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Quantification of Node Significance Based on
Overall Connectivity and Relative Position
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Abstract—In multi-hop wireless networks, such as wireless
sensor networks, some nodes are more important than others
due to their physical and topological significance, their degree of
connectivity, communication load, or simply physical placement.
Expressing their significance in a measurable way can be useful
for communication protocols to assign particular roles to them. In
this paper we propose a model for measuring node significance.
The model modifies and extends Katz’s Status Index which was
first proposed to rank the status of people in a social network. In
its original form, the Status Index is inadequate for our purpose, as
it fails to take some of the key features of wireless sensor networks
into consideration. Our modification addresses its limitations and
puts the significance of each node in its proper context.

Index Terms—Multi-hop communication, node significance,
status index, wireless links, wireless sensor networks

I. INTRODUCTION

A wireless sensor network (WSN) consists of a large
number of nodes integrating sensing, processing, and wireless
communication capabilities [1]. For communication, the nodes
share the ISM band [2] with other wireless technologies. As a
result, both to reduce interference and utilise energy efficiently,
their communication range is typically less than 100 m [3], [4].
When the network size is large, multi-hop communication is
used for packet forwarding.

Maintaining a fully connected network is critical in fulfilling
the purpose for which the network is deployed. However, there
are some challenges associated with this task. To begin with,
the nodes operate with exhaustible batteries and some of them
may exhaust their batteries faster than others. These nodes
may cause the network to fragment prematurely. Secondly,
field deployments show that most wireless links are lossy
due to several physical factors [5]. Thirdly, the availability of
nodes during packet forwarding is highly dependent on their
communication load, which in turn depends on their relative
position in the network and their degree of connectivity. If
packet forwarding protocols do not take these aspects into
account, they may overwhelm critical nodes with requests and
a large amount of packets may be dropped. Fourthly, often
nodes define duty cycles to save energy, the premise being
interesting events occur infrequently and, therefore, nodes
should switch off their radios when idle [6], [7]. Sleeping
schedules, however, should take the relative significance of
nodes into account in order to avoid packet transmission delay.
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For example, nodes which are placed near a base station should
sleep shorter than leaf or edge nodes.

In order to address these and similar concerns, it is useful
to assign a measure of significance to nodes. This quantity
should encode the nodes degree of connectivity and rela-
tive position and express how important nodes are, in their
presence as well as in their absence. Some of the nodes,
when present, are critical for robust message dissemination
and packet forwarding. On the other hand, when they fail, they
potentially cause the network to fragment prematurely. Hence,
different communication protocols may use knowledge of node
significance to achieve different goals. For example, a routing
protocol may use it to identify nodes which are efficient in
disseminating a message or a command. Similarly, a power
management protocol may use it to estimate the lifetime of
nodes and the rate at which nodes utilise energy.

The purpose of this paper is to propose a measure of
significance to the nodes of a wireless sensor network. Our
model relies only on a binary adjacency matrix encoding
the topology (connectivity) of the network. It modifies and
extends Katz’s Status Index [8] which was first proposed to
rank the status of people in a social network. Nevertheless,
in its original form, the Status Index is inadequate to measure
significance, as it fails to take some of the unique features of
wireless sensor networks into consideration. The contributions
of the proposed model are summarised as follows:
• It ranks nodes according to their relevance (position,

degree) in the network.
• Associates rank (significance) with various network as-

signments.
• Identifies vulnerable or critical nodes which may cause

the network to fragment prematurely.
We demonstrate the usefulness of our approach by:
• Discovering reliable routes.
• Defining the sleeping schedules of individual nodes.
• Estimating the degree of network fragmentation when

critical nodes fail.
The remaining part of this paper is organised as follows:

In Section II, we motivate the usefulness of quantifying the
relative significance of nodes. In Section III, we review Related
Work. In Section V, we introduce Katz’s Status Index and
highlight the underlying assumptions. In Section VI, we extend
the Status Index and give justification for doing so. In Sec-
tion VII, we provide quantitative evaluation using two different
networks. In Section VIII we discuss potential applications
for the proposed approach. Finally, in Section IX, we provide
concluding remarks.
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Fig. 1: A wireless sensor network for monitoring wildlife.

II. MOTIVATION

Suppose we are given the network shown in Fig. 1, which
consists of wireless cameras monitoring the presence and
distribution of certain migrant insects believed to be associated
with climate change. The dashed lines indicate direct wireless
links and the topology of the network is determined by the
transmission range of the nodes as well as the deployment
(geographical) setting. The predominant traffic flow is towards
a designated base station, even though the base station may
occasionally send commands to individual nodes in order to
adjust the orientation and field-of-view of the cameras, the
sampling rate, and the sampling duration.

Once the network is established, some of the tasks carried
out by communication and network management protocols are
the following:

1) Identify strategic nodes which efficiently disseminate
commands to the rest of the nodes.

2) Locate vulnerable nodes which may cause the network
to fragment prematurely.

3) Identify rendezvous nodes which facilitate data collec-
tion.

4) Define the sleeping schedule of the nodes.
5) Determine reliable routes.
At first sight, it may appear that, depending on the task

at hand, different nodes may be viewed as most suitable.
For example, the nodes which are the best candidate for
command dissemination are those which are well-connected.
In this regard, the node degree can be taken as a measure of
significance. On the other hand, the nodes which are vital for
keeping the network connected may not necessarily have high
degrees. In the figure, node 2 and 13 are equally significant to
keep the network connected, but they have different degrees.
By contrast, Nodes 3 and 22 have the highest degrees in the
network and yet the network remains, by and large, intact

if they fail. Similarly, when the predominant traffic flow
converges towards a designated base station, the nodes which
are highly relevant are those located near the base station.
This is because they have to aggregate or forward the packets
coming from the leaf nodes. If the location of the base station
is not fixed, this means that the significance of the nodes
changes. Suppose we deploy a drone to collect data. If the
drone hovers above the second mountain on the left side, then
node 16 will be the best to assume the role of a base station,
in which case, nodes 15, 14, and 13 are vital links to all the
other nodes in the network. The situation changes, however,
if we decide to hover the drone in the valley, above node 1,
in which case, nodes 2,3, 12, and 25 become more relevant
than the other nodes.

An interesting research question to ask (and answer) is
whether it is possible to assign a measure of significance to
the nodes which can be useful for carrying out the above and
similar tasks objectively. We answer this question affirmatively
in Sections V and VI, but first we shall review state-of-the-art.

III. RELATED WORK

Measuring the significance of nodes is critical in a wide
range of networks. In social networks, it is employed to
target nodes which are efficient to diffuse information [9]. In
psychometry and neurology, it has been proposed to determine
causal dependencies and information flow efficiency [10].
In general-purpose computer networks, it has been used to
identify nodes which can be the target of attacks and to
estimate the magnitude and extent of coordinated attacks [11].
In power-grids, it has been proposed to estimate the magnitude
and extent of cascaded failure, both random and systematic
[12].

A long list of metrics have been proposed to measure
the significance (centrality) of nodes including closeness,
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betweenness, ties, link importance (weight) [13], [14], [15],
[16]; information index [17], lobbying index [18], and cascade
depth [12]. Other metrics take the peculiarities of the networks
into account [19]. Thus, for example, in neurology, the absence
of an edge encodes conditional independence between two
nodes [10]. In the evaluation section we shall quantitatively
demonstrate that a substantial number of these metrics do not
fully quantify the significance of nodes in wireless sensor net-
works due to the fact that they do not take into consideration
the unique features of these networks. In the remaining part
of this section, we limit ourselves to the reviewing of Related
Work pertaining to wireless sensor networks only.

In wireless sensor networks, knowledge of the significance
of nodes has been used for various purposes [20]. Dong et
al. [21] propose a data collection (routing) algorithm which
aims at guaranteeing reliable event detection and maximising
network lifetime. The algorithm takes the placement of nodes
(hotspot) into account to decide on their candidacy in a specific
data collection assignment. Event detection is maximised by
minimising information distortion [22] whereas network life-
time is maximised by maximising the residual energy of nodes
participating in the event detection process. The probability of
event occurrence in the network and the distance of nodes
from the base station (in terms of hop count) determine their
likelihood of participating in a data collection assignment.

Dobslaw et al. [23] employ a non-binary adjacency matrix
to describe the link quality between any pair of nodes in a
wireless sensor network based on which a reliable end-to-
end route between a source and a sink is determined. The
values assigned to the elements of the matrix correspond
to the likelihood of communicating a packet successfully
using a direct link. Furthermore, the authors define a column
vector expressing the state of the network. The elements of
the column vector describe the number of packets at each
node waiting in a buffer to be transmitted. Based on these
specifications, the authors assign a quality index to each
configuration of the network using a constrained optimisation.

Similarly, Silva et al. [24] quantitatively express the re-
liability of a wireless sensor network as a whole in terms
of the reliability and availability of individual nodes as well
as the collective reliability of the wireless links. The first
two are expressed in terms of the time to failure and the
time to recover probability distributions. In order to measure
link dependability, the authors employ fault tree analysis
[25], [26]. Fault trees are graphical models representing the
combination of events that potentially lead to a system failure.
Given a topology, the proposed model assigns a probability of
dependability to the entire network.

In general, the proposed approaches attempt to characterise
the significance or relevance of nodes in the presence of lossy
links and unpredictable operation conditions. However, instead
of regarding nodes independently, they model relevance as
a global aspect, referring to a network as a whole, a given
end-to-end route, a pre-defined data gathering assignment, or
a system configuration. In the final analysis, however, it is
individual nodes which fail, exhaust batteries, or overwrite
packets on account of congestion and overflowing buffers.
Likewise, it is individual nodes which should aggregate or

forward packets or whose configuration (such as duty-cycle)
should be adjusted to guarantee high availability. In this
paper we complement proposed approaches by providing a
mechanism to rank the contribution of nodes to the overall
relevance of a wireless sensor network.

IV. CENTRALITY METRICS

Most of the proposed metrics to account for the significance
of nodes in a network can be evaluated from two complemen-
tary perspectives. The first is the scope of the metrics. Some
of them can be regarded as local metrics whereas others are
global. The computational cost of the latter is considerably
higher than the computational cost of the former but their
expression power is also higher. When the nodes are relatively
free to make their own decision based on the local dynamics
of the network (for example, during route selection), local
metrics can be more useful than global metrics. The second
perspective is the purpose of the metrics. Specifically, this
refers to whether a metric accounts for message propagation
efficiency or network resilience.

A. Closeness

Closeness is a measure of the centrality of a node in a
network. A node ranking the highest in this regard is the one
achieving the smallest hop count on average in establishing
routes with all the nodes in the network. It is a global
parameter and useful for efficient message dissemination.
Mathematically it is expressed as follows:

σi =
N − 1∑N
j=1 dij

(1)

where σi is the closeness index of node i : 1 ≤ i ≤ N and dij
is the hop distance between Nodes i and j, taking the shortest
route between i and j.

B. Betweenness

Betweenness is a measure of the significance of a node in
maintaining a fully connected network. Hence, it is expressed
as:

βi =
∑

i 6=p6=q

Γpq (i)

Γpq
(2)

where Γpq (i) refers to the number of shortest routes connect-
ing nodes p and q requiring node i as their intermediate node
and Γpq refers to the overall number of shortest routes con-
necting nodes p and q. Whether or not two routes are equally
short is determined by the number of intermediate nodes they
involve in connecting nodes p and q : 1 ≤ p, q ≤ N . For
example, in Fig. 1, there are four 5-hop routes connecting
Nodes 24 and 1 (Γ24,1 = 4. Ref. to Tab. I). Of these,
three of them require Node 22 as their intermediate node
(i.e., Γ24,1 (22) = 3). Hence, as far as Nodes 24 and 1 are
concerned, Equation 2 for Node 22 yields 3/4.
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Route ID Participating Nodes
1 24-29-28-26-25-1
2 24-22-28-26-25-1
3 24-22-21-20-25-1
4 24-22-21-20-12-1

TABLE I: Four 5-hop routes connecting Nodes 24 and 1 in
Fig.1

C. Information Index

The above two metrics consider the shortest routes connect-
ing any pair of nodes in the network. The Information Index
by contrast considers all possible routes but assigns different
weights of significance to them. The basic idea is as follows:
Node i may transmit a message to Node j via all the possible
routes available to it. As the message propagates, it undergoes
attenuation. Hence, the longer the path of propagation, the
more it is attenuated and the less significant it becomes to
Node j. Hence, the remnant information extracted from a route
connecting nodes i and j is given as:

qij = (rii − rjj − 2rij)
−1 (3)

where rij are the elements of the matrix:

R = (D−C + U)
−1 (4)

where D is a diagonal matrix consisting of the degree of each
node in the network, C is the adjacency matrix signifying the
topology of the network, and U is an N by N matrix of unit
elements. Finally, the Information Index of Node i is given as:

γi =

 1

n

N∑
j=1

qij

−1 (5)

The inverse relationships in the above equations signify the
attenuation effect of message propagation.

As we shall demonstrate in Section VII, regardless of what
they wish to achieve, the above metrics – and, indeed, many of
the proposed metrics which we did not explicitly address here
– assume that the traffic in the network is omnidirectional (i.e.,
it originates anywhere and propagates to anywhere), which is
not the case in wireless sensor networks. Hence, our aim is to
define a Significance Index which takes this particular aspect
into consideration.

V. KATZ’S STATUS INDEX

Katz represents the relationship between people in a so-
cial circle using a binary adjacency matrix C in which 1
and 0 represent the presence and absence of a direct link,
respectively. The diagonal elements of C and all the powers
of C are set to zero or simply ignored. The column sums
of C yield the number of people with which each person is
directly linked. Squaring C yields a square matrix of the same
dimension as C1 expressing the number of two-hop links the
people form in the network. This operation is computationally
tractable even for a large network, since c2ij =

∑
x cixcxj and

1The dimension of C is N × N , where N is the number of people in
the network.

each multiplication operation yields either 0 or 1. Similarly,
C3 reveals how the people are interlinked with one another
through two intermediate persons, and so on.

In Katz’s social circle, a link is not necessarily symmetric
(i.e., confidence is not necessarily reciprocated). Assuming
that the probability of propagating information between any
two directly linked individuals is p, Katz asserts that the
summation of all the powers of pC encodes how well-
connected a person is in the social network. Hence:

T = pC + (pC)
2

+ ...+ (pC)
k

+ ... = (I− pC)
−1 − I (6)

Note that the summation term is a geometric series. T is a
square matrix and summing its columns yields a row vector
revealing the total number of direct and indirect links by which
information reaches the people:

tᵀ = uᵀ
[
(I− pC)

−1 − I
]

(7)

where u is a column vector consisting of N unit elements.
Multiplying both sides of Equation 7 by (I− pC) and rear-
ranging terms yields [8]:

t =

(
1

p
I−Cᵀ

)−1
d (8)

where d = uᵀC. In other words, d encodes the number of
direct (single-hop) links the people establish with their peers.
Equation 8 is not normalised by the maximum number of
available links (single as well as multi-hop) given the topology.
The normalisation term is proposed by Katz himself, which is
given as:

m =

∞∑
j=1

pj (N − 1)
j ∼= (N − 1)!pN−1e1/p (9)

Consequently, the Status Index of each person expressed as an
element of a column vector is determined as follows:

k =
1

m
t (10)

C =



0 1 1 0 0 0 0 · · ·
1 0 0 1 0 0 0 · · ·
1 0 0 0 1 0 0 · · ·
0 1 0 0 0 1 0 · · ·
0 0 1 0 0 0 0 · · ·
0 0 0 1 0 0 0 · · ·
0 0 0 0 0 0 0 · · ·
0 0 0 0 0 1 1 · · ·
0 0 0 0 0 0 1 · · ·
0 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
...



(11)

A. The Status Index as a Measure of Node significance

In [27], we argue that there are many parallels between the
social networks Katz sets out to model and wireless sensor
networks. Hence, it is possible to
• employ an adjacency matrix to represent the topology of

a wireless sensor network; and,
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• apply the Status Index to rank the significance of nodes
in the network.

Equation 11 displays a partial adjacency matrix constructed
from the topology of the network shown in Fig. 1.

Some of Katz’s assumptions, nevertheless, are not applica-
ble to wireless sensor networks and require reconsideration.
This is because, in Katz’s social circle:
• The nodes’ physical location does not have any bearing

on their social status whereas this is not the case in
wireless sensor networks.

• The probability of two people sharing information with
one another is assumed to be dependent on the adjacency
matrix. Indeed, Katz’s approach breaks in case 1/p is not
greater than the largest characteristic root of C – This can
easily be verified from Equation 8. In wireless sensor
networks, the probability of two nodes communicating
with one another at any given time is independent of the
topology of the network (i.e., the adjacency matrix).

• Direct links are typically asymmetric whereas in wireless
sensor networks this may not be the case. Indeed, most
short-range links are rather symmetric.

• All multi-hop links of the same order or length are equally
valid; this cannot be asserted in wireless sensor networks.

The last item can be illustrated by considering c3 for the
network shown in Fig. 1. Equation 12 displays a portion of
C3 – the first five rows and five columns:

C3 =



N1 N2 N3 N4 N5

N1 0 6 2 2 2
N2 6 0 7 7 2
N3 2 7 0 5 6
N4 2 7 5 0 6
N5 2 2 6 6 0

 (12)

Accordingly, there are 5 three-hop routes connecting Node 3
and Node 4 whereas in reality there are none. Nevertheless,
the effect of this error is marginal, since the probability that
the two neighbour nodes communicate with each other using
three-hop routes (or, in general, long routes) is very small (for
details, ref. to [27]).

B. Node Placement and In-Network Processing

In a wireless sensor network, there is typically a single
node – the base station – to which all the sensed data are
destined. The base station occasionally sends commands and
queries but the predominant traffic flow is from the child
nodes to the base station. The nodes participate in packet
forwarding and aggregation. In this respect, the computational
and communication burden of the nodes which are placed near
the base station is heavier than the burden of those which are
farther away. Furthermore, in the multi-hop communication
chain, the significance of the role played by each node depends
on:

1) its relative position and,
2) the availability of nodes in its proximity which can

provide alternative routes in case the node becomes
unavailable. In general, nodes with fewer number of
direct links may cause the entire network to fragment

in case they fail. The nearer they are to the base station,
the more critical their failure become.

VI. SIGNIFICANCE INDEX

In order to accommodate the aspects we discussed above,
we modify and extend the Status Index. Firstly, we normalise
the adjacency matrix by (N − 1), as this will relax the
assumption that p should depend on the topology of the
network (refer to Equations 9 and 10):

H =
C

(N − 1)
(13)

Notice that for a fully meshed network, the column sum of H
yields 1. Likewise:

Hk =
Ck

(N − 1)
k

(14)

Thus, the total number of normalized links available to each
node can be approximated by:

L ≈
∞∑
k=1

(pH)
k

= pH (I− pH)
−1 (15)

The reason why we say “approximated” is that some of the
links are invalid in the higher powers of H, as we already
pointed out. The error arising in Equation 15 is minimised,
however, on account of p, since pk approaches zero as k
becomes large. Indeed, we do not need to worry about
node significance unless p is small. If p is large, it means
that shorter routes are sufficient to guarantee an end-to-end
communication, in which case, HK encodes, by and large,
the number of valid multi-hop routes. In case p is small, we
need longer routes to guarantee communication. At the same
time, however, the error in Equation 15 becomes very small.
The normalization factor (N − 1)

k further suppresses the error
in HK .

If we multiply Equation 15 by a column vector of unit
elements, we get the modified Staus Index:

km = uᵀL (16)

Equation 16 frees the calculation of the significance of nodes
from being dependent on the topology of the network. This is
because, the explicit normalisation factor, m, in Equation 10
is no longer required. Nevertheless, Equation 16 still suffers
from the following shortcomings:
• It considers all direct (single-hop) links to be equally

significant whereas this is not the case in wireless sensor
networks, where the links near the base station are more
significant than the links farther away from the base
station and towards the edge of the network.

• It assumes that information propagates in all directions
with equal significance and probability. In wireless sen-
sor networks, however, the predominant traffic flow is
towards the base station. Hence, the gradient formed
towards the base station is the most significant gradient.

In order to encode these two essential aspects, we introduce
an additional term to Equation 15. Let hi be the minimum
number of hops the base station needs to communicate with
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node i. Similarly, let di be the degree of node i. The weight
of significance we attach to node i according to its placement
in the network and its distance from the base station can be
expressed as:

wi =

{
hmax+1−hi

hmax+1 · 1
p di

di > 1
hmax+1−hi

hmax+1 di = 1
(17)

where hmax is the number of hops the base station uses in
order to communicate with the farthest node in the network,
using the shortest route possible. The coefficients wi...wn

make up a row vector w.
For di > 1 (intermediate nodes), the first part of the right-

hand term gives more weight to nodes which are near to the
base station whilst the second gives more weight to nodes
which potentially cause the network to fragment in case of
failure. If there are many nodes which are connected to node
i (i.e., if di > 2), it means that there can be as many alternative
relay nodes at that distance to forward packets towards the base
station, thereby reducing the significance of the node by 1/di
in case it fails or becomes unavailable. Similarly, the smaller
p is in the network – notice that p is a global variable2 –,
the less reliable are all links and the more significant is each
node’s contribution to the overall reliability of the network,
and, therefore, more weight should be given to the node. If,
on the other hand, p is big, then each link is equally significant
and the reward of having multiple links is not so great. For
di = 1 (leaf nodes), we remove the second weight term to
exclude leaf nodes from being rewarded for having a small
degree. Subsequently, the extended Status Index – i.e., our
Significance Index, is gives as:

s = wL (18)

where s is a column vector consisting of the Significance
Index of individual nodes. The advantage of Equation 18 is its
ability to capture a node’s relationship with its neighbours in
a wider sense. A node’s significance is determined not merely
based on its link with its immediate neighbours but also based
on the significance of those with which it is linked, whose
significance, in turn, is determined by the significance of those
with which they are connected, and so on. Table II displays the
list of symbols we used to describe the significance of nodes
in a network. Algorithm 1 summarises the computation of the
Significance Index.

VII. NUMERICAL EVALUATION

For the numerical evaluation, we take the network of Fig. 1
as a reference throughout this section. The topology of this
network is partially expressed by Equation 11. The network
has a flat topology, meaning, all nodes play the same roles
(sensing and packet forwarding) and Node 1 is the designated
base station. Hence, the predominant traffic of the network
flows towards this node. To illustrate the usefulness of our
approach to hierarchical topologies, we shall consider another
topology in Subsection VIII.

2This is based on the assumption that the deployment setting affects
all nodes equally and that the wireless channels are, statistically speaking,
independent.

Symbol Description
C A binary matrix describing a topology
N Number of nodes in a network
p The probability of establishing a link between

two nodes
m A factorisation term
T Number of single- and multi-hop links

connecting nodes (a matrix)
d Node degree (a column vector)
t Nodes overall degree of connectivity

(a column vector)
k Katz Status Index (a column vector)
H A normalised adjacency matrix
L Normalised number of single- and multi-hop links

connecting nodes (a matrix)
km Modified Status Index (column vector)
hmax The minimum number of hops connecting the base station

with the farthest node in the network
hi The minimum number of hops connecting the base station

with node i
di The degree of node i
w Weight of significance (row vector)
s Significance Index

TABLE II: Notations to describe the significance of nodes in
a network

Algorithm 1 Procedure for Computing the Significance Index

1: procedure SINDEX(C, N, p,h,d)
2: Initialize:

wi ← 0, i = 1, . . . , N

3: H←
(

1
N−1

)
C

4: L← pH (I− pH)
−1

5: for i← 1 to N do
6: if di > 1 then
7: wi ←

(
hmax+1−hi

hmax+1

)(
1

pdi

)
8: else if di = 1 then
9: wi ← hmax+1−hi

hmax+1
10: else
11: break
12: end if
13: end for
14: s← wL
15: return s
16: end procedure

A. Node Ranking

For a small network and a small p, Katz’s Status Index and
its modified version rank the significance of nodes in the same
way (as can be seen in Fig. 2 (top)). The modified version,
as we indicated in Equation 15, frees the Status Index from
being dependent on the magnitude of p. When p is large, the
Status Index breaks even for a small network. Similarly, for a
small network, the modified Status Index and the Significance
Index rank nodes, by and large, in the same way, regardless
of the value of p. This is because the impact of w on s in
Equation 18 is not appreciable when hmax is small.

Fig.2 (bottom) compares the ranking of nodes using the
modified Status Index and the Significance Index for p = 0.7.
Even though the plots appear similar at first sight, there is a
subtle difference. For example, the modified Status Index gives
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Fig. 2: Ranking nodes according to their significance using
Katz’s original Status Index, the modified Status Index, and
the Significance Index. Top: p = 0.2. Bottom: p = 0.7

Rank k km s Energy
1 13 13 13 25
2 12 22 20 2
3 22 12 12 13
4 20 20 25 12
5 3 3 22 20

TABLE III: The top five significant nodes for the network of
Fig. 1

higher scores to Nodes 9, 10, and 22 compared to the scores
they are given by the Significance Index. By contrast, the
Significance Index gives higher scores to Nodes 2, 6, 15, 18,
and 25 compared to the scores they are given by the modified
Status Index. These differences arise from the fact that the
Significance Index gives emphasis to critical nodes whereas
the modified Status Index to nodes’ degree of connection. In
summary, for a large p and a large network, the Significance
Index modifies the Status Index in three ways:
• Nodes are not regarded as significant simply because they

are well-connected.
• Critical nodes are identified as significant.
• Leaf nodes are downgraded even though they have rela-

tively high node degree.

B. Energy Consumption

The relative significance of the nodes can be determined by
closely examining their energy consumption characteristics. In
order to carry out this task, we model energy consumption as
follows. Each node generates a packet every second using a
Poisson distribution and sends it to its immediate neighbour,
setting the base station as the destination node. The size
of a packet is 28 Byte and packet transmission is unicast.
Intermediate nodes forward the packet without modifying it.
In other words, they do not perform in-network processing
(such as data aggregation or filtering). In addition, interme-
diate nodes transmit the packets they themselves generate.
An intermediate node makes up the shortest path connecting
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Fig. 3: The overall energy consumption (in Watts-Hours) of
the 7 most critical nodes.
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Fig. 4: The energy depletion profile (in Watts-Hours) of the 7
most critical nodes.

a source node with the base station. The cost of packet
transmission and receiving is taken from the CC2420 data-
sheet3. Accordingly, a node consumes 18.8 mA when receiving
and 17.4 mA when transmitting. The transceiver’s supply
voltage can be varied between 2.1 and 3.6 V. We set it to
3.6 V. The nominal transmission rate of the CC2420 radio is
240 Kbps. Hence, the minimum amount of energy a node
consumes to receive a single packet from a neighbour is:
(28 × 8 × 18.8)/(240 × 106) = 17.5 µW s. Likewise, the
minimum packet transmission cost is 16 µW s.

The energy consumption characteristic can be evaluated in
two complementary ways. Firstly, we can evaluate the amount
of energy a node consumes in a given time interval. This is

3https://www.ti.com/lit/ds/symlink/cc2420.pdf?ts=1591251841135 (last
access on 04 June 2020, 08:24 o’clock CET).
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useful for estimating its energy reserve (lifetime). Secondly,
we can evaluate the rate at which a node exhausts its energy.
This can be useful for routing protocols to make decision
whether the participation of a node in a routing assignment
leads to a premature network partitioning. If, for instance, a
critical node exhausts its energy reserve at a high rate, it is
likely that a part of the network partitions prematurely. In both
cases, the higher the amount, the more significant a node is
as its peers rely on it to forward packets to the base station.

Fig. 3 shows the 30 minute energy consumption of the
top 7 nodes for the deployment of Fig. 1. From their energy
consumption we can deduce their communication burden. The
energy profiles of Node 12, 13, and 20 are consistent with their
Status Index, Modified Status Index and Significance Index.
When it comes to Node 3, 22, and 25, however, the ranking
strategies produce different results. Katz’s Status Index identi-
fies Node 22 and Node 3 as the third and fifth most significant
nodes, respectively. The Modified Status Index ranks them as
the second and the fifth most significant nodes, respectively.
These aspects are not reflected in their energy profile (they are
seventh and sixth, respectively). The Significance Index, on the
other hand, ranks Node 25 as the fourth most significant node
and does not rank Node 3 as one of the five most significant
nodes.

An interesting aspect which has not been captured by any
of the ranking strategies is the case of Node 2, which has
consumed a significantly large amount of energy. The signif-
icance of this node can be confirmed by a visual inspection,
for if this node fails, the entire right wing of the network
would fragment. None of the ranking strategies was able to
foresee this, because the node is not well connected. Similarly,
according to the energy profile, Node 25 appears to be the most
significant node. Even though its Significance Index suggests
the significance of Node 25, it is, nonetheless, seen as the
fourth most significant node, not the most significant node.

Fig. 4 shows the rate at which the 7 most significant nodes
utilised energy. This figure highlights the burden of Node 25.
Whereas Node 12 and Node 13, which are well-connected and
near to the base station, have other nodes which can alleviate
their packet forwarding burden, Node 25 does not have. As a
result, even if its node degree is less than that of Node 12 and
Node 13, its energy consumption is significant.

C. Network Partitioning

One way to demonstrate the significance of nodes in a
network is to remove the most significant nodes and observe
how the network survives. We can characterise the fragment
in two ways, namely, in terms of:

• the number of “islands” created; and,
• the population of each island.

The bigger the number of islands and the fewer the relative
population of the islands, the worst is the fragmentation. Using
these two concepts, we can evaluate how well a given approach
measures the relevance of nodes in a wireless sensor network.

Rank Closeness (σ) Betweenness (β) I (γ) s
1 12 2 13 25
2 20 13 24 2
3 13 4 6 13
4 25 20 3 12
5 2 6 12 20

TABLE IV: The top five significant nodes. I: Information
Index. s: Status Index.

Route ID km s γ

R1 Node 26 (-0.14) Node 29 (-0.15) Node 25 (0.06)
R2 Node 26 (-0.14) Node 26 (-0.06) Node 25 (0.06)
R3 Node 21 (0.10) Node 21 (0.06) Node 21 (0.01)
R4 Node 21 (0.10) Node 21 (0.06) Node 21 (0.01)

max(min) R3, R4 R3, R4 R1, R1

TABLE V: Vulnerable intermediate nodes and their normalised
(between -0.5 and 0.5) scores.

Hence, given a significance metric, its resilience score can be
expressed as:

Φj(x) =
1

K

K∑
k=1

pk
N

(19)

where Φj(x) refers to the resilience score of metric x when j
of the most significant nodes are removed from the network;
K is the number of islands after fragmentation, N is the
number of Nodes in the fully connected network, and pk is
the population of the k-th island. A fully connected network
has a resilience score of 1. The smaller Φ is, the worst is the
fragmentation of the network as a result of the failure of its j
most significant nodes.

In order to evaluate the expression power of our significance
metric in this regard, we implemented the centrality metrics
we discussed in Section IV – closeness, betweenness, and
information index – for comparison. Tab. IV lists the top most
significant nodes identified by these metrics in the network
of Fig. 1. If we remove these nodes from the network, five
islands will be formed in the case of closeness and Information
Index; four islands, in the case of betweenness, and six islands,
in the case of Status Index (ref. to fig. 5). The correspond-
ing resilience scores are: Φ5(σ) = 0.17, Φ5(β) = 0.2,
Φ5(γ) = 0.17, Φ5(S) = 0.14. Subsequently, both in terms
of the number of islands and the resilience score, our metrics
correctly predicted the most relevant nodes in the network.

D. Reliable Route

In wireless networks different metrics are used to dis-
cover efficient routes. One of these evaluates the minimum
amount of available power of eligible nodes [1] using the
maximum(minimum( available power )) operation. It
works as follows: The nodes with the minimum available
power will be selected from each potential route and the route
with the highest minimum available power will be selected as
a winner. The goal is to ensure that nodes are exhausting their
energy evenly. One can take a similar approach to identify the
most reliable route. Thus, vulnerable nodes are selected from
all eligible routes and the route with the least vulnerable node
will be selected.
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Fig. 5: Network fragmentation after the five most relevant nodes were removed. Top left: Closeness. Top right: Betweenness.
Bottom left: Information Index. Bottom right: Status Index.
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Fig. 6: Determining the most reliable route using a significance
metric.

To illustrate, suppose we wish to establish the most reliable
route connecting Node 1 and 24 in Fig. 1. As we have seen
in Section IV, there are four potential routes having the same
hop count (ref. to Fig. 6). Which of them is the most reliable
route? If we rank the intermediate nodes according to their

significance, we can answer this question objectively. For
comparison, we employ the Information Index, the modified
Status Index, and the Significance Index to rank the nodes.
Table V lists the most vulnerable intermediate nodes in each
route along with their indices. The bottom row identifies the
route(s) containing the least vulnerable intermediate node.
Thus, the Information Index identifies R1 and R2 as the most
reliable routes whereas the modified Status Index and the
Significance Index identify R4 and R3 as the most reliable
routes. As can be seen, Nodes 26 and 29, which make up
R1 and R2, are leaf (outer) nodes and it is appropriate that
the modified Status Index and the Significance Index exclude
them.

E. Duty-Cycle

Another advantage of ranking nodes is the possibility of
specifying their duty-cycle according to their significance. A
duty cycle specifies the portion of time a node is active [1],
[28] and is expressed as:

D =
ta

ta + ts
× 100% (20)

where D is the duty cycle in percent, ta is the active duration,
ts is the sleep duration, and T = ta + ts is the period. If, for
example, one of the leaf nodes has a duty-cycle Dl = 10 %,
the duty-cycle of all the remaining nodes can be expressed in
terms of their relative significance:

Di = Dl ×
ri
rl

(21)
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Fig. 7: Defining duty cycle using the Status Index, the modified
Status Index, and the Information Index.

where ri and rl refer to the ranks of node i and the leaf
node, respectively. Fig. 7 compares the duty cycle of nodes
we computed using the Information Index, the modified Status
Index, and the Significance Index. A closer examination of the
duty cycles of the individual nodes reveals that the Information
Index is not suitable for this task. There is no apparent corre-
lation between the duty cycle it assigns to the nodes and their
actual significance in the network. The modified Status Index
and the Significance Index agreed in their assignment most of
the time, however, the latter moderates the appropriation of
active time to nodes which are far away from the base station
even though they are well-connected. Examples are: Nodes 8,
9, 22. On the other hand, critical nodes near the base station
are assigned relatively longer active durations. Examples are
Nodes 6 and 25.

VIII. SCALABILITY AND APPLICATION

It is legitimate to ask at this point (1) whether the approach
scales and (2) what additional applications it has. The answer
to the first question is affirmative as long as the adjacency
matrix (which is positive-definite) is invertible. The computa-
tional complexity (i.e., the time complexity) associated with
solving Equation 15 is in the neighbourhood of O2.3 [29], on
account of the inverse matrix operation.

In order to demonstrate the scalability of our approach, con-
sider Fig. 8, where we have a hierarchical-topology wireless
sensor network consisting of a base station, three cluster heads,
and 125 child nodes. The topology forms a polar coordinate.
For this network, the original Status Index breaks not only
on account of p but also of m (ref. to Equation 9), which
becomes inordinately large and dwarfs the contribution of all
the other terms. Interestingly, for a well-structured topology
like this, the Modified Status Index and the Significance Index
rank the nodes in a similar fashion. This is because, the
position of each node and its contribution to the connectivity
of the entire network is implicitly encoded in the topology
itself, without the need to explicate it with Equation 17.
Fig. 9 displays the significance indices. Interestingly, both
approaches have accurately reflected the unique role border

nodes (such as nodes: 7, 35, 48, 60, 69, and 96) play in
maintaining connectivity.

IX. CONCLUSION AND FUTURE WORK

In this paper we extended Katz’s Status Index to measure
the significance of nodes in a wireless sensor network. We
interpreted significance as the contribution of individual nodes
to the connectivity or reliability of the network. Originally
proposed to rank the status of people in a social circle,
the Status Index assigns a quantitative value to each node
in a network according to the strength of its links with its
peers, taking both direct and all possible indirect links into
account. However, it does not take into consideration the
physical placement of nodes in the network and the role
they play in maintaining unbroken multi-hop links. As these
aspects are essential for wireless sensor networks (wherein
the flow of traffic is predominately from child nodes to a
single base station), we introduced a new normalisation term
to contextualise the Status Index.

Our approach assumes that the network’s topology does not
change or changes slowly over time. This assumption justifies
the cost associated with the construction and evaluation of the
adjacency matrix. When the network topology is dynamic, this
cost becomes appreciable. Nevertheless, this cost is not unique
to our approach. Indeed, most of the proposed approaches,
besides relying on some form of adjacency matrices, take
into consideration additional metrics to increase the expression
power of their model, which have to be updated whenever the
topology of the underlying networks and the roles played by
the nodes change.

From the way the Significance Index ranks the nodes, it is
apparent that the second term of the right-hand side in Equa-
tion 18 may become dominant in some network topologies. In
which case, a fine-tuning should be made, so that each term –
i.e., a node’s relationship with its peers, a node’s placement in
the network, and the presence of alternative relay nodes in the
hop chain – gets its proper significance. This is particularly the
case when the network’s size is appreciably large (in which
case, hmax becomes disproportionately large, thereby forcing
the equation to overemphasize the placement of nodes in the
network).

In future, our focus will be on exploring additional appli-
cation areas for the Status Index. For example, in Figure 8
we computed the Significance Index of the nodes given the
structure of the network. An interesting question to address
will be: Given the Significance Index of the nodes and a flat
network, is it possible to (1) dynamically cluster the network,
(2) identify (or designate) Nodes BS, c1, c2, c3, as cluster
heads, and (3) associate child nodes with these nodes?
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