
SPACEFLIGHT - A VERSATILE LIVE DEMONSTRATOR AND TEACHING
SYSTEM FOR ADVANCED SERVICE-ORIENTED TECHNOLOGIES

Josef Spillner
Technische Universität Dresden

Faculty of Computer Science, Chair for Computer Networks
01062 Dresden, Germany

E-mail: josef.spillner@tu-dresden.de

Abstract – New research advances in loosely-coupled,
uniformly described service-oriented systems continue to appear
at a high rate. Application areas such as enterprise information
systems, cloud computing and programmable web applications
benefit from these developments. Yet, it is hard for researchers,
developers and students to understand the combined effect of
methodologies, which leads to unutilised opportunities to further
accelerate the innovation. We present our proposed solution
called SPACEflight. It is a free, ready-to-use demonstrator which
contains a complete service platform, service engineering tools,
extensions for cloud computing and service quality ensurance,
and on top a user-friendly service-oriented desktop with tradeable
scenario services.

 I. Introduction
Service orientation is an established paradigm in the

design of programmable application software integration
and beyond, even applied to workflow systems,
collaborative mobile agents and cloud computing stacks.
The fundamental advantages of service-oriented
architectures encompass flexible and dynamic
composition, substitution and evolution of constituent
parts of the overall distributed system. The fundamental
techniques include uniform and formal descriptions, both
for static interfaces and dynamic protocols, as well as
transparent directories with search and matchmaking
capabilities based on the descriptions.

In recent years, numerous advanced service
orientation concepts have been developed. For instance,
the service execution can now be protected by negotiable
contracts and adapted in the event or providence of
contract violation. The invocation can be triggered by ad-
hoc generated user interfaces and custom service
frontends registered on open service marketplaces.
Furthermore, a plethora of new description formats
beyond just service interface declarations is backing these
advances - USDL, WADL, WSML, WSAG and other
acronyms are regularly announced by scientists all over
the world.

Unfortunately, most of the advances remain abstract
ideas on paper. There are few systematic approaches to
bundle innovative ideas from service orientation concepts
and see how well they work in a combined manner
beyond teaching foundries [1]. Students and software
developers are confronted with finding this out by
themselves over and over again, with practical issues
such as unavailable implementations for many concepts.

We propose to counter this problem with SPACEflight,
a free, ready-to-use demonstrator for advanced service-
oriented technologies aimed at researchers, developers
and students.

II. Demonstrator Design and Architecture
SPACEflight is a stand-alone software demonstrator

based on a universal operating system (Debian
GNU/Linux) which provides all the required low-level
system facilities for controlling the hardware including
attached displays. Its bootloader is configured to run the
system in either full graphical demonstration mode or
special-purpose server modes restricted to service
management and/or execution functionality. The latter can
be used to run several execution instances
simultaneously and connect them to a central
management instance, thus gaining a distributed service
execution platform for experiments.

As central eponymous software package collection,
the demonstrator contains SPACE, the modular and
extensible Service Platform Architecture for Contracting
and Execution [2]. A packaging layer configures and
integrates SPACE parts into the operating system. The
system's startup scripts are modified in a way that all
SPACE platform services are started through virtual
detached daemon sessions which can be reattached
interactively by the demonstrator user at any later time.

In the case of a full demonstration, the last-run startup
script starts the desktop environment (KDE). The desktop
has been customised with a suitable wallpaper, a set of
folders divided by roles and icons to all interesting
platform services, web interfaces, log files and documents
within the folders. The major roles of the demonstrator
user are service platform operator, service provider and
service consumer. Other roles such as service engineer
are subsumed implicitly. All roles can be adopted by the
demonstrator user in parallel.

The service lifecycle [3] encompasses the creation of
services with both implemented executable and modelled
interpretable artefacts bundled in a package, their
extraction and deployment on the service platform by the
provider, their selection and contracting by the consumer
and the generation of usage data by both the system and
the consumer. Figure 1 shows a typical service lifecycle,
starting from service engineering tools over provisioning
to actual usage. The diagram omits the obvious manual
feedback loop back to the service engineer as well as
automatic feedback loops such as adapting non-functional
property specifications in description documents.

A number of prepared scenario service packages are
available to enter the service lifecyle in its runtime phases
by skipping the modelling, development and engineering
of services. The packages include both the
implementation and the description artefacts, among them
a service frontend descriptor, user interface generation
hints and a graphical symbol.

The chosen design leads to the following orthogonal
divisions of concerns within the demonstration system:
• Service lifecycle phase: engineering, offering,

consumption, usage, feedback
• Platform service: central facilities - service registry

and discovery, service deployment and lifecycle
management, contract management, rating;
decentral facilities - access control, execution,
monitoring and adaptation

• Service tier: software service, database, web or
desktop interface, associated log and configuration
files

Figure 1: Tooling along a service lifecycle

• Role: service platform operator, service provider or
consumer

Each demonstration then consists of a trail through
these aspects at any suitable level of detail in each step.
This flexibility allows the user to concentrate and deep-
dive on aspects of interest while still being able to follow
the context around the chosen focus.

A number of SPACE platform extensions and auxiliary
additions are integrated into the SPACEflight system
distribution. They underline the aim to keep the core
platform functionality to a minimum while offering sufficient
extension points. The following extension sets exist:
• Internet of Services desktop: On top of the

demonstrator scenario desktop, the consumer
processes to search for services and negotiate
contracts have been realised as desktop-
integrated dialogues. Furthermore, the contract
negotiation initiates a selection of service frontends
through an integrated delivery concept. This covers
stand-alone clients, desktop widgets and
generated user interfaces.

• Cloud computing: Virtual machines are treated like
very large service packages which can ship their
own descriptions. The service deployment handler
integrates with the deployment of a cloud platform
(Eucalyptus), whereas the contract negotiation
integrates with an instantiation of the virtual
machine in the cloud, making use of a custom
profile derived from the SLA. This extension
increases the minimum required memory from
about 2 GB to about 8 GB of RAM.

• Service engineering: Modelling and development
tools (Eclipse, USDL and WSAG editors, and
others) are made available to the service provider.

• Service quality: A further platform service called
Metadata Correlation Service retrieves, aggregates
and correlates information from the platform's
query interfaces, such as the registry and the
monitoring database. A quality metric is
determined by finding discrepancies among non-
functional property descriptions. The results are
propagated back as quality attributes.

• Experimental facility: Crawler scripts populate the
service registry with existing service descriptions
found on the Internet. Through user activity
simulators and measurement scripts, a number of
experiments can be performed directly on a
running SPACEflight instance. This extension also
opens up the network of the otherwise fully
protected demonstrator.

Additional extension points within the SPACE platform
are defined by the heterogeneity of service package and
artefact formats. This makes it rather trivial to add
deployment support for new package types or interface
descriptions.

The resulting architecture is shown in figure 2.

III. Teaching Potential
The demonstrator can be used for various purposes

by combining the integrated SPACE extensions and
additions appropriately. It has already been used to

prepare large-scale service artefact assessment
experiments and as ready-to-use part of another
demonstrator in the area of cloud computing. A recent
addition is the use within lectures and practical exercises
so that students can experience advanced service
concepts.

In addition to the engineering and provisioning tools
extension, documentation for the platform services and
regarding the service development process is included.
Tutorials and videos turn the demonstrator into a self-
learning environment. As the platform services are largely
implemented in interpreted scripting languages, students
even get the chance to inspect and instantly modify the
platform code to understand why and how certain effects
occur when they trigger them. The integrated revision
control system (git) makes it easy to control deviations
from the original code on a running system. Besides, at
any time the original overall system state can be regained
by a reboot due to the use of an in-memory overlay file
system (aufs).

By running a social product network which is
connected to the SPACE platform services, the resulting
social service network allows the students to act as
providers and consumers of services [4]. This way, they
can cross-test their services with clients of other students
and vice-versa. Also, network effects such as price
specifications, self-marketing and technology domination
can be experienced playfully by the students.

In addition to the social network portal, an automated
static service quality checker can be integrated to identify
incomplete or erroneous submissions during the offering
phase. Tasks and collaboration features in a manual
checker based on the ReviewBoard software allow
students to track their practical exercise progress and
comment and improve each others' solutions. Integration
with a distributed revision control system with hooks for
service package creation out of individual artefacts even
combines learning experience from software and service
engineering.

IV. Discussions
After about two years of development, SPACEflight

has matured from a custom hand-crafted aggregation of
various service platform components to an automatically-
built live demonstrator which ships a number of
preconfigured and integrated tools around a capable
service platform. The build scripts ensure a repeatable
high quality by eliminating regressions due to human
mistakes even when adding further components. The
quality and openness is being rewarded by ongoing rapid
prototype development projects based on the service
platform. SPACEflight has now been demonstrated
successfully at 15 scientific conferences and exhibitions.
With the latest additions, students can better understand
the intrinsic values and problems of service lifecycles. The
demonstrator's increasing use in higher education will
mark the next milestone towards open and pervasive
services distributed through global service platforms.

V. References
[1] Paik H-Y., Rabhi F. A., Benatallah B., Davis J. Service Learning

and Teaching Foundry: A Virtual SOA/BPM Learning and
Teaching Community. 8th International Conference on
Business Process Management, September 2010, USA.

[2] SPACE Website: http://serviceplatform.org
[3] Ferreira D. R. Business Networking with Web Services:

supporting the full life cycle of business collaborations.
Handbook of Enterprise Systems Architecture in Practice, pp.
419-433, Information Science Reference, March 2007.

[4] Spillner J., Caceres A., Buder B., Kursawe R., Globa L.S.,
Schill A. Extending Social Networks with Service Delivery
Capabilities for User-Centric Service Trading. 10th
International Conference on Modern Problems of Radio
Engineering, Telecommunications and Computer Science -
TCSET, Lviv-Slavske, Ukraine, February 23-27, 2010.

Figure 2: Composition of platform services, extensions
and tools to SPACEflight

	 I. Introduction

