Flexible Data Distribution Policy Language and Gateway Architecture

Josef Spillner, Alexander Schill
Faculty of Computer Science
Technische Universitdiit Dresden
01062 Dresden, Germany
Email: {josef.spillner,alexander.schill} @ tu-dresden.de

Abstract—Concerns about the security and reliability of data
storage in online systems, alias cloud storage services, have
led to the design of application-independent storage overlays
and controllers which guarantee security and optimality with
regards to the requirements of their users. In roaming and
multi-user environments, the configuration and rules steering
these controllers should be easily extensible and migratable in
order to not simply shift the vendor lock-in from the service
provider to the controller software or appliance. Despite this
requirement, there is no language available yet to express such
rules and policies. Therefore, we introduce the Flexible Data
Distribution Policy Language (FlexDDPL) to formulate storage
policies, evaluate it against language design guidelines, and
demonstrate its practical usability within a dispersing cloud
storage gateway architecture.

I. INTRODUCTION

Ubiquitous access to personal documents from all devices,
convenient sharing of files with friends and colleagues,
versioned offsite backups without own dedicated hardware,
rapid access to extended capacity in moments of burst data
generation - the use cases for network and online storage
integration are plenty. Numerous storage service providers
have emerged and gained popularity recently through the
push towards cloud computing and associated cloud storage.
Conscious users and researchers have nevertheless taken
issue with uncontrolled replication of data into the cloud,
and even more with replica-less migration, due to the
reliability, security and privacy drawbacks associated with
these operations. Temporary lock-out and irrevocable loss
of data, expensive retrieval of accrued data sets as well as
unauthorised access to and misuse of data are among the
most-cited reasons for caution [1], [2].

Encryption and dispersion have been suggested as helpful
techniques against these issues. As a result, cloud storage
controllers have emerged as prototypical parts of operating
systems and user environments [3], [4]. In single-user sce-
narios, the configuration is often refined to the user’s desktop
or personal devices. In larger groups and organisations with
multiple users and departments, the controllers are instead
centralised and hosted on the Intranet similar to conventional
network gateways. Hence, cloud storage gateways now exist
to connect large numbers of users in hierarchical organisa-
tions safely, securely and optimally to the cloud [5], [6]. An
abstract view on cloud storage gateways is given in Fig. 1.

Storage Services (Providers)

Storage e "~ Provider
Configuratio A "“‘-u._Descriptions

+ Policies

Storage Gateway

Vo on

Users and Applications

Figure 1. A cloud storage gateway and its environment

Like all enterprise integration architectures, the storage
gateways are operating within a context mandated by access
control restrictions, identity management providers, applica-
tion integration middleware and other standard distributed
system software. Along with other authorisation decisions,
the use of cloud storage gateways is subject to rules and
policies. To date, no domain-specific language exists yet to
describe them in a sufficiently clear and portable manner.

Therefore, this article describes our contribution of a
flexible data distribution policy language and its application
in cloud storage gateways. The remaining sections are struc-
tured as follows: First, we consider existing policy languages
in distributed systems and point out their characteristics.
Then, we reason about the design and vocabulary of a
flexible data distribution policy language, and specify it
along with syntax samples. Subsequently, we describe the
architecture and implementation of a policy-aware storage
gateway. Finally, we evaluate both the language and the
gateway and raise our expectations for future work.

II. RELATED WORK

Elastic Quotas [7] allow users to specify file priorities in
a multi-user shared resource environment. This declarative
approach uses file and path patterns. It works well for net-
work file servers, but is not sufficient for regulating attached
remote storage services. An attempt to govern the data flows
between systems is the Data Distribution Policy Expression

(DDPE) [8]. This language defines abstract high-level poli-
cies and is not suitable for fine-grained data distribution de-
scriptions. The Policy-based Data Placement Service (PDPS)
[9] is more concrete. It relies on Drools rules and can be
integrated with scientific data workflow systems. However,
it lacks ad-hoc service integration policies which are crucial
for distributed storage in constantly changing heterogeneous
environments. The Web Services Policy Language (WSPL)
describes web service access and invocation policies on the
basis of XACML [10]. Conceptually, the language design
is suitable for multi-user storage service environments due
to its design of two layers, for instance administrator and
user policies, which can be merged. Similar matchmaking-
enabling rule languages exist for semantic web services,
for example service and goal specifications described in the
Web Service Modelling Ontology (WSMO). All of these
languages are restricted to the service selection phase and
do not account for integration and client-side processing
aspects at runtime. A proposed policy-aware cloud database
management middleware, on the other hand, explicitly con-
siders enterprise integration and multi-user policies [11]. It
relies on Key-Policy Attribute Based Encryption (KP-ABE).
Consequently, this approach is only applicable to outsourced
databases, not to file-based storage.

Proposals for cloud storage gateways exist mostly separate
from those for policy languages. A transparent compression
gateway reduces the storage overhead in public infrastructure
providers and speeds up data transmission between users and
providers [12]. This architecture does however not include
means for privacy-preserving and quality-increasing splitting
of data across providers. Other gateways and controllers
store their configuration scattered across configuration files
(e.g. NubiSave [4]) or in files and databases (e.g. SecCSIE
[5]). In these cases, it is hard to extract strategic decisions
from the configuration to evolve or migrate the system.

Our contribution is therefore to introduce a portable
runtime-interpreted storage policy language and gateway.

IIT1. DATA DISTRIBUTION POLICY LANGUAGE DESIGN

The overall goal of interpreting a document written in
formal language within policy engines of data distribution
architectures is to specify precisely who is allowed under
what conditions to store which data how into which targets.
The explicit goals of the language syntax are thus to express:

o How users or groups store data. Typically, different
groups of users have different needs regarding the data
transmission and storage.

o How data is divided and routed. This encompasses
the static or dynamic selection of both in-house and
outsourced services, and the application of redundancy
and encryption.

« How data is subject to adaptation. For instance, offsite
copies are stored with degraded quality for security and
performance reasons.

We achieve these goals with a new domain-specific declar-
ative language whose syntax can directly express the com-
bination of goals as appropriately scoped rules. It is called
the Flexible Data Distribution Policy Language, abbreviated
as FlexDDPL.

A. FlexDDPL Syntax and Grammar

The textual syntax of FlexDDPL is line-based. Each line
which is either empty or starts with a comment marker is ig-
nored. Lines with curly braces open and close scope blocks,
where scope blocks can optionally be negated whenever
there exists a complement set, and can be nested. All other
lines contain rules which together with the scopes applied
under a certain context (e.g. user and groups database or data
fragments) form the policies. Scope identifiers start with a ~
sign to denote users and with @ to denote groups. Rules are
not constrained by the language except for having to consist
of 1 to n text tokens out of which the first one describes an
abstract processing target with parameters 2 to n. Possible
targets and contexts are defined by additional vocabulary,
leading to a language flavour. In the next subsection, we
will propose one suitable rule and context vocabulary.

Listing 1 defines the context-free grammar leading to the
concrete textual syntax of FlexDDPL in Extended Backus-
Naur Form (EBNF). For better readability, end-of-line tokens
are not included.

Listing 1. FlexDDPI. syntax in EBNF notation
policy = { scoped-rule | comment } ;
scoped-rule = scope—-id " " "{" { scoped-rule
| comment } "}" | rule ;
scope-id = ["!"™] scopecomp | scope;
scopecomp = "@" | "~" scope;
scope = unicode-name ;
rule = module [{ module-option }] ;
comment = "" | "gv [{ ? unicode-char ?
}olog
module = unicode-name ;
module-option= unicode-name ;
unicode-name = ? unicode-alphabet-char ? { ?

unicode-printable-char ? } ;

The sample in Listing 2 gives a first example of how
flexible policies can be designed with the FlexDDPL syntax.
On all data flowing through a cloud storage gateway, the
scaleimage adaptation is applied. All members of the
group developers are subject to a obfuscatesource
adaptation as well, and additionally are constrained to
storage providers from Europe. The storage controller is
instructed that anybody’s data except for the one of the head
of sales will be stored twice at different providers.

adapt scaleimage

@developers {
adapt obfuscatesource
store region europe

}

!~headofsales {
control redundancy 200%

}

Listing 3 shows how data fragments can be introduced.
They instruct the controller to split all incoming files into
equally sized or weighted fragments.

Listing 3. FlexDDPL policy for data dispersion

fragment {
control weight 75%
store cloud

}

fragment {
control weight 25%
store periphery
@developers {

adapt compress

}

B. FlexDDPL Vocabulary

There are two extensible sets of vocabularies to create
powerful policies with FlexDDPL. The rule vocabulary
determines which subsystems can be targeted by policies
expressed in the language, and the context vocabulary de-
termines which rules become active under certain contexts.

We propose the following subsystems for adaptive, dis-
persing storage gateways. All identifiers have been chosen
on purpose to be usable both in noun and in verb form as
the first expression token in rules.

o Store. Refers to the storage services as leaf nodes of
the overall storage system. All services are assumed to
be sufficiently described with non-functional properties
including capacity, availability, region and price.

o Control. Refers to the cloud storage controller as branch
nodes of the system. Along with splitting and encoding
the data, the controller calculates and executes an
optimal data distribution among the candidate services.

o Adapt. Refers to content adaptation operations both
before entering the controller and within each node.

For the contexts, we propose the following identifiers:

o Users and groups. These are inherent to multi-user
systems and, as previously described, denoted with the
special prefixes ~ and @.

o Fragments, declared by fragment. They allow a per-
service differentiation between the parts of files stored
on private and public resources. As cloud storage con-
trollers offer nested fragmentation, this nicely coincides
with nested contexts in FlexDDPL. Fragments can also
be weighted to account for heterogeneity in the storage
service capacities, and be given preferences to classes
of storage services.

o Temporal and spatial context. When accessing the data
at certain times or from certain locations, different rules

may apply. For instance, the microformat expression
T:22:00-06:00 may give a temporal context for
applying higher redundancy due to lower network trans-
mission costs in this period.

o Data contents and metadata context. This is use-
ful to distinguish public from security-sensitive files
when they are tagged as such. Due to possi-
ble splits into fragments, this context is inherited
into all subsequent nodes. An example would be
mime:message/rfc822 for e-mails.

We do not claim completeness over the proposed vocabu-
lary. Indeed, new applications may arise and introduce new
vocabulary, for instance privacy-justified dismissals.

Policies and policy engines might diverge over time
because of the decoupling of syntax and vocabulary. As
a recommendation, unknown vocabulary should be treated
as a specification fault because reworking the appropriate
parts or upgrading the engine is comparatively less work
than the analysis of unexpected consequences of skipped or
mis-interpreting rules and scopes.

IV. DATA DISTRIBUTION GATEWAY ARCHITECTURE

Matching the flexibility of a data distribution policy
language in a running system requires a coequally flexible
storage gateway architecture. In our design, the gateway
encapsulates both the policy creation and the policy evalua-
tion and actuation components around the storage controller.
Technically, it is therefore a policy decision point (PDP) and
a policy enforcement point (PEP) at the same time. Before
describing the integration of the policy components and their
interaction with the gateway, we will first outline a basic
gateway architecture and proposals how to implement it.

A. Basic Architecture

The core architecture without the policy-aware additions
is centered around the data flow from applications to
cloud storage providers and back. All data enters through
a network service interface with a protocol suitable for
integrating local network clients. Typically, this would be
a WebDAYV, CIFS/SMB or NFES proxy which is linked to
an authentication and authorisation system. After passing
the proxy, a storage controller handles the preprocessing,
distribution, retrieval and recovery of data.

Administrators of the gateway require a channel to main-
tain the policy and other configuration. We assume an
administration interface without restricting it to a certain
technology such as web interface, configuration files or
web service API to which remote clients can attach. This
interface would typically be integrated with existing infor-
mation services, in particular the storage service registry and
the user and groups database as for instance LDAP/X.500
directory service or complex identity management solutions
(IDM) with associated public-key infrastructure (PKI). The
basic storage gateway structure is shown in Fig. 2.

|_ Storage Services (Providers)

Cloud Storage Gateway

Cloud Storage Controller:
Dispersion, Distribution, Recovery, ...

A
(Services)

Configuration
Interface: Web, File, API

Local Users

Local Network Storage Interface:
CIFS, SMB, NFS, WebDAV, ...

+

Users and Applications

Figure 2. Architecture of a basic storage gateway for data distribution
into well-described storage services

B. Policy-Aware Architecture Extensions

Along the data distribution path, an adaptation com-
ponent is proposed due to promising results in existing
gateways [12]. The controller and adaptation component can
be separate pieces of software or interwoven in a pipeline
architecture. The policy determines to which extent data will
be adapted.

Furthermore, an autonomic configuration component as-
sists the administrator in suggesting or even activating new
providers and configurations. This component, too, operates
under the guidelines and restrictions imposed by the policy.

The policy evaluation component parses the FlexDDPL
document authored by the administrators and applies it
under a certain context, which is primarily the users and
groups database in the gateway. The application is indirect
by influencing the configuration and activation of other
components within the gateway.

Fig. 3 shows the compound architecture of the entire
policy-aware, autonomic and adaptive data distribution gate-
way attached to applications in the front end and cloud
storage providers in the back end.

C. Implementation

For the storage controller, we employ NubiSave, an exist-
ing optimal cloud storage controller [4], [13]. It represents a
user-space filesystem (realised with the Linux FUSE kernel
module) which disperses its data into directories. In most
cases, these are mount points of other network filesystems.
NubiSave primarily targets single-user single-device and,
through configuration sessions which saved online, multi-
device scenarios. Its locking support also allows for single-
configuration multi-user environments by running a network
service on top of the file system. Multiple configurations
can be supported by mounting the controller’s filesystem

[Storage Services (Providers)

Cloud Storage Gateway

Cloud Storage Controller:
Dispersion, Distribution, Recovery, ...

A
Configuration
Policy Configuration

| Policy Evaluation I<<
Policies Interface: Web, File, API
’V‘ {>| Data Adaptation

Local Network Storage Interface:
CIFS, SMB, NFS, WebDAV, ...

+

Users and Applications

Auto—Conﬁg[Services)

Figure 3. Architecture of an adaptive, policy-driven cloud storage gateway
with autonomic reconfiguration

multiple times. This technique is used to realise the storage
gateway.

For the adaptation of files and datasets coming across the
gateway, we employ AdaptiveSyncer, an existing adaptive
synchronisation tool [14]. It acts as an intermediate between
two directories whose contents are synchronised with ap-
plied uni- or bidirectional adaptation. The storage gateway
writes all incoming files to a temporary directory first,
AdaptiveSyncer is triggered by the filesystem operation and
produces adapted copies of the files, and finally removes the
temporary files again. This intermediate step currently acts
on whole files and hence undermines NubiSave’s support for
streaming large files through systems with small disks. An
engineering compromise is hence to disable adaptation on
large datasets and files.

Since no policy evaluation component could be found
as existing software, we have implemented it as a Python
library. It evaluates users, groups and fragment contexts.
Advanced context including location, time and data contents
is not considered in our implementation but can be extended
following the given vocabulary structure. All control
rules are transformed into appropriate statements in the stor-
age controller’s configuration files, whereas all store rules
lead to a one-time invocation of the Online Service Signup
Tool [15]. This tool needs two inputs: a requirements file and
an identity to perform the service with. It is parametrised
with a generated storage service goal description derived
from the policy, and the identity assembled from the user
database. All adapt rules are applied to an intermediate
file system on which the adaptation tool works.

In our implementation of the administration interface, we
have created a light-weight web interface with a custom user
management sub-component. In each group, users who carry
the administrator role can derive their own policies from

the ones defined by groups in which the group itself has
membership. This allows for both connected (i.e. hierarchi-
cal departments) and disconnected (i.a. hosted multi-tenant)
installations.

V. EVALUATION AND DISCUSSION

The evaluation of our contributions consists of two parts:
First, we perform a language analysis of FlexDDPL ac-
cording to standard guidelines on language construction.
Second, we demonstrate the practical utility of the proposed
implementation of a storage gateway through empirical
methods. Both results will then be briefly discussed and
summarised with an outlook on remaining challenges.

A. Evaluation of FlexDDPL

The evaluation of languages in general, and policy lan-
guages in particular, happens to follow either theoretic
(semiotic) methods or practical (survey) ones. Both kinds
of methods have been successfully applied to the recently
presented Unified Service Description Language (USDL)
[16], for example. For policies, guidelines on how to evaluate
a Domain-Specific Language (DSL) exist. [17] The criteria
presented therein are grouped into four categories: Language
purpose, realisation, content and syntax, both abstract and
concrete.

FlexDDPL fulfils most of the relevant criteria. It has been
designed for a specific use case, has a textual representation,
is kept simple through limited syntax elements and yet
extensible in its rules and context vocabulary, and it allows
comments. On the other hand, the language is not modular,
doesn’t offer more than one representation (serialisation) and
also doesn’t provide syntactic sugar.

The full set of 26 guidelines and how FlexDDPL follows
them is shown in Table I. Not covered by this comparison is
the tool support for authors and integrators. We have created
a syntax highlighting rules file for the editor vim which can
be obtained on the editor’s website.

[Guideline [Match [[Guideline | Match |
Purpose and Uses | v Domain notation | o
Review \ Description v
Consistency \ Distinguish v
Representation o Syntactic sugar -
Composition - Comments v
Language reuse o Organisation -
Types reuse - Balance N
Minimalism \ Style v
Simplicity v Conventions o
Specialisation - Syntax -
Vocabulary v Layout v
Non-Redundancy v Modularity v
Efficiency o Interfaces -

Table 1

DOMAIN-SPECIFIC LANGUAGE DESIGN CRITERIA (CF. [17]) MATCHES
BY FLEXDDPL: FULL MATCH (V), PARTIAL MATCH (0), NO MATCH (-)

B. Evaluation of a Policy-Aware Storage Gateway

For the empirical evaluation of a cloud storage gateway
prototype, we choose the Debian GNU/Linux derivative
operating system SPACEflight, a bootable demonstration
system for service and cloud computing research [18], as a
testbed. It already contains storage resource descriptions and
user management applications, and its copy-into-memory-
on-write design makes it suitable for deterministically re-
peatable experiments. On it, we install the NubiSave cloud
storage controller [13] using the provided package, which
automatically pulls in all dependencies. Along with it, we
install the tools for adaptive synchronisation, for automated
sign-up and for the policy evaluation, all three as interpreted
scripts from their respective source code repositories. The
experiment is performed on an Intel i5 quad-core notebook
machine with x86_64 architecture, 4*3.6 GHz CPU fre-
quency, 4 GB of memory and no swap space.

For each user and group found in the user database, one
instance of the storage controller is mounted, which appears
as a FUSE module mount point in the system. Each store
rule is transformed into a service property requirement, even-
tually leading to attached storage filesystems. In order to find
out about the scalability of this approach, we measured the
filesystem initialisation times and the memory consumption
of consecutive mount operations without attached storage
filesystems. All measurements were performed with the
provided shell-external time and free commands. After
about 75 invocations, the operating system had to reclaim
cached memory, and after 110 invocations, the memory
resources were exhausted and the startup times became
noticeable slow, as can be seen in the diagram in Fig. 4.
We attribute most of this overhead to the FUSE module’s
Java code structure and expect this to be a major source
for future optimisation. For smaller or medium enterprises,
the current prototype would nevertheless already function as
expected.

10000

1000

—— Memory availahle (ME)
100 = —— Memory cached (MB)
Start times (ms)

-
10

1
10 20 30 40 50 60 V0 80 90 100 110

Figure 4. Resource overhead by using per-user/per-group user-space file
systems in the gateway

The invocation of the evaluation engine itself is not
noticeably performance-restricted. Over 1000 consecutive
iterations on the sample from Listing 3, each iteration takes

30 milliseconds. This time does not yet include potential
first-time efforts for the selection of and the sign-up to new
services, which is heavily network-dependent, but typically
in the order of a few seconds per account.

C. Discussion and Outlook

Cloud storage integration into multi-user environments
benefits greatly from rigid, portable policies. With the Flex-
ible Data Distribution Policy Language (FlexDDPL), such
policies can be expressed independently from the storage
controller and gateway implementation, and be mapped onto
those as part of the administration processes. Our proposed
storage gateway leverages this potential in an enterprise
environment. We make our gateway implementation publicly
available at [13].

The gateway subsystems have some potential for improve-
ment. For example, recent works on long-term archiving in
cloud storage environments differentiate temporally between
high and low redundancy [19]. For security-sensitive envi-
ronments, however, full replication is not a viable strategy to
achieve high redundancy. Hence, we expect that time-driven
erasure re-coders be part of storage gateways in the future.
Furthermore, we expect more engineering work towards less
resource-consuming implementations, and more research
on appropriate service property vocabulary to be used in
corresponding store rules. The design of FlexDDPL is
future-proof with regards to the cloud storage evolution.

ACKNOWLEDGEMENTS

This work has received funding under project number
080949277 by means of the European Regional Develop-
ment Fund (ERDF), the European Social Fund (ESF) and
the German Free State of Saxony.

REFERENCES

[1] S. Pearson, “Taking account of Privacy when Designing
Cloud Computing Services,” in ICSE Workshop on Software
Engineering Challenges of Cloud Computing, May 2009, pp.
44-52, Vancouver, Canada.

[2] M. Borgmann, T. Hahn, M. Herfert, T. Kunz, M. Richter,
U. Viebeg, and S. Vowé, “On the Security of Cloud Storage
Services,” Fraunhofer Institute for Secure Information Tech-
nology - SIT, Tech. Rep. SIT-TR-001, March 2012.

[3] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa,
“DEPSKY: Dependable and Secure Storage in a Cloud-of-
Clouds,” in Proceedings of EuroSys, April 2011, pp. 31-46,
Salzburg, Austria.

[4] J. Spillner, J. Miiller, and A. Schill, “Creating Optimal Cloud
Storage Systems,” Future Generation Computer Systems,
2012, accepted for publication.

[5] R. Seiger, S. GroB, and A. Schill, “SecCSIE: A Secure Cloud
Storage Integrator for Enterprises,” in 13th IEEE Confer-
ence on Commerce and Enterprise Computing, Workshop
on Clouds for Enterprises, September 2011, pp. 252-255,
Luxembourg, Luxembourg.

[6] L. Pamies-Juarez, P. Garcia-Lépez, M. Sdnchez-Artigas, and
B. Herrera, “Towards the Design of Optimal Data Redun-
dancy Schemes for Heterogeneous Cloud Storage Infrastruc-
tures,” Computer Networks, vol. 55, no. 5, pp. 1100-1113,
April 2011.

[7]1 O. C. Leonard, J. Nieh, E. Zadok, J. Osborn, A. Shater,
and C. Wright, “The Design and Implementation of Elastic
Quotas: A System for Flexible File System Management,”
Columbia University, Tech. Rep. CUCS-014-02, June 2002.

[8] M. D. Stefano, Distributed Data Management for Grid Com-
puting. John Wiley & Sons, 2005.

[9] M. A. Amer, A. Chervenak, and W. Chen, “Improving Scien-
tific Workflow Performance using Policy Based Data Place-
ment,” in 13'" IEEE International Symposium on Policies
for Distributed Systems and Networks (POLICY), July 2012,
Chapel Hill, North Carolina, USA.

[10] A. H. Anderson, “An introduction to the Web Services Policy
Language (WSPL),” in 5" IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY),
June 2004, pp. 189-192, Yorktown Heights, New York, USA.

[11] M. Ion, G. Russello, and B. Crispo, “Enforcing Multi-user
Access Policies to Encrypted Cloud Databases,” in 12*" IEEE
International Symposium on Policies for Distributed Systems
and Networks (POLICY), June 2011, pp. 175-177, Pisa, Italy.

[12] B. Nicolae, “On the Benefits of Transparent Compression
for Cost-Effective Cloud Data Storage,” in Transaction on
Large-Scale Data- and Knowledge-Centered Systems I, ser.
Lecture Notes in Computer Science, 2011, vol. 6790, pp. 167—
184.

[13] J. Miiller, J. Spillner et al., “NubiSave Optimal Cloud Storage
Controller,” Software project, online: nubisave.org, 2012.

[14] A. Caceres et al, “Adaptive Synchronisation Tool,”
Software project, online: serviceplatform.org/cgi-
bin/gitweb.cgi?p=adaptivesyncer, 2012.

[15] C. Master, “Online Service Signup Tool,” Software project,
online: github.com/cloudmaster/osst, 2012.

[16] M. Matzner and J. Becker, Requirements for a Service
Description Language — Findings from a Delphi Study.
Springer-Verlag, March 2012, ch. 20, in: Handbook of Service
Description - USDL and its Methods.

[17] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler,
and S. Volkel, “Design Guidelines for Domain Specific
Languages,” in Proceedings of the 9th OOPSLA Workshop
on Domain-Specific Modeling (DSM), October 2009, Orlando,
Florida, USA.

[18] J. Spillner, “SPACEflight - A Versatile Live Demonstrator
and Teaching System for Advanced Service-Oriented
Technologies,” in 21st International Crimean Conference
on Microwave and Telecommunication Technology (CriMi-
Co/KpsiMuKo), September 2011, pp. 455-456, Sevastopol,
Ukraine. [Online]. Available: http://serviceplatform.org/

[19] L. Pamies-Juarez, A. Datta, and F. Oggier, “RapidRAID:
Pipelined Erasure Codes for Fast Data Archival in Distributed
Storage Systems,” arXiv:1207.6744v2, August 2012.

