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Abstract—Automatic information extraction from scanned
business documents is especially valuable in the application
domain of document archiving. But current systems for auto-
mated document processing still require a lot of configuration
work that can only be done by experienced users or admin-
istrators. We present an approach for information extraction
which purely builds on end-user provided training examples and
intentionally omits efficient known extraction techniques like rule-
based extraction that require intense training and/or information
extraction expertise. Our evaluation on a large corpus of business
documents shows competitive results of above 85% F1-measure
on 10 commonly used fields like document type, sender, receiver
and date. The system is deployed and used inside the commercial
document management system DocuWare.

I. INTRODUCTION

Information extraction as a core technology for automated
document processing has been quite successful in a number of
application domains. Commercial solutions like smartFix [1]
and the Open Text Capture Center [2] automatically process
scanned invoices, medical documents or insurances on a reg-
ular basis. Information included in the documents is extracted
and documents are automatically aligned to existing business
workflows as well as attached to existing ERP systems and
other databases enabling a high accuracy of extraction results.

While this works well for large and medium-sized insti-
tutions, it still requires a high effort of on-site configuration
and thus does not fit the needs of small office and home office
(SOHO) users. To bring information extraction to SOHO users,
our goal was to reduce configuration and adaptation efforts as
effectively as possible.

Purely training-based approaches will never reach the
accuracy and comprehensiveness of customized or specially
adapted solutions. Nevertheless, they provide an added value
for users who do not have the possibilities to run a customized
solution. Every field the system is able to extract with high
precision is of help for SOHO users while recall may still be
low. This is discussed in more detail in Section II.

Our work describes an approach for purely training-based
information extraction involving text and layout features. Its
core technology is an identification of similar looking docu-
ments on top of a local search engine (Apache Lucene). The
approach described in Section III learns immediately from user

feedback, does not require any training documents in advance
and works completely language-independent.

To underline the highly adaptive character of our approach,
we test our solutions with what we call Cold Start Metrics,
i.e., a gold standard evaluation starting with an empty learning
model and adding each document not recognized correctly
as a training example. Results are shown and discussed in
Section IV.

II. REQUIREMENTS AND RELATED WORK

We started Intellix as a publicly funded research project
with the primary focus on document archiving for SOHO
users. We believe that any solution in this market will only
be successful if it significantly lowers the burden of manually
tagging new documents. Otherwise, SOHO users will just stay
with their current approach which is mainly a hierarchical
folder structure often in combination with public cloud services
such as Dropbox.

Thus the research task to be solved is nearly configuration-
free information extraction or functional role labeling (com-
pare [3]) of a few commonly used fields in document archiving.
A minimal set to enable structured archiving consists of doc-
ument type, sender, receiver and date. For more user comfort
we added further popular fields (contact number, amount,
customer ID, subject, document number, to be paid) based on
a survey carried out by DocuWare.

Our goal is to be able to extract these 10 commonly
used fields with an accuracy of above 80%. Furthermore, we
want the algorithm to quickly adapt to new types of docu-
ments. Users expect the system to extract information from
a document looking similar to an already tagged document
immediately. We take this into account when we define our
evaluation metrics in Section IV.

It is important to mention that we do not want to extract
more specific information like full table content (see [1])
or handwritten information. Clearly, pure training-based ap-
proaches will hardly work for these more advanced information
extraction tasks.

If we look at common solutions in the field of information
extraction out of business documents, we can divide them into
two different kinds of approaches.



Knowledge engineering systems extract information with
handcrafted rules from target documents. Rules range from
simple regular expressions [4] over the identification of rela-
tional key words [5] to more complex patterns for identifying
addresses [6] or table contents [7]. For breaking up the strict
matching of rules, Klink et al. [8] provide a more sophisti-
cated solution. The authors allow combining multiple types
of exchangeable rules, using a fuzzy-matching to check them.
Although this kind of solutions produce excellent extraction
results, they do not match our requirements for low configu-
ration and high flexibility. Thus we do not use any kind of
components requiring rules in our current implementation.

Self-learning or trainable systems avoid the high effort for
manual engineering of extraction knowledge and fit much more
to the needs of SOHO users. These systems use annotated
example documents and try to automatically find extraction
mechanisms like generated rules or statistical models. Cesarini
et al. [9] identify similar documents within the training set and
generate positional rules that can in turn be used for extraction.
We have also presented a similar approach in the past [10].
Matsumoto et al. [11] also considers layout characteristics
like bold or italic characters for rule generation. Medvet et al.
and Bart et al. [12], [13] use a probabilistic model to detect
index fields and table content. Pandey et al. [14] make use
of similarity measures for detecting relevant information. A
huge disadvantage of current trainable systems is the need for
large sets of example documents, requring manual annotations.
While this problem has not yet been deeply discussed in the
information extraction domain, the influence of training on the
performance of classifiers is well studied [15].

We do not know an information extraction system, neither
handcrafted nor trainable, that allows the extraction of fields
relevant for document archiving and performs as fast and adap-
tive as our approach. Especially in terms of zero configuration
to set up and run the system, our approach is superior than
state-of-the-art approaches.

III. APPROACH

Our approach, the Intellix indexing process, is shown in
Figure 1. The process starts with a document in post OCR
representation, i.e., an XML file with a hierarchical structure
of the document beginning at the page level turning down
to text and table zones, lines, words and characters. Each
element carries position information so that bounding boxes
of words can be derived from the XML file. Such an XML
representation is the usual output of commercial OCR engines.
We rely on external OCR because of its superior recognition
rates. Hence, OCR optimizations are not part of our work.

A. Classification

Like most document processing systems, our approach is
divided into classification and information extraction. Classifi-
cation assigns a basic document type such as invoice, dunning,
or delivery note to the input document. After experimenting
with very diverse features for this purpose (simplified layout
representation, logo detection, ...) we surprisingly found out
that a simple Bag of Words model in combination with a kNN
classifier showed best results on our dataset.

We thus extract and count all words in the input document.
Lucene [16] is used as a kNN Classifier where each known
training document is indexed and then ranked according to the
words included in the input document. Lucene ranking mainly
relies on the well-known TFIDF (term frequency / inverse
document frequency) ranking scheme. The document type of
the input document is then determined by majority voting on
the ranked list of k retrieved similar documents. Currently k
is always set to five.

Parallel to document type classification, we try to identify
the document template. This is not just a subtype of the
document type as there are some cases where a company
uses the same template with little modifications for different
document types. What we call template rather identifies a
transformation function of some input data and fixed elements
to a graphical document representation. The key idea of any
document processing system is to reverse this transformation
to identify the input data used to create the representation.

While it is quite easy for a human to identify documents us-
ing the same template, machines need sophisticated algorithms
to make a decision. For our Template Detection component
we tested different techniques based on graphical and layout
features like the simplified document layout representation
described in [17]. Again, a Lucene-based kNN approach was
desirable for our SOHO use case as it enables fast detection
and immediate learning. We found a solution called Wordpos
Features. We generate a grid of rectangular areas, e.g. a 20
by 30 grid for A4 paper. Each word in the input document is
assigned to the grid cell where its upper left corner originates.

These features perform exceptionally good for template
identification. More details about this can be found in [10].
Again, with Lucene’s built-in TFIDF-based ranking, we isolate
the fixed words at invariant positions used in each template.
Lucene returns a ranked list of k training documents best
matching the template of the input document. Normalizing
the Lucene score to the first entry in the list, a threshold
can be used to filter out non-matching documents. The list
of matching template documents is then handed over to the
different indexer components.

B. Information Extraction

Each indexer component takes the input document and the
list of matching template documents and returns extracted data
and an extraction score for each candidate. We developed
one indexer each for fields with fix value across template
documents (Fix Field Indexer), fix position but variant value
(Position-based Indexer) and variant position / variant value
(Context-based Indexer). But more algorithms can be inserted
easily in the extraction workflow.

The Fix Field Indexer compares tagged values per field
in the known template documents. If there is high agreement,
the according field of the input document is very likely to
have this value, too. This often occurs for the field sender as
most templates are exclusively used by one company only. But
there are some rare cases where multiple companies use the
same software to generate documents and thus may produce
the same template. In this case, the fix field indexer will not
return a value for the field sender.
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Fig. 1. Intellix indexing process

A large number of interesting fields like sender, receiver,
date, document number, etc. are always placed at the same
position within documents of the same template. The Position-
based Indexer identifies these fields according to bounding box
overlap of corresponding fields in the template documents.
We use the Jaccard index [18] for scoring candidates. This
performs well for most of cases but sometimes finds wrong
fields perfectly matching the position and size of a bounding
box in the input document. The Combiner component mitigates
this undesirable effect later on.

For fields with invariant positions like total amount, we use
context information of each candidate token to possibly assign
it to a field used in the template documents. E.g., the text token
”Total amount” or one of its synonyms often appears left to
or top of the actual value of the field total amount. As the
search space is small (we use a maximum of 5 to 10 template
documents), this algorithm still performs quite fast although
each template document and the input document have to be
compared word by word with each other.

The Corrector component carries out typical OCR error
corrections and other user-defined corrections. This is again
completely based on end user feedback. Whenever the user
corrects a field manually, this mapping is saved and later tried
to apply to other extraction results based on error heuristics.

C. Result Aggregation

The Combiner component merges results of the kNN
Classifier and the three Indexers mentioned above. Weights
for each combination of field and indexer are applied to
generate a ranked list of candidates per field. The candidate
with the highest score for each field is selected. Details on the
methodology can be found in [19] where we still worked with
a combination of training-based and rule-based extractors. The
same methodology is used to calculate the best weights for the
combination of purely training-based algorithms as shown in
Figure 1. We use a large document corpus of tagged business
documents to find the best combination of field-based weights.
This matrix is used for new instances of a user model space.

D. Hierarchical Extraction

The last step in our extraction process is a component
called Decider. It collects schema information for each doc-
ument type to know the fields that are commonly used by
each type. For this purpose it analyzes the user feedback
over time and thus is able to build a complete schema with
no initial training phase required. Simply speaking, it knows
the probability that a certain field is important for a user. If
the cumulated extraction scores of these important fields are
below a certain threshold, the Decider calls a second extraction
process. We call this a parent model space where documents
not recognized by local extraction processes are collected and
provided for a number of end-user model spaces.

Technically, involving the parent model space means run-
ning the same process of Figure 1 for a second time. But this
time with a larger number of training documents as provided
by different child model spaces. If successful, extraction data
(field positions and values) is provided back to the child
process and may be added as training data. Documents are
never sent from the parent to a child model space as they may
contain sensitive information of other organizations.

E. User Feedback

Finally, the extraction results are presented to the user. He
may either accept the results with one click or correct them
with a graphical tool where the user marks the occurrence
of the value in the document. This is then added as a training
document to the local model space. Replacement strategies for
training documents and more details about feedback handling
in Intellix can be found in [20].

IV. IMPLEMENTATION AND RESULTS

We implemented the extraction process described above
both in a prototype implementation at TU Dresden and an
integrated product version at DocuWare. Figure 2 shows the
end-user view of the extraction system. Newly scanned doc-
uments appear on the left hand side and are already indexed
using the Intellix process. Green, yellow and red markers show
the estimated accuracy of the extraction results. Users should
control documents marked yellow and red and correct them



Fig. 2. Screenshot of Intellix indexing integrated in the DocuWare document management system

if necessary. For this purpose they either use drop down lists
with proposed values or click at the information snippet in the
graphical document representation to the right.

We did a number of evaluation runs to assess the extraction
quality of the extraction process. For these runs we used
random subsets from a set of approximately 12,000 manu-
ally annotated documents provided by DocuWare. Results are
shown in Figure 3. We present numbers for micro and macro
averaged precision, recall and F1-measure per field as well as
combined scores according to Chinchor and Sundheim [21].

All tests in the column Local are done on empty model
spaces using a test procedure we call Cold Start Metrics.
Each document not recognized correctly by Intellix, is added
as a training document to the model space thus improving
future indexing. While the extraction rates averaged across
4,000 documents are quite good (above 85% F1-measure),
this cold start approach clearly shows a bad performance in
the starting phase as can be seen by the results in the F1 start
column. This corresponds to the first-hand impressions we had
when rolling out a first field test of the system with DocuWare
customers. The training only approach requires at least one or
two documents per template until extraction can work properly.
Customers sometimes get frustrated in the starting phase and
are not willing to continue tagging work.

This bad start experience can be improved in two ways:
Rule-based extraction could be provided as an add-on to extract
at least some fields that adhere to known patterns such as VAT
ID. This minimal rule set can be managed centrally thus not
requiring any on-site configuration for the SOHO user. The
other (obviously better) approach is to profit from training done
by other users in their model spaces. We tested the efficiency
of the distributed approach by employing a single pre-trained
parent model space with 8,000 documents. The child model

space calls the parent whenever it gets no sufficient results.
As can be seen in the column Distributed F1, this does not
improve extraction results for the 4,000 document test signifi-
cantly. But it really improves the start experience (Distributed
F1 start) by 22 - 29%. Thus, our approach to sharing extraction
knowledge between organizations is especially helpful in the
starting phase of the system. It may later be deactivated. It is
interesting to see that the F1-measure for the ToBePaid field
actually decreases for the distributed case. The reason is that
fields are not equally distributed over our dataset and there are
many document not containing the ToBePaid field at all. So
the parent model space outvoted its child because it assumes
that there is no ToBePaid field and thus removed some correct
extractions done by the child model space.

The average runtime per document for the whole Local
process is 98.65 ms on a commodity PC starting with the post-
OCR representation of the test document. This shows the speed
advantage of the Lucene-based approach. The Distributed use
case sends about 10% of the documents to the parent increasing
average document processing time to 124.41 ms. While only
10% of documents are sent to the parent, processing time
increases by more than 20% which is partly due to the higher
number of documents in the parent. This shows the need for
our hierarchical approach. It would be far less efficient to
process all documents in one common cloud model space.

While we were not able to run a comparative test with
other systems on our document set, results in Table 3 show
astonishingly good and competitive results provided that our
approach requires no training or on-site configuration in ad-
vance. The approach is completely language-independent and
may be used for any kind of document type. New fields may
be defined at any time by the user. New document templates
only require manual tagging a few times or even only once.



Precision Recall F1 F1 start F1 F1 start F1 F1 start

Total (micro averaging) 0.877 0.863 0.870 0.707 0.894 0.864 3% 22%

Total (macro averaging) 0.863 0.855 0.857 0.667 0.889 0.858 4% 29%

DocType 0.966 0.965 0.966 0.925 0.968 0.941 0% 2%

ContactNumber 0.894 0.875 0.884 0.768 0.909 0.930 3% 21%

Amount 0.866 0.785 0.824 0.606 0.848 0.771 3% 27%

Sender 0.748 0.753 0.751 0.515 0.785 0.723 5% 40%

Date 0.942 0.913 0.927 0.740 0.961 0.970 4% 31%

CustomerId 0.941 0.919 0.930 0.713 0.956 0.957 3% 34%

Subject 0.923 0.912 0.917 0.721 0.947 0.912 3% 26%

DocumentNumber 0.883 0.886 0.885 0.774 0.935 0.849 6% 10%

ToBePaid 0.914 0.952 0.933 0.796 0.918 0.960 -2% 21%

Recipient 0.712 0.695 0.703 0.513 0.726 0.646 3% 26%

Runtime per document (ms) 98.65

Local Distributed

124.41

Improvement

Fig. 3. Evaluation results (4000 test documents, 100 test documents for F1 start, 0 training documents for Local, 8000 training documents for Distributed)

V. CONCLUSION

We presented an approach for purely end-user training
based extraction of index data from business documents. It is
based on fast and accurate identification of document templates
based on Wordpos features and Lucene. As shown in the
evaluation we reach competitive extraction rates above 85%
on 10 commonly used fields in document archiving.

Nevertheless, some parameters like the weights for result
aggregation still have to be acquired on gold standard tests in
advance. The ultimate goal of our work is competitive zero-
configuration information extraction in the document process-
ing domain. Our next steps to reach this goal are methods to
automatically adjust combination parameters during runtime
thus eliminating the need for fixed weights. In the long
term, we try to leverage more potential out of cooperative
information extraction. Model space hierarchies may consist of
more than two levels including domain-specific model spaces
or split model spaces for load balancing purposes.
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