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Abstract—Distributed data storage is a topic of growing
importance due to the mounting pressure to find the right bal-
ance between capacity, cost, privacy and other non-functional
properties. Compared to central storage on physical media,
on the network or in a cloud storage service, advanced data
distribution techniques offer additional safety, security and
performance. On the downside, these advantages come with a
much higher complexity regarding the choice and configuration
of where to store which parts of the data, and subsequent
verification of where which data had been stored. Often,
the storage targets must be configured individually while a
centrally and locally accessible configuration interface with an
appropriate propagation and verification mechanism would be
more suitable. The complexity is further increased by addi-
tional data pre-processing tasks which are selectively applied to
some of the targets. Compression, encryption and deduplication
are typically present in pre-processing. With Storage Flows, we
propose a new concept to manage distributed storage flows
through systematic orchestration. The flows connect clients
flexibly with intermediate data pre-processing tasks and finally
the storage targets. We show that Storage Flows can be
formalised and demonstrate their practical usefulness with
implemented configuration and verification tools.

I. BACKGROUND ON DISTRIBUTED STORAGE SERVICES

Data storage is a fundamental capability found in most
computing systems. The question of how and where to store
which data has become extraordinarily difficult to answer
in recent years. Apart from the integrated primary mass
storage area, for instance an HDD, SSD, SD card or even
in-memory RAM disk formatted with an appropriate file
system, secondary or external storage areas are used both
for storage space extension and for data backup, snapshot,
synchronisation and sharing purposes. Secondary storage
can be divided into removable drives and media for local
access and network drives for remote access. Online storage
services are a specialisation of network drives which often
combine the technical nature of storage areas with global
access for subscribers and a service-specific business model.
Block devices, file systems, databases and custom storage
interfaces are increasingly offered over networks on demand.
Cloud storage refers to online storage services which elasti-
cally scale and are billed according to the utilisation so that
big data processing becomes available to more users. The
Cloud is also widely seen as effortless and controllable data
storage and sharing medium across all personal devices [1].

Fig. 1 puts all possible storage areas into context. From the
perspective of a client as data producer and data consumer,
all storage areas are application-specific storage targets. The
choice of which target to use is often inconsistent between
applications and only sometimes, only per client device and
only for local areas, coordinated by the operating system
(e.g. SSD as performance-increasing and energy-conserving
buffer for HDD) [2], [3].
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Figure 1. Diversity in storage areas and systems

Distributed data storage places any unit of data (e.g.
files) on a deterministically chosen node (e.g. through hash
functions over the file names or contents) or even on multiple
storage areas in parallel. Depending on the distribution
technique, which includes dispersion and replication, cer-
tain performance, security and quality advantages can be
obtained [4]. In the case of purely local areas, data dispersion
concepts as implemented in RAID perform this function to
increase the safety by decreasing the effects of drive failures.
However, for maximum storage safety and flexibility, local
areas should be combined with remote areas in off-site
systems. For such mixed areas, RAID controllers can be
used when each area is exported as a block device (e.g.
nbd, EBS). For most practical network and online storage
services, block access is not possible. Therefore, higher-level
storage controllers exist which work on the file level and
consider service properties to optimise the storage behaviour,
including cloud storage controllers for RAIC and RAOC [5].

When multiple storage areas are used, in particular both
in parallel and serially one after another, storage flows from
the client applications to their target areas result from such a
configuration. Fig. 2 gives an abstract view on storage flow
systems. The flows are tree-structured from a controller point
of view, but graph-structured when taking the storage areas
as endpoints into account.
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Figure 2. Simplified model of a storage flow system

While storage flows can be configured manually in current
systems (e.g. the NubiSave cloud storage controller [5]),
and expressed implicitly in dedicated data distribution policy
languages [6], there is a need to formalise them for improved
handling at configuration and operation time. Storage con-
figurations with copy and split operator compositions have
been proposed as formal model [7] but lack the mapping
to actual storage flow systems with dynamic configuration,
such as FlexArchive [8]. Furthermore, it should be possible
to distribute the flows themselves across several nodes in
order to achieve a high scalability and consistency between
distributed configurations. In this paper, we first introduce
storage flows as abstract trees and discuss their potential.
Then, we present a management solution for distributed
storage targets and software-defined storage flows to achieve
their orchestration. This effort is an ongoing work, and yet
we already present preliminary results from an experimental
evaluation.

II. STORAGE FLOWS

In a storage process, the flow affects each unit of in-
formation captured as data in files f . The data traverses
o(o ∈ N) transformation operators ω (f ′ := f × ω) before
finally arriving at a storage target as files f (o). The inverse
direction (ω−1) is the retrieval process. The operators cause
state transitions over the nature of the data from files to
files again (1 : 1), or to blocks or fragments (1 : n), where
each such file part is then re-interpreted as file at the next
operator. Fig. 3 explains the states and the permissible state
transitions. Hence, each stored file f (o) is the result of an
operator chain f × ω1 × ω2 × ...× ωo.

The combination of all operator chains in a storage system
forms a tree of operators and a graph of applications (data
sources), operators and storage targets (data sinks). The
maximum depth of the tree is o. The breadth at the leaf nodes
for each individual storage process is n which corresponds
to the notion of n = k + m with k significant file parts
and m redundant parts. However, the overall breadth may
be larger than n.
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Figure 3. State model containing the nature of data as complete file or
set of file parts, and permissible state transitions as file/part operations

The set of operators Ω contains 1 : n file splitters ωsplit
(e.g. data chunking or dispersion), ωreplica and ωselect for
selective forwarding (e.g. round-robin or load-dependent
scheduling), as well as a number of 1 : 1 operators:
ωenc for encryption (assuming the key is not part of the
flow), ωsteg for steganographic concealment (with the same
assumptions regarding the carrier message), ωcomp for com-
pression, ωdedup for de-duplication and ωver for versioning.
Additionally, each target is integrated by means of an 1 : 1
transport operator ωτ .

Operators pass on the data to their successors in the chain
but may cache their output f (i)(1 ≤ i ≤ o) in case the
successor’s performance is limited. In general, this applies
to network-bound transport operators.

The open set of targets T contains τdir for local directo-
ries, τobex for media on Bluetooth devices accessible through
the ObexFTP protocol, τdav for WebDAV services, τs3 for
S3 object storage services and an unrestricted number of
further generic targets and provider-specific services.

Both operators and targets can be either locally located
on the system which performs the storage integration, or
placed on multiple computers to form a distributed storage
flow system. This introduces a new operator ωfwd which
forwards data to operator chain tails organised as subtrees.
A special variant of ωfwd may appear to the application as
(transient) storage target −→τ . The complexity of distributed
storage flows, operators and caches leads to the requirement
of keeping the global picture for flow administrators and
ultimately to advanced distributed storage flow and service
management designs.

III. DISTRIBUTED STORAGE SERVICE MANAGEMENT

In computer networks and especially software-defined
networking, the concept of OpenFlow has recently gained
a lot of popularity [9]. The main idea is to separate the
flow control, which happens centrally in an OpenFlow
controller, from the flow execution which carries parts of
the configuration information as piggy-backed data to the
switches. In fact, the notion of the thus influenced expression
software-defined storage has recently been picked up by the
community [10]. However, actual concepts or formalisms
concerning software-defined storage or storage flows are



considerably missing. Similarly, distributed Cloud Comput-
ing environments have recently seen centralised planning
and configuration methodologies, such as TOSCA [11], but
do not explicitly cover distributed storage systems. The
designs of OpenFlow and TOSCA on their abstract levels
serve as mental models for the design of distributed storage
service management tools. Both the initial configuration
and propagation of storage flows and the continuous usage,
visualisation and potential re-configuration at runtime are
subject to a flexible and scalable design.

In storage flows, a distributed storage configuration is
centrally created by an administrator and applied to a local
storage controller which executes it. In addition, parts of
the configuration may be propagated to other nodes which
operate subordinate storage controllers to execute subtrees
of the flow configuration. A specific interface is needed
on these nodes to receive the configuration and report the
success status of the application thereof to their controllers.
This interface can either be a dedicated service interface
(e.g. web service API), or use a piggy-backing mechanism as
specially crafted files and metadata which are then separated
from the payload data on the receiving nodes. Fig. 4 is
an example of a distributed storage flow controller which
spans two remote nodes. Each controller instance receives
its configuration through a control interface (CTRL) and its
data through another appropriate interface, e.g. a file system
or a storage service API, as entry point to an operator.
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Figure 4. Flow control across three nodes in addition to data flows

The configuration can be created in a manual process
using a configuration tool, or generated from a higher-
level policy editor [6]. It encompasses not just the layout
and parametrisation of the operators and their caches (if
applicable), but also decisions regarding the flow itself.
Among those, dynamic flow variations based on file con-
tents, metadata and the environment context can lead to

significantly different overlay flows. Fig. 5 demonstrates
two flows at runtime based on policy-driven dynamic flow
variations.
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Figure 5. Two overlay flows created by (1) highly sensitive file contents
and (2) server overload

IV. STORAGE FLOWS CONFIGURATION, PROPAGATION,
USAGE AND VISUALISATION TOOLS

Two file systems and two graphical tools are available
to storage flow designers as open source software. This
section describes the design and the implementation of
the software along the flow lifecycle. It encompasses the
graphical configuration, the automatic propagation, the usage
as part of typical data processing tasks and finally the
graphical visualisation.

A. Configuration

A storage flow configuration editor is a tool to generate,
deploy and maintain storage flows. We have implemented
a configuration editor as a Java desktop application called
StorageFlows Modeller. It displays the chain or tree of
operators, starting with a data source symbol and connecting
to any number of data sink symbols.

For the flow deployment into a storage controller, oper-
ators are represented as local and network data processing
modules with capabilities to store and retrieve data along
with important metadata. Each such module is either a
directory-level filter (deduplication, versioning), a file-to-
file transformer (compression, encryption, steganography),
a file-to-fragment splitter (dispersion) or a fragment-to-
fragment transformer similar to the file-to-file ones. Fur-
thermore, each module offers a configuration template from
which a specific configuration instance can be derived
through a module-specific dialogue in the editor. Weighted
and directed connections can be set up between the modules
to achieve a chain or, in the more general case, a tree. A
screenshot of the application is shown in 6.

B. Propagation

The distribution or propagation of the storage flow is
a secondary configuration step. It requires a list of flow
processing nodes which contains the local node and/or a
number of remote nodes. Any flow module can be assigned
to one node. Subsequent modules are then automatically
assigned to this node as well, which can be overridden.
In order to convey the module configuration to the chosen



Figure 6. Screenshot of the graphical editor to create and modify storage
flow descriptions

nodes, there needs to be a convention of how to receive the
configuration. This work assumes that the technical module
implementations themselves already be installed and just the
configuration changes dynamically.

Data can be stored in files, in memory, in databases,
through web services or using nearly any combination of
these data management concepts, e.g. a relational in-memory
database with a web service frontend and tables stored as
files. The realisation of storage modules requires one such
concept for each operator. Typically, applications work with
files on a file system which makes this the concept of choice
for our realisation.

We have implemented FlowFS, a user-space pass-through
file system similar to BindFS or LocalFS. The deployment of
FlowFS on any flow processing node therefore becomes an
additional prerequisite to handle the propagation of flows.
Initially, its backing directory is not connected and hence
data write access will fail. However, it reads a special direc-
tory .storageflows which contains the configuration.
Whenever the contents of this directory change, the backing
directory (if present) is unmounted and all storage modules
are mounted according to the configuration.

Fig. 7 demonstrates how FlowFS works in detail. There
are two possible modes of the configuration handling. The
first one mandates an in-band directory .storageflows
can be distinguished from other files and directories by a
filter. The advantage is that changes to the configuration
are immediately known to the file system. However, this
assumes that the configuration is always written unmodified,
which prevents any operator module from working on top
of this file system. The second design assumes an external
configuration directory and a notification handler within
the file system which monitors changes and dynamically
switches the backing directory for storing files. Initially, this
directory must be invalid (unconnected). It gets connected
whenever a storage module description is written with the
line storageentrypoint=true in it to denote the
continuation of the storage flow at this directory. FlowFS

implements both modes and requires a choice at file system
instantiation time.

The propagation is triggered from the editor whenever the
configuration changes on the local configuration node. Either
the in-band directory receives the changed configuration,
or the external directory on the assigned remote node is
mounted on the configuration node and the configuration
file is a symbolic link to a file which in fact resides on the
remote node. Once that happens, the propagation cascades
over all subtrees.
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Figure 7. FlowFS, a reconfigurable pass-through file system for distributed
storage flows

The file system FlowFS is implemented in C using
three low-level system APIs: Linux Filesystem in Userspace
(FUSE), the kernel-based Inotify file change handler and
Pthreads for multi-threading to achieve a second main loop
in parallel to FUSE for reacting on Inotify notifications.
It is invoked as application by passing the mount point as
parameter.

C. Usage

Using the stacked file system setup, the data simply
flows at run-time from the source to the sink and back.
For instance, a photo is loaded from a digital camera
into an image-processing application. The user instructs the
application to save the modified picture into the cloud. The
file hits the appropriate folder which is a mounted instance
of a splitter module. The file is split into three parts. One
remains on the local disk, one is written to a directory which
is a mounted remote storage target, and one hits another
directory which forwards the fragment to a post-processing
node.

For the splitter realisation, we have developed the Nu-
biSave cloud storage controller [5]. It is implemented in
Java using the FUSE-J API and JigDFS erasure coding
algorithms. For all other modules, we rely on existing
file systems and especially FUSE modules which can be
mounted and unmounted at run-time without elevated oper-
ating system privileges.

D. Visualisation

For the visualisation of stored data, we have added a
context menu to each module in the editor which invokes a



separate application called NubiVis. It consists of a graphical
user interface and a statistics calculator which reads from the
storage controller’s file/fragment database and exports this
information through a RESTful interface. Fig. 8 outlines the
visualisation architecture.

Figure 8. Visualisation architecture with a graphical frontend and a
RESTful backend as parts of NubiVis

At run-time, users can verify how the flows spread their
data across several storage targets. The statistics are gener-
ated per file or folder, per target, or globally per provider,
and presented as tree view, bubble view or geographical map.
In Fig. 9, the per-folder tree view is shown as an example.

Figure 9. Visualisation screenshot showing the division of files into
fragments which are dispersed among storage targets

NubiVis is implemented as a NodeJS server with a Dojo
(JavaScript) web frontend. The server wraps a Java adapter
to the NubiSave JDBM file/fragment database. The frontend
further uses the Raphaël JavaScript framework to produce
statistics diagrams using scalable vector graphics (SVG).

V. EXPERIMENTAL EVALUATION

Through experiments with multiple nodes, we demon-
strate the practical usefulness of storage flows. The evalua-

tion criteria are (C1) overall feasibility, (C2) performance of
the pass-through function of FlowFS, and (C3) performance
of the propagation. General remote and distributed storage
metrics are not covered but can be found in existing literature
[5].

Initially, a user launches the storage flow modeller on
a notebook to model a scenario ’tree’. It contains just
one DavFS module to access a WebDAV interface of an
internal network share (NAS). The user then assigns a
remote execution property to this module so that it will be
deployed on an intermediate server in order to be accessible
from multiple devices with varying storage needs.

The scenario further foresees a capacity bottleneck at the
NAS. This leads the user to reconfigure the flow to target
a public S3 storage service instead. Due to privacy reasons,
all data flowing to the service needs to be encrypted.

Fig. 10 highlights the chosen scenario to evaluate the
propagation of the configuration from StorageFlows Mod-
eller via FlowFS. Data and configuration are both first
relayed via SSHFS to an SSH service on the second flow
processing node. The data arrives at FlowFS which, ac-
cording to the configuration, writes it to a WebDAV file
system connected to a WebDAV service on the NAS (1).
Then, FlowFS is reconfigured. The arriving data is now
being encrypted and relayed via the S3QL file system to
a server which makes a storage area accessible through the
S3 protocol (2).
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Figure 10. Simple distributed storage flow scenario which involves two
nodes

The presented workflow can be realised with the tools
and would be hard to do without. Hence, we claim that the
approach is feasible and criterion C1 holds.

The measured pass-through performance of FlowFS,
which is shown in Fig. 11 for continuous writes, is about
8-15% inferior compared to a direct write on the bare
underlying Ext4 file system. This difference only applies
to very large files though, and could likely be significantly
reduced by implementation improvements and buffer tuning.



Furthermore, the network access is more often a bottleneck
than the disk performance. We therefore see a potential
for criterion C2 to hold for all practical use cases, but
acknowledge the need to optimise FlowFS.

Figure 11. File system write performance with and without pass-through
function of FlowFS

The time required for propagation (criterion C3) is not
noticeable. In the given scenario, switching the backend of
an SSHFS-mounted directory from a WebDAV backend to
an encrypted S3 backend by submitting a new configuration
file which contains storageentrypoint takes a hardly
measurable time of 0.003s on a 1000baseT/Full Ethernet
connection between the notebook and the forwarding node.
In practice, users won’t even notice newly added storages
and redirected flows this way similar to the transparent re-
routing of IP packets at the lower layers.

VI. CONCLUSION

This paper has introduced Storage Flows as a means
to orchestrate the parallel use of multiple storage services,
drives and media from a central configuration point. Through
trees of transformation and transport operators, data can
be flexibly dispersed from the applications to the available
storage targets. The complex management of flows on one
node and across several node has been simplified with
centralised configuration tools (StorageFlows Modeller) and
visualisation tools (NubiVis) as well as distributed propaga-
tion tools (FlowFS) which do not need to be manually re-
configured. The overall feasibility and adequate performance
have been demonstrated with experiments.

We assume that there will be an increasing interest in
software-defined storage in the near future due to the high
rate of larger hard drives and more cost-effective cloud
storage offers. Local, network and cloud storage need to
be combined in a systematic and user-controllable way to
yield the highest data handling quality.
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