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Abstract. The processing of Big Data often includes sorting as a ba-
sic operator. Indeed, it has been shown that many software applications
spend up to 25% of their time sorting data. Moreover, for compute-
bound applications, the most energy-efficient executions have shown to
use a CPU speed lower than the maximum speed: the CPU sweet spot
frequency. In this paper, we use these findings to run Big Data intensive
applications in a more energy-efficient way. We give empirical evidence
that data-intensive analytic tasks are more energy-efficient when CPU(s)
operate(s) at sweet spots frequencies. Our approach uses a novel high-
precision, fine-grained energy measurement infrastructure to investigate
the energy (joules) consumed by different sorting algorithms. Our exper-
iments show that algorithms can have different sweet spot frequencies
for the same computational task. To leverage these findings, we describe
how a new kind of self-adaptive software applications can be engineered
to increase their energy-efficiency.

1 Introduction

Electricity used in global cloud data centers likely accounts for between 1.1%
and 1.5% of total electricity use. IDC3 estimates that the digital universe of Big
Data will double every two years, reaching 40,000 exabytes in 2020. This large
volume of data will require complex analytics processing applications, which will
necessitate massive processing power.

This state of affairs calls for the development of new approaches to reduce
energy consumption [1], which has already led researchers to develop new hard-
ware and software architectures, virtual machine migration strategies, and water
cooling mechanisms.

Since analytical applications for Big Data rely heavily on the performance of
data-intensive tasks such as data aggregation, data sorting, and data formatting,

3 http://www.emcchannel.com/collateral/analyst-reports/
idc-the-digital-universe-in-2020.pdf



in this paper we look into new techniques to make these tasks more energy-
efficient. While making, e.g., the task of data sorting 5% more energy-efficient
seems a marginal achievement, this value needs to be contextualized (see [2]).
Facebook generates more than 5 petabytes of new data on a daily basis; LinkedIn
generated more than 5 billion searches in 2012; Twitter generates more than 500
million tweets a day; and Cisco forecast for global mobile data traffic (2013-
2018)4 estimates that traffic will grow at a compound annual growth rate of
78% to 2016, reaching 10.8 exabytes per month. Clearly, reducing in 5% the
required energy of a data-intense sorting task translates into large savings.

Our approach involves executing sorting algorithms under various configura-
tions (e.g., the number of elements to sort and the CPU frequency) and evalu-
ating which sweet spots of the underlying hardware architecture enables a more
energy-efficient execution. The data obtained was used to construct a task pro-
file, which then resulted in a predictive model to determine at which frequency
a CPU should be clocked to run a specific data-intensive sorting task most effi-
ciently. We show how to automate the detection of sweet spots and their use to
develop self-adaptive software, which automatically selects the CPU frequency
to execute algorithms based on sweet spots and energy objectives to reach. Our
approach is based on two previous findings:

1. It has been shown that for certain computational applications, the most
energy-efficient execution is achieved using the CPU sweet spot frequency, a
CPU frequency setting that is often between the minimum and maximum.

2. It has been shown that software applications spend up to 25% of their time
sorting data.

1) It is already known from previous academic and industrial research that
processors do not follow a proportional path. Single processors have power states
and associated frequencies for which the energy-efficiency, i.e., the ratio between
utilization and energy consumption is maximized in so-called sweet spots [3] and
often minimized in high-performance turbo mode [4, 5]. Furthermore, in multi-
processor systems, additional overlap effects result from using the turbo mode as
a gap-filler before switching on the next core when the utilization increases [6].
This effect, in particular the sweet spot, translates into time-dependent energy
efficiency due to Dynamic Voltage Frequency Scaling (DVFS; a commonly used
power-management technique).

2) More than 25% of the running time of many applications has at some
point been spent on sorting [7]. While more recent results are missing from the
literature, it is expected that the processing of Big Data will place an even greater
emphases on sorting. In their approach, Herodotou et al. [8] also use sorting
algorithms to evaluate the performance of systems for Big Data analytics since
“they are simple, yet very representative”. Other data-intensive tasks of interest,
but not explored in our work, include search and indexing over large volumes of
data.
4 http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white_paper_c11-520862.html



Among our results, we determined that the automated detection and use
of sweet spot frequencies reduces energy consumption by up to 25% and that
data-intensive tasks can be designed as self-adaptive applications to exploit the
benefits of sweet spots. Our findings can contribute to the development of energy-
efficient analytics applications and databases for Big Data, since they operate
on large amounts of data and heavily rely on the task of sorting to process data.

This paper is structured as follows. Sect. 2 enumerates three central research
questions that are addressed throughout this paper. Sect. 3 describes our ap-
proach and the methodology we have followed to experimentally analyze the
energy-efficiency of data-intensive processing tasks. We discuss the results of our
experiments in Sect. 4 and show in Sect. 5, how these findings can be used,
to build self-adaptive software, able to leverage this knowledge to save energy.
Finally, Sect. 6 and 7 present related work and our conclusions, respectively.

2 Research Questions

The energy-efficiency of data-intensive processing tasks looks into how software,
the underlying computing system and the environment affect energy consump-
tion. Our research questions (RQ) are the following:

– RQ1 (Measurement Setup). How to instrument a computing system with
measurement devices to obtain fine-grained measurements for its individual
parts (e.g., fan, disk, power supply, and CPU sockets)? (Sect. 3.1).

– RQ2 (Sweet spots). How can sweet spot frequencies contribute to improve
the energy-efficiency of data processing tasks? Which mathematical functions
characterize them? (Sect. 4).

– RQ3 (Dynamic Software Adaptation). How to explore sweet spots to dynam-
ically adapt software to achieve a higher energy-efficiency? (Sect. 5).

In this paper, we study how different implementations of algorithms typically
used by data-intensive tasks affect differently the energy efficiency of a computing
system. We take the computational task of sorting n numbers, as it represents
a common use case for Big Data analytics.

While research has looked into how to make information and communication
technologies more energy-efficient, it is rather hard to find a precise definition
for software energy-efficiency. Thus, to remove any possible ambiguity on the
results of our research, we define the concept as follows:

Definition 1 (Software energy-efficiency) Energy is defined as the amount
of joules, required by a full or partial computing environment, to execute a soft-
ware application. A software application S1 is said to be more energy-efficient
than an application S2, if it requires less energy to accomplish the same compu-
tational task.

Definition 2 (Computing environment) A full computing environment in-
cludes all the devices that, directly or indirectly, consume energy to enable a



software application to be executed. For example, it typically includes CPUs,
fans, and disks. A partial computing environment only includes a subset of those
devices.

3 Approach and Methodology

Computational complexity (i.e., big O notation) is often a first step in assessing
the performance of an algorithm. However, in practice, the best big O algorithm
may perform worse due to, e.g., physical memory constraints. Quicksort is such
an example since is often used even though it does not have the best big O (worst
case) performance. It is common practice to optimize implementations for run-
time and, in most cases, optimizations will also reduce energy consumption.
However, in recent hardware with increasing energy-efficiency features, such as
DVFS, the fastest algorithm is often no longer the most energy-efficient one.

Our approach to gain insights is experimental. We use energy as a main
optimization goal and vary the algorithm and hardware configuration for com-
parison. The methodology has the following activities:

– Measurement environment (Sect. 3.1).
• Instrument server with energy sensors.
• Determine static power consumption of the server.
• Setup software infrastructure to conduct the experiments.

– Software under test (Sect. 3.2).
• Select the data-intensive computational task to be tested experimentally.
• Select different software implementations for the task.

– Experimental results analysis (Sect. 4).
• Determine resources affected by task.
• Interpret measurement results.

– Generalization and application of the results (Sect. 5).

3.1 Measurement Setup: Energy Monitoring

Hardware The system under test is a dual socket system with Intel Xeon
E5-2690 processors. Several layers of power measurement instrumentation are
required. The complete AC input is measured with a calibrated ZES Zimmer
LMG450 power analyzer. Several custom-built, shunt-based sensors are added
to the system. All sensors are pluggable via Molex connectors used in many
standardized systems. For this paper, we monitor the 12V input of the two in-
dividual sockets separately. They supply power for the CPUs and their attached
memory. The voltage drop over the measurement shunt is amplified with cal-
ibrated amplifiers and digitally captured by a National Instruments PCI-6255
data acquisition board with 7541 samples per second. The power consumption
is computed digitally from individual readings for current and voltage. During
the experiment, all data processing happens on a separate system to avoid per-
turbation of the system under test. This measurement infrastructure serves as
an answer to RQ1, but requires significant effort, as described in [9].
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Fig. 1. Energy trace of two succeeding sorting invocations with idle phase.

The processors provide 15 different frequencies from 1.2 to 2.9GHz and the
turbo mode with frequencies up to 3.8GHz, depending on thermal and power
budget. Both, frequency and voltage are set uniformly for all cores of a socket
by the hardware. As demonstrated in [10], the available memory bandwidth
depends on the core frequency for the Sandy Bridge-EP architecture. Earlier Intel
architectures, such as the one used in [3], provided a constant memory bandwidth
independent of the selected frequency. The variable memory bandwidth did not
allow for a straight-forward selection of the optimal frequency for applications
that become memory-bound at a certain frequency. However, our approach does
not require specific bottleneck analysis, because it uses the energy measurement
results to select among different settings instead.

Measurements To investigate the energy consumption of data-intensive tasks,
we run different sort algorithms for different input sizes multiple times. Prior
to each invocation, we randomly generate integer lists to be sorted. Across all
invocations, we used lists of sizes between 10 and 50 million elements, always
containing integers with a value range of 6 million (i.e., 0 ≤ x < 6× 106). Each
invocation is preceded by a pause of 1 second to “cool down” the CPU and other
resources (i.e., let them switch to idle mode).

Measurements of sort invocations utilizing a single core of a multi-core ma-
chine are not representative, due to the static power consumption of other devices
besides the CPU, which does not change, regardless of how many cores are used.
Hence, we fully utilized all cores of the machine with a separate sort invocation
operating on a copy of the same list. By using MPI barriers [11], we ensure that
all sort invocations are started at the same time. As execution time, we measured
the longest duration of the parallel sort invocations and ensured that variation
of durations among parallel processes was less than 5%.

Fig. 1 visualizes the invocation scheduling by AC power consumption (i.e.,
at the wall) over time for two consecutive sort invocations. The spikes at the
beginning and end of each invocation are due to (MPI) synchronization. The
short period of 250W in each run denotes the list generation.



As shown in Table 1, the static power consumption of the server originates
from the power supply, the fan, the motherboard, the disk, and the sockets.

Power supply & Fans Board SSD Sockets Total
≈26W ≈7W ≈1W ≈20W × 2 ≈74W
Table 1. Static idle power consumption of the server.

For the investigation of the effect of different CPU frequencies on the timing
and energy-efficiency of sorting, we used the userspace CPU governor of Linux
to explicitly set the frequency of the CPU. Linux also offers the governors perfor-
mance and powersave that statically select the highest/lowest frequency within
the borders of a setting. The ondemand governor changes the frequency based
on CPU usage. In our use case of continuously sorting, the CPU usage will be
at 100% for the active cores. Therefore, the ondemand governor will eventually
select the highest frequency.

We executed list generation and sorting for three algorithms with different list
sizes for all possible frequencies of the CPU and the turbo mode. We collected the
total energy consumption of the server per execution, the energy consumption of
the sockets, and the response time. This enables to investigate whether a sweet
spot frequency exists and if static power consumption leads to a shift of the
sweet spot frequency for sockets, only compared to the whole server.

3.2 Software Setup: Sorting Algorithm

As mentioned before, data analytics over Big Data are a key target for energy
efficiency with huge absolute savings, even for small percentages in relative sav-
ings. These systems are very complex and rely heavily on computational tasks
such as data cleansing, data aggregation, data sorting, and data formatting. We
suggest to study a well-known and representative algorithm: sorting. In many
applications, more than 25% of the running time of computers has at some point
been spent on sorting [7].

We selected two stable sort implementations: counting sort and radix sort.
We also looked at the non-stable sorting of the C++ Standard Library: std::sort.
Counting sort is a stable sorting algorithm with a linear time complexity of O(n).
Radix sort performs O(n×log2(n)) comparisons [12]. Our implementation (GNU
libstdc++) uses a combination of intro sort and insertion sort.

Based on this knowledge about the time complexity of sorting algorithms,
we investigated the energy consumption of the three algorithms. Since sorting is
compute bound, one could assume the CPU to be the predominant consumer of
energy amongst all other resources in a server. We collected empirical support
for this hypothesis and, in addition, determined further resources consuming
energy due to sorting. It is important to know that the frequency of a CPU
affects timing, power and, consequently, the energy consumption of algorithms.
In general, we will give empirical support for the following claims:
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Fig. 2. AC power consumption for sorting 50 million elements.

1. The highest frequency of a CPU does not necessarily lead to the lowest
energy consumption (power integrated over time).

2. Each algorithm has a detectable frequency at which the resulting energy
consumption is lowest (sweet spot frequency).

3. Different algorithms can have different sweet spot frequencies.

4 Results of the Experiments

Before investigating the impact of different frequencies on energy-efficiency in
Sect. 4.2, we analyze in Sect. 4.15 whether algorithms differ in their power con-
sumption and show that algorithms with low power consumption are not neces-
sarily the best in terms of energy consumption.

4.1 On the Power Consumption Level of Software

The weighted moments, among them the mean value, quartiles, minimum and
maximum excluding extreme outliers, are shown in Fig. 2 for a sorting task on
50 million elements where both CPUs of the server operate in turbo mode.

From the figure, one can infer that using radix or counting sort leads to a
lower power consumption than std::sort. The former two have an almost equal
level. The savings compared to std::sort amount to 4.6%. Yet, radix sort is clearly
the fastest algorithm and, hence, the best when combining both metrics without
prioritization of one over the other. Counting sort is, despite its low power con-
sumption, the worst in terms of energy consumption. From this so-called sweet
spot perspective, which will be further elaborated on in the following section,
the savings for radix sort amount to 77.6% compared to counting sort. Table 2
summarizes the key numbers from the experiments: Duration including range,
5 All raw measurements retrieved from the experiments were processed with the statis-
tics software R.



Table 2. Sorting algorithms comparison for 50mio elements (in turbo mode).

Algo. tmin (s) tmax (s) trange (s) P (W) E (J)
radix 1.880 1.901 0.021 330.4 626.9
std::sort 4.226 4.230 0.004 346.3 1464.1
count. 8.444 8.516 0.072 330.3 2801.5
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Fig. 3. The sweet spot of counting sort to sort 50mio elements.

power consumption per time unit and overall energy consumption for the mean
duration. All power values include 74W idle consumption.

4.2 On the Sweet Spots of Software

In this section, we investigate and prove wrong the common misconception that
software energy-efficiency equates directly to CPU performance. For this pur-
pose, we have collected evidence that executing software applications at high
CPU frequencies may lead to lower software energy-efficiency. Therefore, we re-
fine research question RQ2 into:

– RQ2a (Effectiveness). Can we increase software energy efficiency by changing
the clock frequency of the CPU executing a software task?

– RQ2b (Determinability). Can the clock frequency of the CPU executing a
software task, which makes the software more energy efficient, be deter-
mined?

For the three different algorithmic implementation, radix sort, std::sort and
counting sort, we measured the energy consumed to sort 10, 20, . . . , 50 million
integers. Fig. 3 shows the results obtained for sorting 50 million elements using
counting sort. Measurement results for all other list sizes and algorithms are
shown in Fig. 4. The figure shows three charts: time per frequency, power per
frequency, and energy per frequency. Note that turbo mode frequency varies over
time, depends on different factors and can be between 2.9 and 3.8GHz. Very high
frequencies are unlikely as we fully use all cores.
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Fig. 4. AC energy consumption and the corresponding sweet spot frequencies.

Time×Freq Fig. 4(a) shows that as the clock frequency of the CPU increases
from 1.2GHz to 2.9GHz and turbo mode, the mean time required to execute the
software task of sorting decreases in a non-linear form. What should be noticed
is that at 1.4GHz the mean time to complete the task drops significantly.

Power×Freq Fig. 4(b) shows the power consumed based on the CPU clock fre-
quency selected. The results could be considered foreseeable, since the power
consumption of the CPU increases by its frequency. Nonetheless, up to 2GHz
the power consumption is more modest and has visible increments at 1.5GHz,
2.2GHz, 2.7GHz and for the turbo mode.

Energy×Freq Fig. 4(c) provides the results of our findings that are most striking:
the number of joules required to execute the task of sorting has a sweet spot at
1.8GHz. The energy consumption declines by approximately 25% (708 J) when
the CPU frequency is changed from turbo mode to 1.8GHz.

For the other algorithms, the results are also interesting. std::sort is more
energy efficient at 2.4GHz. This corresponds to energy savings of approximately
12% (or 176 J) compared to the turbo mode, which leads to the shortest response
time. Running the CPU at a low frequency, i.e., 1.2GHz, increases the energy
consumed by 25% (427 J) compared to the sweet spot frequency. Radix sort is
more energy-efficient at 2.2GHz, which corresponds to energy savings of approx-
imately 15% (or 96 J) compared to the turbo mode and 18% (119 J) compared
to the lowest frequency.

Fig. 4 clearly shows the different sweet spot frequencies (vertical dotted line),
in ascending order, for counting, radix and std::sort. The lines in the diagram
correspond to list sizes of 10..50 million elements.

Table 3 provides an overview of the results and identifies the sweet spots for
each algorithm (sweet spots are marked with a star ’*’), and the energy savings
that can be achieved when the most energy-efficient CPU clock frequency is
selected compared to using the maximum frequency (i.e., turbo mode).

In order to gain more insights, we calculate the energy savings from running
the algorithms at the sweet spot frequency compared to the maximum frequency



10 20 30 40 50

Saving
Penalty

List size [mio]

S
av

in
gs

/P
en

al
ty

 [%
]

0
10

20
30

40
50

(a) counting sort

10 20 30 40 50

Saving
Penalty

List size [mio]

S
av

in
gs

/P
en

al
ty

 [%
]

0
10

20
30

40
50

(b) radix sort

10 20 30 40 50

Saving
Penalty

List size [mio]

S
av

in
gs

/P
en

al
ty

 [%
]

0
10

20
30

40
50

(c) std::sort

Fig. 5. AC energy saving compared with time penalty.

(AC energy saving) and the associated loss of performance (time penalty). The
penalty is always higher than the savings. Fig. 5 compares AC energy savings
and time penalties for all three algorithms and all list sizes.

While researchers have already found that energy-efficiency can be achieved
by redesigning software code, by making better use of memory and, by using
more efficient hardware components (see [13]), it is not well known that the
energy-efficiency of software is also affected by the frequency of the CPU at very
precise frequencies other than the maximum frequency. Namely, our findings
provide an answer (A) to our two research questions:

– A2a (Effectiveness). Software energy efficiency can be improved by choosing
the most adequate CPU clock frequency. CPU clock frequency leads to a
considerable variability of the energy needed to complete a data-intensive
computational task.

– A2b (Determinability). The CPU clock frequency which makes software more
energy efficient can be determined. In the case of counting sort for 50mio
elements, reducing the clock frequency by ≈60% of its maximal speed can
lead to an energy reduction of 25%.

These results entail not only that for data analytics tasks the sweet spot
of CPU frequency can, and should be determined, but it also shows that data-
intensive tasks with the same algorithmic complexity can have a different energy

Table 3. The energy-efficient sweet spot of sorting algorithms.

Algorithm E (J) Freq. (MHz) t (s) P (W)
radix 530.8 *2200 2.6 204.2
radix 626.9 turbo 1.9 330.4
std::sort 1282.3 *2400 5.9 216.9
std::sort 1464.1 turbo 4.2 346.3
count. 2093.8 *1800 11.3 184.9
count. 2801.5 turbo 8.5 330.3



efficiency. Therefore, it seems natural to consider developing energy-efficiency
benchmarks for software applications. While ISO software quality parameters
include over 50 metrics [14], SPEC CPU2006 provides comparative studies on
hardware performance and SPECpower for hardware energy efficiency6, the same
does not happen to software energy efficiency.

5 Dynamic Software Adaptation

Our idea to implement a new kind of self-adaptive software for data analytics and
business intelligence is to enable data-intensive tasks to select the frequency of
the CPU, based on the type of data processing. We will demonstrate how such
a system could be implemented using the computing task evaluated: sorting.
When a self-adaptive software for data analytics receives a request, it uses opti-
mization techniques to determine at which frequency the CPU should be clocked
to fulfill the constraints of the request: performance or the energy efficiency of
the execution, or a combination of both. Optimization uses the approximated
functions from Table 4 and the number of elements requested to be sorted. The
information is stored in so-called QoS contracts. The result of the optimization
is the CPU frequency at which the sorting algorithm should be executed. Thus,
we propose a three-phase approach:

1. Approximate functions of sweet spot frequencies based on micro-benchmarks
to determine a server’s individual sweet spot frequency.

2. QoS contracts to capture the assessed non-functional behavior.
3. Optimization to compute the optimal frequency and algorithm for a given

user request at runtime.

We extend previous work (see [15]) by incorporating hardware reconfiguration
by means of explicit frequency scaling.

5.1 Approximate functions

It is possible to predict the sweet spot frequency by approximating a function
of the energy consumption depending on the frequency using multiple linear
regression and searching the minimum value of this function for a given list size.
Fig. 4 depicts the energy consumption across all possible frequencies for sort
invocations of the three investigated sort algorithms. For each algorithm a sweet
spot frequency can be determined independently of the list size.

For the measurements of radix sort, fourth grade polynomial functions ap-
proximate the measured values very precisely as shown in Table 4. The first five
rows show functions for 10..50 millions elements, whereas the last row represents
the generic function E(freq, size) = a × freq + b × freq2 + c × freq3 + d ×
freq4 + e+ f × listsize with an adjusted R2 of more then 99%. The minimum
of this general function is at 2.4GHz for all list sizes, which is not the measured
6 https://www.spec.org



e (intercept) a× freq b× freq2 c× freq3 d× freq4 f × listsize ars
98.558887 -17.000578 24.473429 1.497380 5.577048 1.00E+07 (fixed) 0.93990
214.645925 -30.237388 45.255654 2.977515 10.231982 2.00E+07 (fixed) 0.96998
344.115647 -43.960454 78.485585 1.588671 15.814538 3.00E+07 (fixed) 0.95190
450.068206 -49.751193 103.690842 0.926805 21.180903 4.00E+07 (fixed) 0.96550
564.112603 -51.629321 131.365326 6.015857 26.856475 5.00E+07 (fixed) 0.95546
-15.65866 -86.12392 171.4039 5.816562 35.62546 1.16653E-05 0.9942

Table 4. Fourth grade polynomial functions for radix sort on 10 to 50 million elements
(ars = adj.r.squared).

mean sweet spot at 2.2GHz, but is less than 1% distant from it. The cause of
this difference is the (small) deviation of the approximated function and the
closeness of the frequencies around the sweet spot frequency.

Thus, to automatically determine a sweet spot frequency on a target platform
(unknown at design time), a developer has to provide a (micro) benchmark for
different algorithmic implementations. Using the approach described above, the
system can compute the sweet spot frequency automatically.

5.2 QoS Contracts

The Quality Contract Language (QCL) [15] allows to capture the non-functional
behavior of an implementation. A contract in QCL specifies for an implementa-
tion of a data analytics task (e.g., radix sort) pairs of non-functional provisions
and requirements. If the requirements are fulfilled, the provisions are guaranteed
to hold. Listing 1.1 depicts an example of a QCL contract for the radix sort
implementation used in this paper. It specifies 2 modes, which are alternative
pairs of requirements and provisions. The two modes represent the most energy
efficient and the fastest way to execute the algorithm. Thus, for the first mode,
the sweet spot frequency determined in the previous phase is specified as a re-
quirement on the CPU. The second mode specifies the highest possible frequency
as a requirement. In addition, the runtime and energy consumption on the CPU
are specified as functions depending on the list size. They are determined anal-
ogously to the sweet spot functions in the first phase. All modes specify which
guarantees are given if a set of requirements is fulfilled. In the example contract,
a specific maximum response time, which is equal to the time required on the
CPU and a small overhead (x1 and x2, respectively), is guaranteed.

1 contract Radixsort implements Sort.sort {
2 mode efficient {
3 requires resource CPU {
4 frequency = 2.400 [MHz]
5 max time = f1 <list_size > [ms]
6 max energy = f2 <list_size > [J] }
7 provides max response_time = time + x1
8 }
9 mode fastest {



10 requires resource CPU {
11 frequency = 3.000 [MHz]
12 max time = f3 <list_size > [ms]
13 max energy = f4 <list_size > [J] }
14 provides max response_time = time + x2
15 }
16 }

Listing 1.1. Example of a QCL contract for radix sort.

Contracts, like the discussed example, can then be used to generate problem
formulations for off-the-shelf constraint satisfaction and optimization problem
solvers.

5.3 Optimization

To determine the service with a particular CPU frequency an algorithm should
be run on, we use an integer linear program (ILP) as shown in Listing 1.2. For
clarity, we only show an ILP example for the decision whether radix sort shall
be executed on one of two servers with different CPU frequencies in either the
most energy-efficient or the fastest way. In the example, all values referring to
server N1 correspond to the measurement values shown in the last section for
a sort request of 30 million elements. The values referring to server N2 are not
based on measurements, but introduced to show the general applicability of the
approach to multiple servers.

1 min: energy#N1 + energy#N2;
2 // decide for one server and variant
3 b#rdx#eff#N1 + b#rdx#fast#N1 + b#rdx#eff#N2 + b#rdx#fast#N2
4 = 1;
5 // approximated runtime per decision
6 time#N1 = 1620b#rdx#eff#N1 + 1164b#rdx#fast#N1;
7 //base load + decision -induced consumption
8 energy#N1 = 97 + 324b#rdx#eff#N1 + 376b#rdx#fast#N1;
9 //min frequency + sweet spot -min frequency

10 frequency#N1 = 1200 + 1000b#rdx#eff#N1 + 2000b#rdx#fast#N1;
11 time#N2 = 1120b#rdx#eff#N2 + 940b#rdx#fast#N2;
12 energy#N2 = 100 + 420b#rdx#eff#N2 + 530b#rdx#fast#N2;
13 frequency#N2 = 1200 + 1000b#rdx#eff#N2 + 2000b#rdx#fast#N2;
14

15 bin b#rdx#eff#N1 ,b#rdx#fast#N1,b#rdx#eff#N2 ,b#rdx#fast#N2;

Listing 1.2. Example of an Integer Linear Program for self-adaptive software.

The ILP example comprises 4 decision variables and 3 usage variables per
server. The decision variables of the optimization problem have the form:

b#algorithm#variant#server

The prefixing b denotes the Boolean type of the variable, which is explicitly
stated as constraint on lines 22 and 23, and algorithm, variant and server,



delimited by pounds (#), denote the respective algorithm, variant (energy effi-
cient or fast) and server. The meaning of b#rdx#eff#N1 = 1 is the decision
to use radix sort in its energy-efficient variant on server N1. Thus, each decision
is represented by a variable. Each server is characterized by the variables time,
energy and frequency, which include the name of the server separated by a
pound. They denote the time required on, the energy spent by and the CPU
frequency used for the respective server.

The objective function of the ILP is a linear combination of the problem’s
variables. In the example, the objective function specifies the goal to minimize
the energy consumption of both servers for user requests to sort n elements.

Then, two types of constraints are generated for a specific request (e.g., the
invocation of sort for a list of 30 million elements as in the example above).
First, a structural constraint to ensure the selection of at least one variant is
generated (cf. line 3 and 4). Second, for each server variable (time, energy and
frequency) a constraint, reflecting the impact of a decision on them is generated.
For example, the constraint in line 6 and 7 specifies that deciding for radix sort
in efficient mode on server N1 will require 1620ms, whereas using fast mode
will require only 1164ms. For energy consumption, the idle consumption has
to be considered in addition. The constraint on line 9 and 10 reflects an idle
consumption of 97 J and the respective consumption of radix sort in the most
efficient and fastest mode. Considering the idle consumption is important if
the servers are always powered. The frequency constraint on line 12 and 13
reflects the minimum possible frequency (1200MHz), the sweet spot frequency
(1000+1200MHz), and the maximum possible frequency (1000+2000MHz).
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Fig. 6. Time to Compute Adaptation Decision.

To solve this optimization problem, standard solvers like LP Solve [16] can be
applied. The time required to solve problems as shown in the example, depends
on the number of modes (i.e., execution variants) for which we used m = 2
representing the most efficient and the fastest variant, the number of algorithms
for the same task A (e.g., different sort algorithms) and the number of servers
N . Fig. 6 shows the time required to solve ILPs with A = [1..10] algorithms
with 2 modes each on N = [2..10] servers. As can be seen, the time to derive



the decision is negligible. It took ≈3.1ms to identify which algorithm out of 10
to run on which of 10 servers.

5.4 Limitations

The approach we presented is feasible for Big Data intensive tasks since the
processing of one single task can take several minutes. For tasks with a short
duration (typically less that 2 seconds), managed by multi-process operating
systems, the approach is generally not, or at least not easily, applicable. If two
distinct data-intensive tasks have different sweet spot frequencies and the tasks
are multi-tasked, the operating system needs to switch the sweet spot frequencies
rapidly or choose the frequency that minimizes the overall energy consumption.
Nonetheless, the future generation of processors will most likely enable setting
the frequency of individual cores, making the sweet spot approach valid for a
broader type of tasks beyond data-intensive ones.

6 Related Work and Future work

The closest existing research to our work was conducted by Livingston et al. [3].
Their work classifies software applications as memory- and compute-bound. For
memory-bound applications, they demonstrate that a higher energy-efficiency
is achieved at lower CPU frequencies since memory behaves as a bottleneck.
For compute-bound applications, a higher energy-efficiency is achieved at higher
CPU frequencies since finishing work quickly is the best approach for efficiency.
For algorithms which cannot be purely classified as memory- or compute-bound,
they propose to use sweet spot frequencies, a benchmarked optimal frequency
between the lowest and highest frequency. Our work confirms the findings by
Livingston et al. also in newer computer architectures and makes a detailed
analysis of sweet spot frequencies.

Other related work can be classified taking into account the level at which
energy-efficiency analysis was conducted. We use the terms macro-, meso-, and
micro-level to express studies conducted with large software applications, algo-
rithms, and instructions. At the macro-level, researchers (cf. [13]) have looked
into the energy-efficiency of large management information systems such as ERP,
CRM, and databases. While it is important to look into the efficiency of such
systems to identify fields of improvements, the approach taken does not allow
to gather insights on how software could be re-engineered differently to obtain
energy reductions. At the meso-level, Bunse et al. [17] evaluate various sorting
algorithms in battery powered mobile communication using smartphones. The
results indicate that insertion sort is most efficient. Rivoire et al. [18] investigate
system-level benchmarks for sorting. Nonetheless, the work does not explore
the effect of CPU frequency on software energy-efficiency. At the micro-level,
Ong and Yan [19] use an abstract machine to study the energy consumption of
search and sorting algorithms. The energy requirement of each instruction was
estimated and, e.g., an ALU access consumes 8× 10−12 joule per 32 bits. Their
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findings indicate that the energy consumption can differ in orders of magnitude
between algorithms, and, also, that faster algorithms can sometimes consume
more energy than slower ones. In [20], the authors propose a first-order, linear
power estimation model that uses performance counters to estimate CPU and
memory consumption. The accuracy of the model estimates consumption within
4% of the measured CPU consumption.

Our long-term research goal is to study how energy-efficient mechanisms can
be implementation as part of self-adaptive software and service systems that
change their behavior and implementation, and affect the computing environ-
ment to reduce energy consumption. Fig. 7 shows relevant dimensions of research
in this field.

7 Conclusion

Software applications for data analytics over Big Data typically have a high en-
ergy consumption. In this paper we studied a mechanism to make data-intensive
processing tasks more energy efficient. Our findings indicate that the existence
of CPU sweet spots can be explored in three ways: 1) by adapting the CPU fre-
quency to sweet spots, the maximum power used by data analytics tasks can be
established; 2) the use of sweet spots leads to effective energy gains of up to 25%
; and 3) sweet spots enable the design of new and more efficient self-adaptive
software architectures. Our results are important, especially for large cloud data
centers (e.g., Facebook, LinkedIn, and Twitter), since they can lead to the design
of new software and scheduling policies to reduce energy consumption of data
analytics and business intelligence applications.
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