Example 3 and forwards the best n queries to the Sche-
ma Matcher . Configured with a threshold t (e.g., obtained
using training data), it forwards only those queries to the
Schema Matcher for which the computed value is greater
than or equals t. Note that for the latter, the normalization
has to be carried out.

The Feature Matcher serves well to reduce the large set of
possible recommendations in the system repository. How-
ever, the features only partially capture the syntactic infor-
mation contained in the queries. Especially, structural re-
lations regarding individual parts of the query (e.g., nested
selection conditions or properties of subqueries, which count
to those of the surrounding query) are not reflected and thus
not considered during similarity calculation, because every
feature is recorded only once and in a rather simple textual
form. In order to take also more subtle differences and sim-
ilarities between queries into account, we additionally ap-
ply the Schema Matcher , which explicitly regards the query
parts in the context of the structure.

4.2 The Schema Matcher
The Schema Matcher is applied for a more fine-grained

comparison and also determines the order of the final recom-
mendations by calculating similarity values. It is based on
different methods from schema-matching, which compares
tree structures. Therefore, we consider the parse trees of
the queries as the information to be matched. For compar-
ing these often deeply nested structures of report queries,
schema matching algorithms, also schema matchers are par-
ticularly suitable.

4.2.1 Query Schemas
The schema structure taken in this work, in essence, is

the parse tree of the queries. It is based, however, on the
abstract representation. The schema we create is further
augmented by making additional information (e.g., the name
of the query and data types) explicit. For instance, the
schema for q0 is displayed below.

Schema q0[ComplexRelation]
-Projection[Projection]
-REVENUE[Attribute]
-BRAN1.description[Attribute]

-Group[Group]
-BRAN1.description[Attribute]
-aggregationAttributes[List<ComputedAttribute>]

-REVENUE[ComputedAttribute]
...

...
-REVENUE[Attribute]
-SUM[AggregationOperator]

-Sort[Sort]
-REVENUE[Attribute]

-Selection[Selection]
-condition[BinaryCondition]

-LOC01[Attribute]
-’CHICAGO’[CHAR]
-EQ[ConditionOperator]

- SYS BIC.org.ai/CA AI RELATIONSHIP[Relation]

Since the schemas we create for the queries contain dif-
ferent sorts of information, the Schema Matcher applies not
only one but several distinct schema matchers for comparing
the queries.

4.2.2 Comparison and Similarity Calculation
The application of schema matching especially targets the

nested structure of report queries. Schema matching algo-
rithms, so-called schema matchers, map the elements of two
schemas that correspond semantically to each other. For
that, the cartesian product of element-to-element similarity
values v, with v ∈ [0..1], is computed between the schemas.
It constitutes a matrix of pair-wise similarity values. The
values in this matrix determine the degree of correspondence
between the pairs of elements. Elements that correspond to
each other are called matches for each other.

For such a structural comparison of two queries, the Sche-
ma Matcher makes use of several different schema matchers
by applying an entire schema matching system, the Auto
Mapping Core (AMC) [19]. The latter executes various
schema matchers in parallel and aggregates their results
based on different strategies. In preliminary experiments
[23], a specific combination of three matchers, which are de-
scribed below, turned out to best suit our query matching
approach. All three of them are based on the Name Matcher,
which compares the names associated with the schema ele-
ments and “matches schema elements with equal or similar
names” [20] by applying, for example, established string sim-
ilarity algorithms [10] or considering synonyms.

Weighted Name Matcher The Weighted Name Matcher
proceeds similar to the Name Matcher but breaks down
the element names into tokens.

Children Matcher The Children Matcher compares two
elements w.r.t. their direct successors, or children, in
the schema. Thus, it assumes two elements to be sim-
ilar if their children correspond to each other. Note
that, to determine the correspondence of the children,
their similarity has to be known (e.g., it may be com-
puted in advance with another matcher).

Leaf Matcher The Leaf Matcher matches two elements by
comparing all those of their successors that are leaves
(i.e., attributes in the schema). Hence, it classifies
two schema elements as similar if the attributes finally
descending from them are similar.

Note that the matchers described above represent a sub-
stantial improvement compared to the Feature Matcher , which
only considers term equality. They would, for example,
detect a correspondence between the two relation names
” SYS BIC”.”org.ai/CA AI RELATION MONITOR” and ” SYS

BIC”.”org.ai/CA AI RELATIONSHIP” considered in the ex-
ample of Section 2. Moreover, the Children and Leaf Matcher
regard relations between different query parts. Also note
that we take into account the issues to be considered when
applying schema matching to queries described in Section 3.
By applying a combination of different matchers, the defi-
ciencies of individual matchers, which only focus on a single
characteristic of the schemas, can be diminished, and even
an automated application leads to convincing results [23].
Further, the pre-processing helps to overcome the missing
awareness of query semantics. And since we apply a scal-
able filter in advance, the number of match-tasks for the
complex Schema Matcher can be kept constant.

Schema q0[ComplexRelation]
-Projection[Projection]
-REVENUE[Attribute]......

-Selection[Selection]
-condition[BinaryCondition]
-LOC01[Attribute]
-’CHICAGO’[CHAR]
-EQ[ConditionOperator]

- SYS. . .

Schema r1[ComplexRelation]
-Projection[Projection]...
-cond[BinaryCondition]
-LOC01[Attribute]
-PHoenix[CHAR]
-EQ[ConditionOperator]

- SYS. . .

Figure 2: An extract of the mapping of the Weigh-
ted Name Matcher for queries q0 and r1

Figure 2 shows (an extract of) the result of applying the
Weighted Name Matcher to compare q0 and r1. We compute
such a mapping using the three matchers described above
and then aggregate the mappings of the individual matchers
by taking the average value for each pair of elements between
the two query schemas (e.g., for mapping q0 and r1, we take
the average for each pair where the first element is in the
schema of q0 and the second in the schema of r1), as it is
proposed in [11]. In order to match only relevant element
pairs, we further consider only those pairs with a similarity
greater than a so-called selection threshold [11] and set the
remaining values to 0. This is demonstrated in Example 4.

Example 4. The below matrices show an extract of the
mapping between q0 and r1 obtained by applying the Weigh-
ted Name Matcher before (top) and after filtering the values
with a selection threshold of 0.7, which was shown to be of
advantage in [23].

Proj. · · · cond LOC01 PHoenix EQ SY S . . .

Proj. 1.00 · · · 0.20 0.20 0.40 0.10 0.14
REV ENUE 0.20 · · · 0.14 0.00 0.29 0.17 0.07
...

...
. . .

...
...

...
...

...
Sel. 0.60 · · · 0.22 0.11 0.22 0.11 0.20
condition 0.50 · · · 0.47 0.22 0.11 0.00 0.16
LOC01 0.20 · · · 0.00 1.00 0.14 0.00 0.13
′CHICAGO′ 0.20 · · · 0.14 0.12 0.14 0.00 0.18
EQ 0.10 · · · 0.00 0.00 0.14 1.00 0.02
SY S . . . 0.14 · · · 0.12 0.13 0.11 0.02 1.00

Proj. · · · cond LOC01 PHoenix EQ SY S . . .

Proj. 1.00 · · · 0.00 0.00 0.00 0.00 0.00
REV ENUE 0.00 · · · 0.00 0.00 0.00 0.00 0.00
...

...
. . .

...
...

...
...

...
Sel. 0.00 · · · 0.00 0.00 0.00 0.00 0.00
condition 0.00 · · · 0.00 0.00 0.00 0.00 0.00
LOC01 0.00 · · · 0.00 1.00 0.00 0.00 0.00
′CHICAGO′ 0.00 · · · 0.00 0.00 0.00 0.00 0.00
EQ 0.00 · · · 0.00 0.00 0.00 1.00 0.00
SY S . . . 0.00 · · · 0.00 0.00 0.00 0.00 1.00

Nevertheless, the resulting mapping of the query schemas
still consists of several values instead of one value expressing
the over-all similarity of the two queries. For that reason, the
individual values are combined into one single value using
a (slightly) adapted version1 of the function for a combined
schema similarity described in [11]. The resulting function
basically takes the average of all similarity values greater
than 0 and then takes the share corresponding to the el-
ements that are matched w.r.t. all elements of the two
schemas. Example 5 demonstrates its application.

Example 5. Consider again Example 4, for the result
of the Weighted Name Matcher after the application of the
selection threshold. Within that matrix only 4 entries are
matches. In addition, there are 14 other matches, which
are not displayed due to space restrictions. Apart from one
match with a value of 0.75, all matches have a value of 1.00.
Further, both the LOC01 and the EQ element in the schema
of q0 are matched three times, and the SUM element twice.
All other elements appear in only one match. Thus, 13 el-
ements of the source and 18 elements of the target schema,
take part in the mapping. Let Eq0 and Er1 denote the sets
of elements in q0 and r1, respectively, with |Eq0 |= 20 and
|Er1 |= 32. Then, the corresponding similarity value for the
queries is computed as:

ssim(Eq0 , Er1 ,Mq0,r1) =
17 ∗ 1.00 + 1 ∗ 0.75

18
∗ 13 + 18

20 + 32
= 0.59

After limiting the set of possible recommendations with
the Feature Matcher and applying the three schema match-
ers within the Schema Matcher the query recommendation
system of Remix would suggest the recommendations or-
dered as follows.

S = {(r2, 0.72), (r1, 0.59)}

5. EVALUATION
In this section, we present an extensive, empirical evalua-

tion of the query matching and recommendation in Remix.
To this end, we implemented the query recommendation sys-
tem prototypically in Java using amongst others the Apache
Lucene Search Engine Library [1] and the schema matching
system AMC [19] for the matching functionality. Moreover,
we compared our approach, Combined Matcher in the fol-
lowing, to the methods applied by state-of-the-art tools by
considering queries from real applications rated (w.r.t. their
qualification as recommendations), amongst others, by real
people.

5.1 Experiment Design
In particular, our experiments aim to show the following:

• The quality of both the Feature Matcher and the Sche-
ma Matcher described in Section 4 is better than meth-
ods provided by state-of-the-art systems (e.g., keyword
search).

1Specifically, we consider the matches as being undirected
(i.e., the computed matrix of similarity values is supposed to
be symmetric) and instantiate the function with a selection
function that takes the average of the similarity values of all
match candidates.

• The combination of the Feature Matcher and the Sche-
ma Matcher within the Combined Matcher outper-
forms the individual approaches. In particular, it in-
creases the quality of the Feature Matcher and solves
the scalability issues of schema matching.

The effectiveness of the individual approaches is shown
by comparing the results they delivered to the results of
two baseline approaches, the String Matcher and the Text
Matcher . In particular the String Matcher , which computes
the similarity value by relating the size of the largest com-
mon substring of two queries to the one of the longer of
them, represents the keyword search applied in state-of-the-
art DBMS. The Text Matcher maintains an index and per-
forms general text search thereby calculating the similarity
values based on TF-IDF.

To measure the quality of matching, the recommendations
R determined by a system are to be compared to those classi-
fied as recommendations in a reference set R′. According to
Do [11], there are three subsets describing the recommenda-
tions that were identified correctly, I, those that were falsely
classified as recommendations, F , and the recommendations
that were missed, M . Based on this classification, we con-
sider the following three quality measurements, all ranging
between 0 and 1, with 1 representing the best value:

Precision describes the accuracy of the result and is de-
fined as

pr =
|I|
|R| =

|I|
|I|+|F |

Recall describes the completeness of the result (i.e., the
share of correct recommendations that were found),
and is specified as

re =
|I|
|R′| =

|I|
|I|+|M |

F1-Measure is the harmonic mean of precision and recall
(to neglect none of them in favor of the other) and
specified as

F1 =
2 ∗ pr ∗ re
pr + re

For finding the best recommendations, however, it suffices
to regard the (sub)list of actual recommendations of a sys-
tem. Hence, we consider also the k topmost results using
the so-called precision@k [7].

Precision@k describes the accuracy of the result regarding
a given cutoff rank k=|S|, and is defined as

pr@k =
|I ∩ S|
|S|

The evaluation results presented are usually the average
values for all recommendation tasks in both datasets (i.e.,
naturally, the number of recommendation tasks corresponds
to the number of queries in a dataset). In addition, we
considered scalability. Therefore, we measured the runtime
during the evaluation executing all matchers on a usual office
PC using an Intel Core 2 Duo, four gigabyte RAM and a
Java 6 (32-bit) environment.

Property SQLT SDSS

Number of queries 43 150
Recommendations per query >3/>5/>10/>15 (in %) 61/49/28/2 96/87/52/29
Min/Max/Avg query length (word count) 4/42/18 6/82/38
Share of nested queries 7/43 0/150

Table 2: Statistics of the test data

5.2 Datasets
We evaluate Remix over two datasets with rather different

characteristics, shown in Table 2. To measure the quality of
query matching, our empirical datasets do not only have to
contain an appropriate number of real-world queries, but
must also contain details about the similarity between these
queries. According to Marcel et al. [16], such datasets did
not exist at the time of our experiments. Hence, we con-
ducted an empirical study [23] where database users rated
the similarity of query pairs on a scale of 1 to 4.

To get an overview of the characteristics of the individual
matchers, we first considered queries extracted from an SQL
tutorial as dataset SQLT, which we tagged by ourselves.
These queries contain rather different features of SQL and
have very different intends. Most of these queries are about
the business domain.

For the SDSS dataset, we chose a random sample of que-
ries extracted from the query log of the Sloan Digital Sky
Survey (SDSS) [6]. To obtain the corresponding similar-
ity values, we conducted an empirical study. The SDSS
maintains a large open database containing scientific data
about the universe. Its query log contains millions of SQL
queries issued by different users and also by bots. As prepa-
ration, we removed query duplicates, queries too long to be
grasped by the survey participants in an acceptable amount
of time (i.e., queries consisting of more than 350 charac-
ters), and erroneous queries, and took 150 queries as basis
for the SDSS dataset. We further determined query pairs
that neither query the same table or a corresponding view
nor use common attributes as not to be similar. This re-
duced the original 22,500 similarity values to be found to
about 9,000. In total, 121 people participated in the survey.
About 50% of them reported to have basic SQL knowledge,
40% had deeper, and 10% only rudimentary knowledge of
SQL. On average, the participants rated 82 queries. Con-
versely, the retrieved similarity values were averagely rated
by 1.2 people, who in about 70% of the 1,307 cases with mul-
tiple votes agreed in their rating. Altogether, the study lead
to a dataset of 150 queries with similarity values between all
of them.

Although the datasets described above consider distinct
domains and contain queries with rather different charac-
teristics, they have to be regarded critically; certainly, they
cannot reflect the diversity of the real world. And also the
similarity ratings, though retrieved empirically, are subjec-
tive by nature. Nevertheless, the data is suitable to show
the quality and performance of our combined query match-
ing approach compared to the methods applied by state-of-
the-art tools. The results of this comparison are given in the
next section.

5.3 Results
In this section, we first present the evaluation results re-

garding the quality of the recommendations and then give

an overview of the results concerning the scalability of the
individual approaches.

5.3.1 Quality
First, we configured our system using one third of the

sample data. This preliminary evaluation turned out that it
achieves best results with a filter-parameter of n = 20. Re-
call, this means that the Feature Matcher ranks the queries
after calculating preliminary similarity values and forwards
the best 20 queries to the Schema Matcher . The latter re-
calculates the similarity values for the 20 queries, and the
similarity values of the remaining queries, which are not con-
sidered by the Schema Matcher , are set to 0.

It turned out that all approaches considered have a very
similar performance w.r.t. the top k recommendations. An
overview of pr@5, pr@10, and pr@15 is given in Figure
3. Though the similarity of the results, only the Sche-
ma Matcher and the Combined Matcher achieve a pr@k
greater than 0.6. The Feature Matcher shows a better qual-
ity than the baseline approaches, but the differences seem
to be marginal; all values range between 0.5 and 0.6. This
induces that with all matching approaches, about 50% of
the top five recommendations are correct recommendations.

StringTextFeatureSchemaComb.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr@5 pr@10 pr@15

Figure 3: The evaluation of the query matchers
w.r.t. recommendation quality

StringTextFeatureSchemaComb.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr re F1

Figure 4: The evaluation of the query matchers
w.r.t. matching quality

However, Figure 4 shows that precision, recall and F1-
Measure clearly show differences in the matching perfor-
mance of the different matchers. Although all of the lat-
ter find the correct recommendations, which is indicated by
the high recall, their over-all matching performance differs
strongly. With F1-Measure values of 0.38, 0.47, and 0.56 for
the Feature, Schema, and Combined Matcher , respectively,
the increase in the value makes up about 10%. With a pre-
cision of 0.47, only the Combined Matcher is near 0.5. This
indicates that it is the only matcher where at least half of
all recommendations determined are useful.

5.3.2 Scalability
Figure 5 gives an overview of the time the systems need

for processing in dependence of the number of queries in the
systems. Note that the data confirms the specifications of
the complexity of the approaches, stated previously.

0 50 100 150 200

0

500

1,000

1,500

Input Size (nbr. of queries)

T
im

e
(m

s)

Comb. Schema Feature Text

Figure 5: The evaluation of the query matchers
w.r.t. scalability

The curves of the two baseline approaches both develop
rather steadily with only a slight increase with growing in-
put. Although it has to maintain the terms, the Text Matcher
requires less time than the String Matcher (not shown here)
—by using an index, it achieves logarithmic complexity.
Similarly based on an index, the Feature Matcher shows the
same development. However, since it is based on the ab-
stract representation of the queries, the pre-processing re-
quired by the approach leads to an increase of processing
time. Also the quadratic complexity of the schema match-
ers is reflected by the time they need for processing, which
even increases along the quadratic parable. Finally, the
Combined Matcher shows a logarithmic curve, too. Since
the filter-parameter n sets a bound for schema-matching,
its complexity is based on the indexing of the filtering.

6. CONCLUSION
In this paper, we presented a query recommendation sys-

tem for the reporting environment Remix, which is based on
query matching. Our system is motivated by the increas-
ing complexity of reporting in Business Intelligence and the
fact that this is often done by non-expert database users,
today. To interactively provide content-based query recom-
mendations of good quality to them, we proposed a hybrid
approach of query matching combining an efficient and, in
particular, scalable feature-based matcher as preliminary fil-
ter for the possibly large set of queries and a fine-grained

structural matcher based on schema matching. Moreover,
we evaluated our system on empirical datasets containing
real queries and similarity ratings obtained from real users.
Thus, we showed that it outperforms the methods applied
by state-of-the-art applications by up to 30%.

Future work on the system includes to focus on the partic-
ularities of report queries (e.g., to consider also multidimen-
sional queries and additional information about the reports
the queries come from) and to refine the existing matchers.
In particular, the comparison of the Feature Matcher cur-
rently based on term equality should be less restrictive (e.g.,
through clustering features with similar values). Further, it
would be interesting to consider query semantics also for
matching (e.g., to refine the ranking of syntactically very
similar queries).

7. REFERENCES
[1] Apache lucene. http://lucene.apache.org/.

[2] Aqua data studio.
http://www.aquafold.com/aquadatastudio.html.

[3] Databasespy - multi-database tool and sql editor.
http://www.altova.com/databasespy.html.

[4] Gene ontology. http://www.geneontology.org/.

[5] Lucene 3.5.0 api. - class similarity.
http://lucene.apache.org/core/3 6 0/api/all/org/
apache/lucene/search/similarity.html.

[6] Sloan digital sky survey. http://www.sdss.org/dr8/.

[7] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern
Information Retrieval. ACM Press / Addison-Wesley,
1999.

[8] P. A. Bernstein, J. Madhavan, and E. Rahm. Generic
schema matching, ten years later. PVLDB,
4(11):695–701, 2011.

[9] G. Chatzopoulou, M. Eirinaki, S. Koshy, S. Mittal,
N. Polyzotis, and J. S. V. Varman. The querie system
for personalized query recommendations. IEEE Data
Eng. Bull., 34(2):55–60, 2011.

[10] W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg.
A comparison of string distance metrics for
name-matching tasks. In IIWeb, pages 73–78, 2003.

[11] H.-H. Do. Schema Matching and Mapping-based Data
Integration. PhD thesis, University of Leipzig, 8 2005.

[12] A. Halevy. Answering queries using views: A survey.
The VLDB Journal, 10:270–294, December 2001.

[13] R. Khemiri and F. Bentayeb. Interactive query
recommendation assistant. In DEXA Workshops,
pages 93–97, 2012.

[14] N. Khoussainova, Y. Kwon, M. Balazinska, and
D. Suciu. Snipsuggest: Context-aware autocompletion
for sql. PVLDB, 4(1):22–33, 2010.

[15] N. Khoussainova, Y. Kwon, W.-T. Liao,
M. Balazinska, W. Gatterbauer, and D. Suciu.
Session-based browsing for more effective query reuse.
In SSDBM, pages 583–585, 2011.

[16] P. Marcel and E. Negre. A survey of query
recommendation techniques for data warehouse
exploration. In EDA, pages 119–134, 2011.

[17] N. Nihalani, S. Silakari, and M. Motwani. Natural
language interface for database-a brief review.
International Journal of Computer Science Issues,
8:600–608, 2011.

[18] J. Park and S. goo Lee. Keyword search in relational
databases. Knowl. Inf. Syst., 26(2):175–193, 2011.

[19] E. Peukert, J. Eberius, and E. Rahm. Amc - a
framework for modelling and comparing matching
systems as matching processes. In ICDE, pages
1304–1307, 2011.

[20] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. The VLDB Journal,
10(4):334–350, 2001.

[21] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe.
Efficient and extensible algorithms for multi query
optimization. In SIGMOD Conference, pages 249–260,
2000.

[22] M. Seguran, A. Senart, and D. Trastour. remix: A
semantic mashup application. In OTM Workshops,
pages 312–315, 2012.

[23] V. Thost. Calculating similarity of arbitrary reports.
Master’s thesis, TU Dresden, 2012.

[24] X. Yang, C. M. Procopiuc, and D. Srivastava.
Recommending join queries via query log analysis. In
ICDE, pages 964–975, 2009.

[25] J. Zhou, P.-Å. Larson, J. C. Freytag, and W. Lehner.
Efficient exploitation of similar subexpressions for
query processing. In SIGMOD Conference, pages
533–544, 2007.

APPENDIX
A. FEATURES SUPPORTED IN REMIX

In Table 3, this section gives an overview of all features
considered in Remix during query matching with the Fea-
ture Matcher . With the large selection of features we aim
to capture as many characteristics as possible. For match-
ing, however, we only consider the features appearing more
often within the current set of queries, as it is described in
Section 4.

Feature Description

REL NAMES The names of the relations that
are queried

PRO ATTRS The attributes in the projection

SEL ATTRS The attributes that occur in
scope of a selection

SEL COMP OPS Comparison operations that oc-
cur in scope of a selection

SEL SQL OPS SQL-specific condition opera-
tions (e.g., ’BETWEEN’) that
occur in scope of a selection

SEL PRED OPS Predicates (i.e., ’and’ or ’or’) that
occur in scope of a selection

SEL ARITHM OPS Arithmetic operations that occur
in scope of a selection

SEL AGG OPS Aggregation operations that oc-
cur in scope of a selection (e.g.,
in an SQL ’HAVING’ clause)

REN REL NAMES The names of the relations that
are renamed

REN ATTRS The attributes that are renamed

Feature Description

EXT NEW ATTRS The names of computed at-
tributes

EXT COMP OPS Comparison operations used for
computing new attributes, the
so-called extension

EXT SQL OPS SQL-specific condition opera-
tions that occur in scope of an
extension

EXT PRED OPS Predicates that occur in scope
of an extension

EXT ARITHM OPS Arithmetic operations that oc-
cur in scope of an extension

SORT ATTRS The attributes that are used for
sorting the result

GRO GRO ATTRS The attributes for which a
grouping is performed

GRO ATTRS The attributes that occur in
scope of a grouping

GRO NEW ATTRS The names of the new attributes
resulting from a grouping

GRO ARITHM OPS Arithmetic operations that oc-
cur in scope of a grouping

GRO AGG OPS Aggregation operations that oc-
cur in scope of a grouping

JOIN ATTRS The attributes that are used in
a join condition

JOIN OPS The join operations in the query
JOIN COMP OPS Comparison operations that oc-

cur in scope of a join operation
JOIN SQL OPS SQL-specific condition opera-

tions that occur in scope of a
join operation

JOIN PRED OPS Predicates that occur in scope
of a join operation

JOIN ARITHM OPS Arithmetic operations that oc-
cur in scope of a join operation

SET OPS The set operations that occur in
the query

REN COUNT Count of rename operations
JOIN COUNT Count of join operations
SET COUNT Count of set operations
FUN The functions that are used in

the query
FUN ATTRS The attributes that are used as

function parameters
CASE COUNT Count of condition statements

(e.g., SQL ’CASE-WHEN’ or
’IF-THEN-ELSE’ statements)

SUB COUNT Count of subqueries
VALUES The values that occur in the

query

Table 3: The query-features considered in Remix

