
Rule-based vs. Training-based Extraction of Index Terms
from Business Documents - How to Combine the Results

Daniel Schuster, Marcel Hanke, Klemens Muthmann, and Daniel Esser

TU Dresden, Computer Networks Group, 01062 Dresden, Germany

ABSTRACT

Current systems for automatic extraction of index terms from business documents either take a rule-based
or training-based approach. As both approaches have their advantages and disadvantages it seems natural to
combine both methods to get the best of both worlds. We present a combination method with the steps selection,
normalization, and combination based on comparable scores produced during extraction. Furthermore, novel
evaluation metrics are developed to support the assessment of each step in an existing extraction system. Our
methods were evaluated on an example extraction system with three individual extractors and a corpus of 12,000
scanned business documents.

Keywords: Information Extraction, Result Combination, Document Management, Production Document Pro-
cessing

1. INTRODUCTION

While the paperless office has been propagated since years, organisations world-wide still exchange huge amounts
of paper documents each day. Especially in large organisations these documents are scanned, OCR-ed and stored
in a doument management system, where index terms like sender, receiver, date, or amount are needed to be able
to later find and group these documents. Automatic extraction of such index data is thus a crucial functionality
of modern document management and document archiving solutions.

Current solutions for automatic extraction either use rule-based extraction or training-based extraction.
Rule-based extraction works on a large set of hand-crafted rules like left and right context words of index values
or regular expressions, e.g., matching VAT identification number. Training-based solutions solely depend on
training examples given by the end-user and try to figure out certain patterns in the training documents. These
may be based on similar page layout, characteristic words, logos or other graphical elements.

Rule-based approaches are best suited for use cases where large volumes of similar documents have to be
processed like in hospitals or big companies. On the other hand, training-based approaches are flexible to adapt
to changing document types and thus are preferred to be used in small office/home office (SOHO) scenarios.
But these training-based approaches offer low performance in the starting phase where there are only few tagged
documents in the training set. Thus, a combination with rule-based extractors would be desirable to help out
with the deficits of training-based extraction especially in (but not limited to) the starting phase.

This work tackles the problem of how to combine results from multiple extractors for automatic processing of
business documents. The research problem might look quite simple in the first place. If each extractor decides for
one best-matching candidate for each field (sender, receiver, date, ...), we could combine the results by majority
voting. But majority voting does not work if we have an equal number of votes for two extraction candidates.
Certainly, extractors should rather return a ranked list of candidates with a score for each candidate. But this
opens a new challenge: How do we ensure that scores from all extractors are comparable? This problem has not
been considered yet in the literature as only similar classificators have been combined. We deal with the problem
of how to combine results of an extractor working on a hand-crafted rule set with the results from training-based

Further author information:
Daniel Schuster: daniel.schuster@tu-dresden.de, Marcel Hanke: marcel.hanke@tu-dresden.de, Klemens Muthmann:
klemens.muthmann@tu-dresden.de, Daniel Esser: daniel.esser@tu-dresden.de

extractors. In this case, normalization of extraction scores is an essential prerequisite for the combination of
results.

The main contribution of this work is a process for the combination of extraction algorithms. It is designed to
work well in the scenario described above but is not limited to extraction of index data from business documents.
Besides the description of the process and its steps, we provide new evaluation metrics for the assessment of each
of these steps during the process. Both contributions are rather guidelines than ready-to-use algorithms. They
need to be adapted to the concrete combination problem in question. But the examples and evaluation results
given in this paper clarify the process and hopefully make it easy to use it in other settings as well.

2. RELATED WORK

Existing approaches for extraction of index data from business documents or Functional Role Labeling1 can be
categorized in Text-based Extraction, Rule-based Extraction, and Layout-based Extraction (see Figure 1).

Text-based
Extraction

(NLP)

Layout-based
Extraction
(Positions,

anchors, ...)

Rule-based
Extraction
(RegEx, …)

rule-based

training-based training-based

Figure 1: Existing approaches for extraction of index data from business documents

Text-based Extraction involves methods from Natural Language Processing (NLP) such as Tokenization,
Stemming, and Part-of-Speech Tagging to assess the likelihood of a text token to belong to one of the predefined
fields. The extractor itself is then often realized as a machine learning algorithm like Naive Bayes building a
multi-class classification model on the basis of a set of training documents.2 This approach is not only used for
production document processing but also in other domains like medicine.3 As can be seen in Figure 1 there is
some overlap with rule-based approaches as features for these machine learning algorithms do not need to be
only words or N-grams. Higher-level features like the match of a certain regular expression can be integrated to
gain higher classification accuracy. These higher-level features need to be specified by a domain expert and are
thus quite similar to hand-crafted rules.

This leads to the second class of extractors which work on a pre-defined rule set as it is common industry
practice. These rules are often very domain-specific and dependent on language, culture, and other characteristics
of the documents available for the rule engineers. A huge human effort is required to create and maintain an
organization-specific rule set. This work certainly pays off for large organizations as highly optimized rule-based
extractors offer higher accuracy compared to other approaches. Rule engines with regular expressions often
require huge amounts of processing time which can be reduced using finite state machines.4

The third group of approaches is based on the layout of business documents. These documents are typically
created using some template and one can find a lot of similar-looking documents in any large document corpus.
Hu et al.5 as well as Esser at al.6 describe approaches to identify documents with the same template out of a
document set either on a graphical or post-OCR representation of newly scanned documents. Once one or more
documents of the same template are found, index data can be extracted based on known absolute positions or
positions relative to anchor points in the document. Other works try to identify (key, value) pairs out of OCR
information7 or even raw document images.8 There is again some overlap with rule-based approaches as regular
expressions can help to label tokens as date, ID, e-mail address or other and thus avoid extraction errors when
only comparing the positions.

Hanke et al.9 show that layout-based approaches can even be used in a cold-start scenario where there is no
training data available in the beginning. Users give feedback on fields not recognized thus building up a training
set which constantly improves the extraction results. After less than 10% of the corpus used for evaluation, the

system already reaches its long-term quality level. But the experience in the starting phase is rather bad which
calls for rule-based methods to be used in conjunction with the training-based approach. Our assumption is that
there is often a need for both, training-based as well as rule-based extractors in Functional Role Labeling. Thus
we need methods to combine the results.

Early work on combination of different classification algorithms dates back to Kittler et al.10 In this work,
emphasis is already put on classifier selection, as classifiers should be selected carefully to decide if the additional
processing time pays off. Ideally, there would be disjunct results of the different classifiers. If there is only one
classifier available, variation can be done regarding the feature sets used by the classifier.11–13 A separate feature
set with the same machine learning algorithm would account for another single extractor in our understanding.

Combination methods discussed in these works are majority voting, Borda selection, maximum score selection,
mean score selection, sum of scores selection, and product of scores selection. More sophisticated combination
methods14,15 or selection methods16 are based on the Dempster-Shafer theory (DST) of evidence.17 While
DST allows for weighting different single extractors, it does not differentiate between different tasks or fields
where algorithms may differ in performance. DST results of Giacinto et al.16 only show marginal improvement
compared to simple majority voting.

A combination of different approaches in Natural Language Processing is shown by Srihari et al.18,19 Although
the authors join rule-based and training-based techniques to extract Named Entities, they do not combine the
extraction results from each algorithm by applying a score or weighting. They rather use different techniques
to get an union set of distinct entities not evaluating them according to which or how many algorithms had
extracted.

All these existing approaches combine machine learning classifiers which deliver either none or accurate and
comparable extraction scores in their decision. Our approach is different from these approaches, as we combine
results from training-based extraction with results from rule-based extraction. This requires adjusting available
scores as described in Section 6. Furthermore we propose a fine-granular weighting scheme which takes the
strengths and weaknesses of single extractors on different fields into account. Before discussing our approach in
more detail, we will start with a precise definition of the research problem.

3. PROBLEM DEFINITION

The problem of combining results from multiple single extractors in Functional Role Labeling can be formalized
as follows:

Given is a set of single extractors E where each extractor Ej takes the same test document di from the set
of all test documents D as input and extracts results. For each document di, each single extractor Ej returns a set
Ri,j = {ri,j,1, .., ri,j,n} of results (Ej(di) = Ri,j). Each result ri,j,k = (fieldk, {(value1, score1), ..., (valuex, scorex)})
is a pair of a field fieldk and a set of extracted candidates for this field. The set F defines all fields to be ex-
tracted by the system. A candidate set consists of (value, score)-pairs with score in the range [0..1]. Finally, the
combiner is a function which takes a document-specific set of result sets Ri = {Ri,1, Ri,2, ..., Ri,n} and returns a
combined result set Ri,C .

This first part of the definition just defined the formats of the input and output of the single extractors and
combiner and should be clarified with the following example:

F = {sender, receiver, date}
D = (d1, d2, d3)

E = (E1, E2)

R1,1 = {(sender, {(TUD, 0.9), (DocuWare, 0.7)}), (date, {(4/12/2012, 0.7)})}
R1,2 = {(sender, {(DocuWare, 0.8)}), (receiver, {(TUD, 0.8)}), (date, {(5/20/2012, 0.8), (4/12/2012, 0.5)})}
R1,C = {(sender, {(DocuWare, 0.75), (TUD, 0.45)}), (receiver, {(TUD, 0.4)}), (date, {(4/12/2012, 0.6), (5/20/2012, 0.4)})}
R2,1 = ...

...

Now we are able to select the best matching candidates (maximum score) from each result set in order to
find the subset of labels Li,j out of the set of all labels L that a single extractor assigns to a document di. The
same procedure is done to identify Li,C as the set of labels assigned by the combiner for document di. A label is
defined as a pair (field, value). To assess the results of the extraction and combination, we need a ground truth
consisting of a set of tagged test examples. For each document di from D there exists an example Li,E with a
subset of labels from the set L of all labels.

The use of these symbols will be clarified again by an example:

L = {(sender,DocuWare), (sender, TUD), (receiver, TUD), (date, 4/12/2012), (date, 5/20/2012)}
L1,E = {(sender,DocuWare), (receiver, TUD), (date, 5/20/2012)}
L1,1 = {(sender, TUD), (date, 4/12/2012)}
L1,2 = {(sender,DocuWare), (receiver, TUD), (date, 5/20/2012)}
L1,C = combine({L1,1, L1,2}) = {(sender,DocuWare), (receiver, TUD), (date, 4/12/2012)}

The ground truth example L1,E for document d1 in the example above was much like we expected it to be
except the date field. Here the combination algorithm returned the wrong result. Obviously, our goal is to
minimize these errors or more precisely, at least do less errors than the best one of our single extractors. If this
was not the case, we could simply select the best single extractor and only run this one on all test documents.
We take the commonly used measures of Precision, Recall and F1-measure as our optimization targets. These
measures are calculated for the combiner as follows:

PrecisionCombiner =
1

|D|

|D|∑
i=1

|Li,C ∩ Li,E |
|Li,C |

(1)

RecallCombiner =
1

|D|

|D|∑
i=1

|Li,C ∩ Li,E |
|Li,E |

(2)

F1Combiner = 2 · PrecisionCombiner ·RecallCombiner

PrecisionCombiner + RecallCombiner
(3)

By replacing Li,C with Li,j , the same method can be used to calculate PrecisionSingle(j), RecallSingle(j)
and F1Single(j) of one single extractor. We are now able to formally define the goal of our combination approach:

F1Combiner ≥ argmax
|E|
j=1F1Single(j) (4)

Simply put, this is all we want to achieve. We can not expect both PrecisionCombiner and RecallCombiner

to be always higher than what single extractors can achieve. It is possible to tune one single extractor for high
precision and low recall and a second one vice versa. Thus, the F1-measure seems to be the best compromise. All
other requirements like normalization of extraction scores rather emerged out of analysis of our single extractors
as well as first experiments with combination which all led to worse results than the best single extractor thus
violating Equation (4). These observations are the basis of our approach as described in the next section.

4. APPROACH

Our approach for the combination of single extractors in Functional Role Labeling is depicted in Figure 2. The
steps to be carried out are selection of single extractors based on coverage results, normalization of extraction
scores of the selected single extractors and finally the process of combination where one task is finding appropriate
weights for the single extractors.

Single
Extractor

Single
Extractor

Single
Extractor

Document Corpus

Selection
Combined
Extractor

Normalization Combination

Figure 2: Combination approach

All steps have to be carried out on the basis of a document corpus, i.e., the set D and all tagged label sets Li,E

as described in the problem definition. Results heavily depend on the size and diversity of the document corpus.
As a consequence from the literature research, there will not be much effort to create sophisticated combination
methods itself. We later rely on a simple weighted sum of scores. What matters more is the pre-selection and
normalization of single extractors which will be covered in the next two sections.

5. SELECTION

As already pointed out by Kittler et al.,10 pre-selection of single extractors helps in not wasting any resources
in the extraction process. We propose the selection to consist of two steps: Pre-selection Evaluation and It-
erative Coverage Test. In the first step, the Pre-selection Evaluation, single extractors will be judged on
PrecisionSingle(j), RecallSingle(j) and F1Single(j) as described in Section 3.

In our case, we had three single extractors E1, E2, and E3 which represent a text-based extractor, a rule-
based extractor and a layout-based extractor. The document set D consisted of 12,494 business documents
provided by our industry partner comprising 7 document types. The set of fields is defined as F ={sender, con-
tactNumber, amount, customerID, email, documentNumber, subject, date, recipient, contactPerson, toBePaid}.
All documents are fully tagged with examples.

Table 1 shows the results of the selection evaluation. The numbers should not be taken as a measure on how
the three methods compare to each other in general. Our development effort was very much centered on layout-
based extraction (E3) while the other two methods were just implemented using state-of-the-art approaches.
Especially the rule set of E2 is not very much optimized. Its performance could be improved dramatically by
more rule engineering effort.

Table 1: Pre-selection evaluation of the three single extractors

E1 (Text-based) E2 (Rule-based) E3 (Layout-based)

PrecisionSingle(j) 0.165 0.645 0.820
RecallSingle(j) 0.154 0.534 0.813

F1Single(j) 0.159 0.584 0.816
Best field Precision 1.000 (document number) 1.000 (to be paid) 1.000 (contact person)

Best field Recall 0.614 (subject) 0.682 (contact number) 0.937 (customer ID)
Running time 283.1 ms 97.58 ms 37.92 ms

Based on this evaluation, there seems to be good potential for combination of the approaches. While E3

performs best in all measures, E2 still offers quite good results. E1 is not competitive compared to the other two
extractors. But for the selection step one should not rely only on the total number of correctly classified labels.
As can be seen in the table, each extractor has some special fields where it performs quite good. If the user has
a high interest in these fields, there might be a good reason to keep all three extractors.

To finally make the decision, we propose a method called Iterative Coverage Test. We initialize a working
set of single extractor candidates with all single extractors from E: ECand = E. Furthermore, we create an empty
set EIC = {} of single extractors which are to be combined in a perfect way, representing the ideal combiner (IC).

In each iteration step, we take the best performing single extractor from ECand and move it to EIC . We then
compare it to the remaining best extractor in ECand. We measure the total number of labels either recognized
exclusively correct by the candidate extractor, non-exclusively correct, or wrong. The iterations continue until
no single extractor is left in ECand.

In our case, we selected E3 as the best extractor based on the results in Table 1. In iteration 1, E2 was
compared to E3. In iteration 2, E1 was compared to the ideal combination of E3 and E2. Table 2 shows the
results of the Iterative Coverage Test for our use case.

Table 2: Results of Iterative Coverage Test

Gain Coverage Error

Iteration 1: Add Ej = E2 to EIC = {E3} 10.7% 44.8% 44.5%
Iteration 2: Add Ej = E1 to EIC = {E2, E3} 0.3% 15.0% 84.7%

The columns of Table 2 show the share of labels assigned to the classes Gain, Coverage, and Error. Gain
refers to all labels exclusively correctly identified by Ej , i.e., the true positives identified by Ej minus the true
positives identified by EIC . Coverage thus identifies the intersection of the sets of true positives identified by Ej

and EIC . Finally, Error subsumes all errors done by Ej , false positives as well as false negatives. This means
we do not make a distinction between precision and recall in the Iterative Coverage Test, but rely on accuracy
for simplicity reasons.

Now we are able to judge the potential of the combination. If we combine the two best extractors E3 and
E2 we can expect a maximum gain of 10.7% in accuracy compared to running E3 alone. If we then add E1 we
can only expect 0.3% of gain in correctly detected labels. Thus based on these results we select E2 and E3 and
drop E1 in the selection step.

The algorithm can be modified to run multiple times. We then do not select the best remaining extractor in
each iteration but shift the order of candidate extractors to cover each possible arrangement of extractors in E.
This is especially recommended if the Pre-selection Evaluation shows no big differences between the performance
of the extractors.

6. NORMALIZATION

After selecting the best single extractors for combination, normalization of extraction scores has to be carried
out. This is an essential step to ensure decidability as well as comparability. To judge these two properties of an
extractor, we propose the Extraction Score Distribution as an evaluation measure. For each extractor Ej

from E, each document di from D has to be processed by Ej to create the result sets Ri,j . For each field in F we
now compare the result with the best score with the corresponding label from the ground truth example Li,E .
We count all correct and erroneous results and tag them with their score. Now we can create extraction score
distribution diagrams based on score ranges. We propose to use the 10 bins {0.1, 0.2, ..., 1.0} for the histogram.

1.5 1.5 2.5 2.5
correct error correct error correct error correct error correct error correct error

0 1.88 1.99 1.0 57.7 1 9536.743 9% 13% 1% 34% 0% 60%
0.1 2.01 1.13 1.5 38.4 2.5 3814.697 10% 7% 1% 22% 0% 24%
0.2 1.63 1.73 2.3 25.6 6.25 1525.879 8% 11% 1% 15% 0% 10%
0.3 1.57 1.14 3.4 17.1 15.625 610.3516 8% 7% 2% 10% 0% 4%
0.4 2.15 1.23 5.1 11.4 39.0625 244.1406 10% 8% 3% 7% 0% 2%
0.5 1.73 1.05 7.6 7.6 97.65625 97.65625 8% 7% 4% 4% 1% 1%
0.6 1.59 1.81 11.4 5.1 244.1406 39.0625 8% 12% 7% 3% 2% 0%
0.7 1.51 1.21 17.1 3.4 610.3516 15.625 7% 8% 10% 2% 4% 0%
0.8 1.89 1.70 25.6 2.3 1525.879 6.25 9% 11% 15% 1% 10% 0%
0.9 2.26 1.08 38.4 1.5 3814.697 2.5 11% 7% 22% 1% 24% 0%
1 2.43 1.49 57.7 1 9536.743 1 12% 10% 34% 1% 60% 0%

20.66064 15.55679 170.9951 170.9951 15893.91 15893.91
2.43 1.99 57.67 57.67 9536.74 9536.74

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

correct

error

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

correct
error

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

correct
error

Figure 3: Patterns of extraction score distribution - left: worst case, middle: desirable case, right: best case

Figure 3 illustrates different hypothetical results. The left diagram shows a worst case distribution where it
is not decidable if a result is an error or correct. If we draw a threshold line anywhere in the left diagram, we
will always have roughly as much false positives as true positives. The diagram on the right is the best case we
could imagine. We can draw a threshold line at score = 0.5 and are able to perfectly decide whether a value is
correct or not. Unfortunately, this is an unrealistic case. What we rather expect is a distribution like the one
in the middle of Figure 3. Here we can draw a threshold line which minimizes the amount of false positives and
false negatives. With growing score, the possibility that a result is a true positive rises.

00%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

correct
error

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

correct

error

Figure 4: Extraction scores of layout-based extractor E3 before (left) and after (right) normalization

For our use case we especially had to normalize the layout-based extractor E3 as can be seen in Figure 4. On
the left side of Figure 4 is the extraction score distribution of E3 before the normalization step. There are peaks
at score levels 0.5 and 1.0 where errors often occur but get a high score.

Extractor E3 decides for best-matching document templates based on their Lucene score (see Esser at al.6

for details). Template matches are determined by words and their positions in the training documents. Lucene
was chosen because of its good performance as a kNN classifier. If a wrong template is selected as best match,
we are not able to reject it, as Lucene scores are not normalized. Such wrong templates are normally rejected
in the next step, as there are no values at the positions proposed by the wrong template. But in this step it
may accidently happen to be some values at positions of the wrong selected template. Thus E3 extracts these
erroneous values and gives them a high score based on the template selection step. The left diagram of Figure 4
revealed that this happens more often than we expected.

We thus removed the template detection from the score calculation. We rather now only calculate the score
based on the coverage of the extraction rectangle and the rectangle of the value found in the test document.
Thus if we have a wrong template, we expect the positions to not fully match our test document’s positions.
This simple modification of the core algorithm not only improved the total performance of E3 by nearly 6% but
also smoothed the distribution of scores as can be seen in Figure 4 on the right.

We did similar steps in adapting E2, especially replacing hand-wired weights for single rules by a probabilistic
learning function for those weights. We do not want to go more into the details of our example normalizations
as they are rather specific for each extractor under study. No matter what steps have to be taken to normalize
extractor scores, the evaluation metric of Extraction Score Distribution should always be used before actually
combining single extractors.

7. COMBINATION

After selection and normalization of the extractors, they can finally be combined using one of the combination
approaches discussed in Section 2. We decided to use a weighted sum where weights are given for each pair
(extractor, field). We allow the user to specify non-negative integers as weights, as this is more intuitive. Each
weight not specified is assumed to be 1. We end up with a configuration file like the one shown in Example 1.
The weights are then normalized, to add up to 1 for each field:

Example 1 XML configuration file defining weights for the combination of E3 and E2.

<algorithm name="Layout Extractor">

<weight field="amount" weight="1"/>

<weight field="contactperson" weight="2"/>

<weight field="customerid" weight="1"/>

</alogrithm>

<algorithm name="Rule Extractor">

<weight field="amount" weight="4"/>

<weight field="contactperson" weight="1"/>

<weight field="customerid" weight="2"/>

</algorithm>

∀Fk ∈ F :

|E|∑
j=1

weightEj ,fieldk
= 1 (5)

Now we calculate the combined score Combscore as the weighted sum of scores for any distinct (field, value)
pair:

Combscore(di, fieldk, valuex) =

|E|∑
j=1

weightEj ,fieldk
· scoreri,j,k (6)

fieldk ∈ F, di ∈ D

The (field, value) pair with the highest Combscore is added to Li,C , the set of labels selected for document
di by the combiner.

There still remains one problem with this approach: Our problem definition allows the extractors to return
an empty result for a field if they are unsure about its value. That’s why we track precision and recall instead
of accuracy. We want to value extractors that are built reluctant and better do return no value if there is a high
chance to return an error. Table 3 shows an example where E3 only extracted one value for a field while E1 and
E2 returned 2 candidates with different scores.

Table 3: Combination example with an empty value

E1 E2 E3

weight 0.5 0.3 0.2

DocuWare 0.8 0.5
TUD 0.5 0.6 0.8

Now we would calculate the combined score Combscore like this:

Combscore(di, fieldk, ”TUD”) = 0.5 · 0.5 + 0.3 · 0.6 + 0.2 · 0.8 = 0.59

Combscore(di, fieldk, ”DocuWare”) = 0.5 · 0.8 + 0.3 · 0.5 = 0.55

The missing value of E3 is treated as if it had score = 0. Alternatively, we could re-normalize the remaining
weights as some extractors may have been designed to only extract a few fields from F with high precision. In
this case it would be more fair to calculate the combined score for the value ”DocuWare” like this:

CombscoreLift(di, fieldk, ”DocuWare”) =
1

0.5 + 0.3
(0.5 · 0.8 + 0.3 · 0.5) = 0.69

The normalization factor was calculated based on the sum of the weights of all extractors that delivered a
value for the field. We call the modified combination method CombscoreLift as empty values cause other values
to be lifted during combination. The example shows that Combscore would prefer ”TUD” as the best value for
the field while CombscoreLift would rank ”DocuWare” higher.

To clarify the effect of the two variants, we did an evaluation on our combination of E2 and E3 calculating
F1Combiner as in Equation (3). The combination with Combscore achieved an F1-measure of 0.821 while the
lifting approach with CombscoreLift was slightly worse with F1Combiner of 0.804. But these results are quite
domain-specific as they depend on how often extractors return empty results. Thus, for any set of extractors E
to be combined using our approach, both methods should be evaluated.

Now the final step of the combination is the optimization of weights. For this purpose, we try out different
combinations of weights and measure F1Combiner for each combination. More specifically we can measure F1 for
each field and thus decide per field which one is the best combination of weights (see Example (1) for an example
distribution of weights). We made evaluation runs with the weights {0, 1, 2, 3, 4} resulting in an optimized weight
set with only these values. This weight set made up an improvement of 3.3% of F1Combiner compared to equal
weights (all weights are set to 1).

Table 4: Summary of results

E1 E2 E3 E3 norm. Combscore CombscoreLift

F1 score 0.159 0.589 0.721 0.780 0.821 0.804
Combination gain 0.041 0.024

F1 score in starting phase 0.655 0.576 0.761

Table 4 summarizes all results for our combination problem. With the Combscore method we reach 4.1%
more F1 score than the normalized version of E3. We thus reached the goal stated in Equation (4). Nevertheless,
the biggest effect came out of the normalization of E3 which boosted F1 by nearly 6%. Alltogether we reached
a 10% improvement by the steps discussed in this paper compared to running the original version of E3 alone.

The last row of Table 4 shows the results of the starting phase, i.e., only the first 100 documents of the
evaluation. As we always start with an empty training set, the results of E3 in the starting phase are expectedly
worse than the total F1 score for the whole document set. Here, the combination shows a remarkable improvement
of 10% compared to the performance of E2 and nearly 20% compared to running E3 alone. So a combination of
rule-based and training-based extractors certainly pays off in the starting phase.

8. CONCLUSIONS

This paper dealt with the question, whether a combination of training-based and rule-based extractors for index
data extraction from business documents is possible and useful. We have proven the added value of rule-based
extractors especially in the starting phase. A good combination of training-based and rule-based extraction seems
possible if selection and score normalization are carried out before the actual combination of the single extractors.
The approach and measures defined in this paper are a helpful framework for any similar combination attempt.
The potential gain of the combination heavily depends on the coverage of the results of the single extractors.

We plan to extend the work on combination of results to the problem of distributed information extraction
in the future. Our current research deals with improving the user experience of layout-based extraction by
connecting different domain-specific extractors with parent extractors that only deal with the documents not
recognized by the child extractors. The question how to combine parent extractor results with child extractor
results is still an open challenge in this scenario. Furthermore, it would be interesting to see how our approach
is helpful for other domains, e.g., information extraction from the Web or bio-medical use cases.

ACKNOWLEDGEMENTS

This research and project was funded by the German Federal Ministry of Education and Research (BMBF)
within the research program ”KMU Innovativ” (fund number 01/S12017). We thank our project partners from
DocuWare (Michael Berger, Christoph Weidling, Kamil Aliyev) for insightful discussions and for providing us
with the document corpus used for the evaluation.

REFERENCES

[1] Saund, E., “Scientific challenges underlying production document processing,” in [Document Recognition
and Retrieval XVIII], DRR 2011 (2011).

[2] Zhang, L., Pan, Y., and Zhang, T., “Focused named entity recognition using machine learning,” in [Proceed-
ings of the 27th annual international ACM SIGIR conference on Research and development in information
retrieval], SIGIR ’04, 281–288 (2004).

[3] Bunescu, R., Ge, R., Kate, R. J., Marcotte, E. M., Mooney, R. J., Ramani, A. K., and Wong, Y. W.,
“Comparative experiments on learning information extractors for proteins and their interactions,” (2004).

[4] Gulan, S. and Fernau, H., “An optimal construction of finite automata from regular expressions,” in [IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2008)], Hariharan, R., Mukund, M., and Vinay, V., eds., Leibniz International Proceedings in Informatics
(LIPIcs) 2, 211–222, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2008).

[5] Hu, J., Kashi, R., and Wilfong, G., “Comparison and classification of documents based on layout similarity,”
Information Retrieval 2(2), 227–243 (2000).

[6] Esser, D., Schuster, D., Muthmann, K., Berger, M., and Schill, A., “Automatic indexing of scanned docu-
ments - a layout-based approach,” in [Document Recognition and Retrieval XIX (DRR)], (2012).

[7] Sarkar, P., Society, I. C., Nagy, G., and Fellow, L., “Style consistent classification of isogenous patterns,”
IEEE Trans. PAMI 27, 88–98 (2005).

[8] Bart, E. and Sarkar, P., “Information extraction by finding repeated structure,” in [Proceedings of the 9th
IAPR International Workshop on Document Analysis Systems], DAS ’10, 175–182 (2010).

[9] Hanke, M., Muthmann, K., Schuster, D., Schill, A., Aliyev, K., and Berger, M., “Continuous user feedback
learning for data capture from business documents,” in [Workshop on Nonstationary Models of Pattern
Recognition and Classifier Combinations under the framwork of HAIS2012], (2012).

[10] Kittler, J., Hatef, M., Duin, R., and Matas, J., “On combining classifiers,” IEEE Transactions on Pattern
Analysis and Machine Intelligence 20(3), 226 –239 (1998).

[11] Ho, T. K., Hull, J., and Srihari, S., “Decision combination in multiple classifier systems,” IEEE Trans.
Pattern Analysis and Machine Intelligence 16(1), 66 –75 (1994).

[12] Windridge, D. and Kittler, J., “Combined classifier optimisation via feature selection,” in [Proceedings of
the Joint IAPR International Workshops on Advances in Pattern Recognition], 687–695, Springer-Verlag,
London, UK (2000).

[13] Chen, B. and Zhang, H.-X., “An approach of multiple classifiers ensemble based on feature selection,”
in [Proceedings of the 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery -
Volume 02], 390–394 (2008).

[14] Denaux, T., “A k-nearest neighbor classification rule based on dempster-shafer theory,” IEEE Transactions
on Systems, Man and Cybernetics 25, 804–813 (1995).

[15] Denaux, T., “A neural network classifier based on dempster-shafer theory,” (2000).
[16] Giacinto, G. and Roli, F., “Dynamic classifier selection based on multiple classifier behaviour,” Pattern

Recognition 34, 1879–1881 (2001).
[17] Dempster, A. P., “A generalization of bayesian inference,” Journal of the Royal Statistical Society. Series

B (Methodological) 30(2), pp. 205–247 (1968).
[18] Srihari, R., Li, W., Cornell, T., and Niu, C., “Infoxtract: A customizable intermediate level information

extraction engine,” Nat. Lang. Eng. 14(1), 33–69 (2008).
[19] Srihari, R., Niu, C., and Li, W., “A hybrid approach for named entity and sub-type tagging,” in [Proceed-

ings of the sixth conference on Applied natural language processing], ANLC ’00, 247–254, Association for
Computational Linguistics, Stroudsburg, PA, USA (2000).

