
A Framework for the Development of Mobile

Social Software on Android

Robert Lübke, Daniel Schuster, and Alexander Schill

Computer Networks Group, Technische Universität Dresden, Dresden, Germany,
{robert.luebke,daniel.schuster,alexander.schill}@tu-dresden.de

Abstract. Nowadays, social aspects can be found in more and more
mobile applications. Analyzing the domain of mobile social software and
especially the o�ered features shows much similarity in the di�erent apps.
A framework that supports often used functionalities can facilitate and
speed up the development of new innovative mobile applications. This
paper presents the Mobilis framework, which aims to extensively support
the developers of mobile social software. It provides often used features
and o�ers the functionality in a service environment, that can easily be
integrated into new mobile applications.

Key words: social software; mobile computing; framework; social net-
work; group formation; collaboration; XMPP; Android

1 Introduction

In the last years social networks have gained a huge popularity. Nowadays they
connect millions of internet users with each other. Facebook Places1, Foursquare2

and Gowalla3 are well-known examples of apps that combine social networking
and pervasive computing and thereby form the trend of pervasive social com-
puting. While many social platforms are accessible via apps for mobile devices,
they do not unfold their full potential until the connected users can interact
and collaborate with each other in a way that is adapted to the current situa-
tion and technical infrastructure. With collaborative features users interact with
each other in a target-oriented way to reach a common goal and they coordi-
nate each other with their mobile devices. Such collaborative social apps can
be applied in the private and the business sector. However, the development of
those collaborative services is quite expensive. There are various other features
of mobile social software that should also not be designed and implemented from
scratch in every new app.

This paper presents the Mobilis framework, that aims to overcome this issue
by extensively supporting the developers of mobile social software. It consists of
client and server components and basic XML-based communication mechanisms

1 http://www.facebook.com/places
2 http://www.foursquare.com
3 http://www.gowalla.com



2 Lübke et al.

between those components. It provides features, that are often used in mobile
social applications. The functionality is o�ered as parts of a service environment,
which can be easily integrated into new mobile applications. These services do for
instance cover (location-based) group formation, user context management, inte-
gration of social networks, collaborative editing of documents and media sharing.
Furthermore it provides an infrastructure for easy communication within social
networks. To our knowledge until now there is no other system supporting the
developers of mobile social software with these needed special functions, neither
in research nor in commerce.

After giving an overview about the domain of mobile social software and
discussing related work, we de�ne the requirements of the framework for mobile
social software. We further discuss possible technologies to use in this service
environment. The Mobilis platform itself is presented in the following sections.
At the end the results are evaluated by showing apps that were developed using
the Mobilis framework.

2 Background and related work

Mobile social software is a class of applications for mobile devices with the main
goal to allow and support the social interaction in a community of mobile users.
Mobile social software enables communication, coordination and collaboration
within social networks.

There is a large number of applications in this domain. Hence there are
multiple attempts to create classi�cations and taxonomies, in which the mobile
social apps can be arranged.

According to [1] there are three social network models: intimate, crowd and
hybrid. In intimate social networks the users interact with people they have
close personal connections to, for example friends and family. In crowd networks
on the other hand the interaction is among users who are unknown to each
other. A good example for these networks is the auction platform eBay4. Hybrid
networks combine aspects of both social network models. In systems such as
Flickr5 the user can bene�t from personal connections, but one can also use
content generated by the user crowd.

In [2] mobile social software is classi�ed depending on the social context. The
authors consider four dimensions of social context: spatial, temporal, inference
and people (STIP). The spatial dimension de�nes how relevant the geographical
distance of the users is. In the temporal dimension the authors di�er between
short-, mid- and long-term social interactions. The inference dimension describes
how the social context of the user is inferred. Finally the people dimension rep-
resents the kind of the counterpart the users interacts with. These can be indi-
viduals, groups or anonymous communities. All systems are analyzed according
to these dimensions and given a characteristic STIP vector.

4 http://www.ebay.com
5 http://www.�ickr.com



Mobilis 3

One can also classify the applications according to their main functionality.
Many apps allow the sending of media or simple text messages like Twitter6.
Other systems notify the user if a friend or a special event is in the vicinity. Ex-
amples for these proximity-based services are VENETA [3], WhozThat [4] and
PeopleTones [5]. Urbi�ock [6] and Socialaware [7] are systems that exploit loca-
tion context to establish user groups. Geotagging apps like Google Buzz7 form
another class. One can also �nd many dating apps, for example MeetMoi8. There
are also Mobile Social Games and apps with gaming features like Foursquare and
Gowalla.

In summary, many mobile social applications often show similar or even iden-
tical functionalities like communication, media sharing, grouping and collaborat-
ing. The notion of location also plays an important role in most applications.
These features should not be designed and implemented from scratch in every
new mobile app. Hence there is the need for a framework supporting these often
used functions.

Di�erent existing frameworks and middleware layers like SAMOA [8], Mo-
biSoc [9] and MobiClique [10] facilitate the development of new applications.
These systems have the main goal to divide the user community into multi-
ple social networks. For this purpose user and location pro�les are applied and
matched with each other to detect interesting persons and places for the user.
All of the mentioned frameworks and middleware layers cover the details of so-
cial networking while app developers can concentrate on their application logic.
But in essence they do not support the mentioned typical functions that are
used within a social network. Therefore we want to discuss the requirements,
the conceptual design, implementation details and evaluation aspects of the mo-
bile social software framework Mobilis, that provides exactly this often used
functionality.

3 Requirements

The previous section showed that mobile social software often has the same or
similar features. Therefore a framework providing these features would be useful.
In this section the required features are analyzed.

The framework should support simple communication mechanisms for all
involved entities (FR-1). Especially the users of the applications must be able
to exchange text messages. Furthermore all communication partners should be
able to exchange and fetch presence information (FR-1.1). Every user can set
his own presence status (available, busy, do not disturb, etc.) and propagate it
to a presence server. Additionally, groups of users must be able to communicate
in multi-user chat rooms (FR-1.2).

Context information of the user (current location, friends, used device, etc.)
play an important role in the area of mobile social software, for example to make

6 http://www.twitter.com
7 http://www.google.com/buzz
8 http://www.meetmoi.com



4 Lübke et al.

applications adaptable. Therefore the framework should determine and manage
the di�erent kinds of context information. The collected data can also be shared
with authorized entities similar to a noti�cation service in a publish/subscribe
scenario (FR-2).

It is a common feature of mobile social software to use existing social networks
like Facebook or Foursquare. The framework should support developers with the
integration into own applications (FR-3).

The framework should o�er �le sharing functionality (FR-4), because this
is often used within social networks. Mainly photos and videos are shared with
friends. Therefore the framework should also support the more special sharing of
media. Those media �les can be tagged with meta information (recording time
and location, author) that help searching in large collections.

Another main component in social networks is the formation of groups with
users of similar interests. The claimed group management (FR-5) includes cre-
ating and deleting of groups but also the management of members and joinings.
There is a special kind of grouping in the context of mobile social software. It
is called location-based group formation and it allows the users to see and join
special groups only at certain places.

The framework should support a matching mechanism (FR-6), that can be
used based on proximity, interests, preferences and activities. Proximity detec-
tion informs the user about possible actions in his near surrounding. An appli-
cation that matches locations of entities could for instance raise an alarm if one
of the user's friends is near or if a near restaurant has a special o�er. Another
example is a trading function based on matching of requests and o�ers. It could
for instance be used in a shopping application, that allows to o�er and search
for products in a social network.

Real-time collaboration within social networks gains more and more impor-
tance. One reasonable collaborative function is the shared editing of documents
or other shared state. The framework should support simultaneous editing of
XML-based documents by multiple users (FR-7). Thus, developers of mobile so-
cial apps can utilize this function for easily managing any structured multi-user
objects like game state, a shared playlist or shared task list. The mentioned fea-
tures were already implemented in some of the systems we surveyed (yet without
using a shared editing service).

All of the above mentioned functions shall be implemented as reusable ser-
vices. So the service paradigm should be realized (FR-8). As in common service-
oriented architectures the functionality is encapsulated and should be accessible
via well-de�ned interfaces (FR-8.1 ). The usage of these services has to be in-
dependent from the underlying implementation (FR-8.2). Furthermore, such a
service environment needs to have mechanisms for service discovery (FR-8.3 ),
the di�erent entities can use to �nd the functionality they are looking for. Addi-
tionally the framework should support di�erent versions of the various services
(FR-8.4).



Mobilis 5

Table 1. Requirements

Identi�er Description

FR-1 Communication

FR-1.1 Management of presence information

FR-1.2 Multi-user chat

FR-2 User context management

FR-3 Integration of existing social networks

FR-4 File and media sharing

FR-5 Group management (based on location)

FR-6 Matching mechanism

FR-7 Shared editing

FR-8 Realize service paradigm

FR-8.1 Encapsulate functionality; well-de�ned interfaces

FR-8.2 Transparency to underlying implementation

FR-8.3 Service discovery

FR-8.4 Support of di�erent service versions

Table 1 once more summarizes all the mentioned functional requirements we
derived from our survey of current mobile social apps. It represents a good core
of services covering most of the commonly used functionality in the mobile social
apps we surveyed. As such a list can never be complete in terms of covering every
reusable functionality, an open, extendable approach is needed for the architec-
ture of the platform. In the following, we �rst survey appropriate technologies
for this purpose before de�ning our architecture.

4 Technologies

This section presents details about the technologies used to realize the service
environment of the framework. Many existing solutions use proprietary proto-
cols. While this may be an e�cient solution, they mostly depend on a special
mobile platform. Thus, interoperability is not given and the degree of reusabil-
ity is low. Therefore a fundamental requirement is to use standardized solutions.
The technology should also have an active community adapting it to recent
developments.

One possible solution is to implement the functionality in web services and
to let client and server communicate via SOAP. However, SOAP can not meet
the main requirement of easy communication among all clients (see FR-1).

The Session Initiation Protocol (SIP) meets the stated demands. Especially
the mechanisms of the registrar servers and the location service make SIP a
convenient protocol for mobile environments. SIP is appropriate for the given use
case, but unfortunately most providers block all SIP messages in their networks
to avoid VoIP tra�c. It would be counterproductive to apply a protocol, that
can not be used in all mobile communications networks, as a basis for innovative



6 Lübke et al.

mobile apps. Furthermore SIP has a big overhead due to the protocol headers
in every message.

The eXtensible Messaging and Presence Protocol (XMPP) [11] is an XML-
based protocol collection for the exchange of messages and presence information,
that also meets the requirements of the service environment of the framework.
Originally the project was called Jabber which was developed from 1998 to 2000.
In 2002 Jabber was standardized by the Internet Engineering Task Force (IETF)
under the name XMPP.

One of the strengths of XMPP is security, because the core standard includes
multiple mechanisms for encryption and authentication. For example one can use
the Simple Authentication Security Layer (SASL) to authenticate and Transport
Layer Security (TLS) for encryption.

Each XMPP entity has its own XMPP address, that can be used to contact
this entity. It is also called XMPP-ID, Jabber ID oder JID. A JID is composed
similarly to an email address, because it has the form username@XMPP-server.
Of course the user has to possess a registered account at the speci�ed XMPP
server. XMPP also supports multiple simultaneous connections over one account.
A special resource identi�er is used to di�erentiate between the connections. It is
appended to the bare JID. The resulting form username@XMPP-server/resource

is also called full JID.
At �rst an XMPP client has to log in at his XMPP server. After establishing a

TCP connection with two XML streams � one for each communication direction
� information can be exchanged via well-de�ned XML stanzas. There are three
di�erent kinds of XML stanzas in the XMPP standard.

The message stanza can be compared to a push mechanism. Mostly it is used
for instant messaging among the users as it can contain text messages. But it
can also be used for noti�cations about special events.

The presence stanza contains presence information about XMPP users. This
is realized with a publish/subscribe mechanism, i.e., multiple entities can receive
status updates about the entity they are subscribed to. These status updates are
sent to all subscribers like in a broadcast. A presence stanza can also contain
priorities besides the textual description of the status (available, do-not-disturb,
away, etc.).

The info/query stanza can be used to realize simple request/response services
within the XMPP architecture. Like in a remote procedure call, one entity can
send a request to another entity, that processes this request and then sends back
a result or an error message. Therefore an IQ stanza has one of the following four
types: GET to request information, SET to determine values, RESULT to return the
outcome of a request or ERROR to report on maloperation. The XML structure
of an IQ with all necessary elements and attributes is shown in Figure 1. It
has an iq-element as its root. Beside the type every IQ has an identi�er (id), a
sender (from) and a recipient (to). Below the root element one can �nd the child
element with the namespace (xmlns). The part consisting of the child element
and all its children is also called payload of the IQ.



Mobilis 7

Fig. 1. Example of an Info/Query (IQ) stanza.

Another major strength of XMPP is its extensibility. All three stanza types
can be extended regarding various aspects. One can de�ne and use own proto-
col extensions, but there are also over 200 existing XMPP Extension Protocols
(XEP) that were developed and later standardized by the XMPP community.
Some of the most useful ones for mobile social apps are multi-user chat, ser-
vice discovery, and publish/subscribe, which will shortly be introduced in the
following.

XEP-0045 [12] de�nes the XMPP extension protocol for multi-user chat. Like
every other XMPP entity, a multi-user chat room has its own XMPP address.
The participants have to register with the chat room, to take part in the con-
versation. Group messages are sent directly to the chat room JID and then
forwarded to all participants. The Service Discovery extension XEP-0030 [13]
covers �nding information about special entities in the XMPP network, for ex-
ample supported protocols, features, extensions and o�ered services. This XEP
is very important in service environments like the one that should be developed
for the mobile social software framework. XEP-0060 [14] de�nes the functional-
ity of a generic publish/subscribe service, that can be employed in various use
cases. One user publishes a certain piece of information and a noti�cation about
that event is sent to all authorized subscribers. XEP-0060 also de�nes how the
subscription of such information updates and the authorization is done.

There are still other XEPs that could be interesting in mobile social software,
especially those extensions, that de�ne a certain payload format to exchange
information about the user, for example his location [15], his mood [16] or the
music he is currently listening to [17]. It was already pointed out before, that
�le sharing, which is covered by XEP-0096 [18], is an important feature in social
networks, too.

In summary, XMPP suits well as a technology for the service environment
of the mobile social software framework. Especially the IQ mechanism enabling
simple request/response services will be used in the framework. XMPP also
supports easy communication between the entities (see FR-1 ). XMPP is based
on XML and therefore platform independent. Many of the mentioned standard



8 Lübke et al.

extensions are applicable in mobile social software. The XMPP standard includes
security aspects that have even more importance in mobile environments.

The disadvantage of high overhead is due to platform independent coding in
XML format. So it is not a special disadvantage of XMPP but one of all platform
independent service environments. Extensions for XML stream compression [19]
help to overcome this issue.

5 The Mobilis platform

This section gives a detailed overview about the Mobilis platform - a framework
for mobile social software. After describing the general architecture, some of the
main components are discussed in detail.

Android Java

MXA
(Mobilis XMPP
On Android)

Smack (XMPP Client Library)

XMPP Services
FileTransfer Service

ServiceDiscovery Service
MultiUserChat Service

PublishSubscribe Service

Mobilis Client Services
Social Network Service

IP
C

XMPP

Openfire
XMPP-
Server XMPP

Mobilis
Server

Mobilis Services
Coordinator Service

Grouping Service
UserContext Service

Content Service
Repository Service

Shared Editing Service

Smack
(XMPP Client Library)

Mobilis Applications

MobilisXHunt

MobilisGroups MobilisMedia

MobilisLocPairs

MobilisMapDraw MobilisBuddy

Mobilis Beans

Mobilis Beans

Fig. 2. General architecture of the Mobilis platform.

5.1 General architecture

The general architecture of the Mobilis platform is shown in Figure 2. The Mo-
bilisServer o�ers various services, the so-called Mobilis Services, to the client
applications. These services have their own XMPP addresses and can be called
via XMPP messages. The communication is based on the XMPP client library
Smack9. It facilitates sending and receiving of XMPP packets within Java ap-
plications. We use Open�re10 as XMPP server, but every other XMPP server

9 http://www.igniterealtime.org/projects/smack/
10 http://www.igniterealtime.org/projects/open�re/



Mobilis 9

could also be employed as we do not extend the XMPP server implementation
itself.

To assure the communication on the client side several adjustments had to be
made to Smack to use it within Android applications. Therefore the functionality
of Smack is encapsulated in the application MXA (Mobilis XMPP on Android).
This application provides an AIDL (Android interface de�nition language) in-
terface to the services of MXA. In this way MXA can be used by the di�erent
Mobilis applications to communicate via XMPP with the MobilisServer.

Beside the basic communication, MXA provides additional XMPP Services.
These services realize certain XMPP extensions. One service enables �le transfers
within the XMPP architecture, another provides administrative functionality
for multi-user chats. It is also possible to use XMPP service discovery and a
publish/subscribe mechanism.

The component Mobilis Beans is a collection of structures that help to create
the custom XMPP messages, which are exchanged between the MobilisServer
and the clients. Therefore the Mobilis Beans contain the custom protocols and
de�ne how to use the services of the MobilisServer from the Mobilis application's
point of view.

Developers of Android applications can �nd special services in the Android
Library Mobilis Client Services. These services are components that are often
used in mobile collaborative and social software. One of these services is the
Social Network Service, that facilitates the integration of existing external social
networks into own applications.

5.2 Mobilis Client Services

Developers of Android applications can �nd special services in the Android Li-
brary Mobilis Client Services. These services are components that are often used
in mobile collaborative and social software.

At the moment one can see that existing social networks more and more link
with each other. Therefore it should be possible for new social applications to
integrate existing networks. Furthermore new social apps su�er from small user
numbers. A real networking among the users is not possible until a critical mass
of participants is reached.

For these reasons the integration of existing external social networks into own
applications is the main task of the Mobilis Client Services and especially of the
Social Network Service. This service encapsulates the application programming
interfaces (API) of di�erent social networks and provides the developers with
this functionality conveniently at one central place. The general architecture of
the Mobilis Client Services is illustrated in Figure 3.

The Social Network Service is implemented as an Android Service, that pro-
vides its functionality via an AIDL interface. It manages multiple Social Network
Manager components, which encapsulate the respective API functions.



10 Lübke et al.

At the moment the supported systems are Foursquare, Gowalla and Qype11.
Foursquare and Gowalla are mobile social networking applications with gaming
characteristics. Users tell the system where they currently reside by checking
in at special locations. This is rewarded with points or bonus items. The most
frequently visiting user becomes the virtual mayor of a place. Both APIs support
vicinity search within the recorded locations, that can also be integrated into own
applications. Qype is a recommendation system, in which the users can evaluate
companies, locations, services etc. Adapters for other services like Facebook or
Twitter can be added accordingly.

Applications have to authorize before they can use the APIs of the di�erent
social networks. Most systems use OAuth12 for this purpose. With this protocol
a user can authorize an application to access data on the social network sys-
tem, without revealing the user credentials. The OAuth component of the Social
Network Service manages this authorization process.

Mobilis Client Services

Foursquare 
Manager

Qype 
Manager

Social 
Network 
Service

Gowalla 
Manager

OAuth

Fig. 3. Concept of the Mobilis Client Services.

5.3 XMPP Services

Several adjustments to the XMPP library Smack have to be made to use it
within Android applications. Therefore the functionality of Smack is encapsu-
lated in the application MXA (Mobilis XMPP on Android). This application
provides an AIDL interface to its services that can be used by the di�erent
Mobilis applications to communicate via XMPP with the MobilisServer.

Beside the basic XMPP communication function MXA supports some special
XMPP extensions, that are listed in Figure 4. One of these extensions is the
multi-user chat, that is speci�ed in [12]. With the help of the MultiUserChat

11 http://www.qype.com
12 http://oauth.net/



Mobilis 11

Service, one can use the basic functions like joining and leaving such a chat room,
reacting on invitations, retrieving detailed information about a chat room and
sending group messages. But it also supports various administrative functions
like creating a new chat room, inviting users and kicking participants.

The FileTransfer Service enables �le sharing within the XMPP network. It
is based on XEP-0096 SI FileTransfer [18]. Users can send �les and manage the
incoming �le tranfers.

The ServiceDiscovery Service realizes XEP-0030 that is speci�ed in [13]. An
application can �nd out more information about other XMPP entities with this
service. That covers supported protocols, features and extensions of the respec-
tive XMPP entity. The service is used within the Mobilis platform to �nd all
services that are currently running on a MobilisServer.

The PublishSubscribe Service realizes parts of XEP-0060. This extension
speci�es the basic functionality of a generic publish/subscribe mechanism. The
PubSub Service supports subscription and cancellation of information updates.

XMPP Services

MultiUserChat Service
· Join / leave a chat room
· Send a group message
· Retrieve chat room information
· Retrieve user information
· Change nickname
· Create chat room
· Manage own invitations
· Invite other users
· Kick users from chat room

FileTransfer Service
· Send files
· Register / unregister for 

incoming file transfer

ServiceDiscovery Service
· Send a discovery request to an XMPP entity

PublishSubscribe Service
· Subscribe to / unsubcribe from 

certain information updates at 
a special PubSub node 

Fig. 4. Functionalities of the XMPP services.

5.4 Mobilis Services

The MobilisServer o�ers various services to the client applications. These so
called Mobilis Services are the main component of the Mobilis service environ-
ment. Figure 5 illustrates the di�erent layers the services can be divided into.

Client applications can get information about all active and supported ser-
vices on a MobilisServer with the help of the Coordinator Service. This is done
with an own XMPP protocol extension that is based on XEP-0030 (Service Dis-
covery). It extends this XEP for instance with version numbers for the services.
The Coordinator also allows to start new service instances. The client applica-
tion only has to send the corresponding IQ stanza with the namespace of the
required service and the Coordinator starts a new instance.



12 Lübke et al.

Mobilis Server

Openfire
XMPP-
Server XMPP Smack (XMPP Client Library)

Grouping Service

Media Repository 
Service

Media Content 
Service

Coordinator Service

Mobilis 
Client 
Appli-

cations
X

M
P

P

Se
rvice

 
D

isco
ve

ry
G

e
n

e
ric M

o
b

ilis 
Se

rvice
s

A
p

p
-sp

e
cific 

Se
rvice

s
MobilisLocPairs Service

MobilisTrader Service
MobilisXHunt Service

User Context 
Service

Shared Editing 
Service

Database

MobilisBuddy Service

MobilisMapDraw Service

Fig. 5. Service layers of a MobilisServer.

The generic and reusable services are the basis of the MobilisServer. The
most important services are presented in the following:

User Context Service The User Context Service manages all kind of context
information of the users. Context covers all information that can be used to
characterize the situation of a certain entity. Mostly these entities are people,
but one can also think of places or other objects that can be relevant for the in-
teraction of user and application [20]. The physical context for instance includes
temperature, light and sound intensity of the user's surroundings. Examples of
technical context are the characteristics of the network (bandwidth, latency) the
user is connected to and also information about the mobile device he is using.
Every user also has a personal context. This covers for example his address,
phone number, calendar and his favorite payment method. Furthermore one can
de�ne the user's social context. This includes information about friends, family
and groups of the user.

The User Context Service is designed to support all these di�erent kinds
of context information. It manages a so called context tree for every user. The
nodes of this tree contain related pieces of context information about the user, for
example his location, the music he is listening to or his mood. The nodes consist
of simple key/value pairs. Additionally one can �nd the date of the last time the
node was updated and the date it expires. After expiration of validity all data
of the node is deleted. This assures a secure handling of possibly con�dential
context data.

The User Context Service is based on a publish/subscribe mechanism. The
user decides which information to publish by sending it to the service. He also has
to authorize all entities that should be able to access his data. All subscribers
of a special node of the context tree are noti�ed in real time if the data was
updated.



Mobilis 13

Grouping Service The Grouping Service implements the functionality for the
management of user groups, but it also includes location and time. This idea
is called location-based group formation and discussed in detail in [21]. Groups
are a very important feature in social software. Users with the same interests
can �nd each other, discuss the group's topic, share photos, etc. But groups
do mostly have spatial and temporal aspects like a special place and time of a
meeting. Applying this idea in mobile social networks links the physical and the
virtual world by creating incentives to be at a certain place at a certain time.

Repository and Content Service Media sharing is also an often used feature
in social software. Mostly photos are exchanged among friends. The Repository
Service and the Content Service realize this within the Mobilis platform. It fur-
thermore specializes in sharing of photos with tagged geographical information.
Users can for example search photos by location, time and author.

Collaborative Editing Service This service enables the shared and simulta-
neous editing of data by multiple users at di�erent locations. This is also called
Collaborative Editing or Shared Editing. The aim is to let all participants of a
collaborative editing session see each other's changes in a document in real time.
Possible con�icts during editing are detected and resolved. The Collaborative
Editing Service supports any XML formatted document.

Application-speci�c services can be found in the layer above the generic ser-
vices. These parts are not reusable because they do only serve special applica-
tions, but they can access and reuse functionality of the Generic Mobilis Services.
They mediate between mobile apps and the generic services. Client applications
can either directly contact and use the Generic Mobilis Services, or they can have
an own App-speci�c Service that includes additional application logic. Examples
for App-speci�c services are XHunt and LocPairs service. These are the server
components of two location-based games that have been implemented with Mo-
bilis (further details in section 6). The MobilisBuddy Service realizes proximity
detection.

All services on a MobilisServer have their own XMPP address. That allows
client applications to contact and use the services' functionality. Each service
therefore has its own connection to the XMPP server. The discussed splitting of
functionality into di�erent services enables the deployment in distributed scenar-
ios. Each service can run on its own machine without any further adjustments.

5.5 Mobilis Beans

It was already discussed in detail that the communication within the Mobilis
platform uses XMPP and especially the IQ stanzas. Developers of new applica-
tions should not always implement the creation and parsing of IQ stanzas on
their own. This is the task of the Mobilis Beans component, that contains vari-
ous structures for the creation of XMPP stanzas, which are exchanged between
client and server. Here one can �nd the particular parts of the protocols, that



14 Lübke et al.

XMPP Bean
- type, id, sender, receiver
- namespace, childElement
- error information (type, condition, text)

XMPP IQ

toXML()

fromXML()

Fig. 6. Overview of important attributes and methods of Mobilis Beans.

de�ne how to use the services of the framework. Developers of applications can
use the Mobilis Beans to start requests to the services.

The main advantage is the reuse of the Mobilis Beans in all server and client
components. Both parts of a Mobilis application reference the Mobilis Beans
project and use parts of it for the communication among each other. This fur-
thermore assures the same stanza syntax on both sides.

Each Bean represents a certain XMPP IQ stanza. It contains methods for
the conversion into an XMPP IQ to send it, but there are also methods to
parse incoming IQs into the correspondent Bean (see Figure 6). Furthermore
it contains typical attributes of an IQ, for instance sender, receiver, namespace
and child element. If it represents an IQ of type Error, it also carries detailed
information about the occurred malfunction.

5.6 Web-based access

Mobilis does not only provide access to its services for native Android apps
but also for web browsers. A web gateway to the Mobilis service environment
enables access from PCs and Notebooks, but it also opens up other mobile
platforms like iOS or Windows Phone. With new APIs introduced with HTML5
web applications can use more device functions. Furthermore new versions of
JavaScript engines with increased performance allow designing impressive user
interfaces for the web browser - even on mobile devices.

Using XMPP as communication protocol for the service environment of Mo-
bilis leads to two major problems concerning the web-based access. First, the
Hypertext Transfer Protocol (HTTP) is inadequate for bidirectional real-time
communictation between client and server. Second, there are no APIs for native
XMPP communication in the web browser. The �rst problem will be solved by
the WebSocket API of HTML5 in the near future. But it is not appropriate
to use this technology at the moment because of open security issues and the
insu�cient support by most of the web browsers.

Therefore we reuse existing established technologies to emulate the se-
mantics of a long-living bidirectional connection. One of these technologies is
Bidirectional-streams Over Synchronous HTTP (BOSH) that is speci�ed in
XEP-0124 [22]. It uses synchronous HTTP request/response pairs and no fre-
quent polling to realize the bidirectional connection. The Connection Manager,
that is part of the web server, administrates the long-living connection by estab-
lishing and releasing it.

A solution to the second problem is given in XEP-0206 [23] with the title
XMPP Over BOSH. With this extension XMPP stanzas can be transfered as



Mobilis 15

child elements of the <body> element via BOSH. In the web browser a Javascript
BOSH Client can extract and process the payload information. Combining this
idea with the long polling paradigm of XEP-0124 enables bidirectional XMPP
real time communication over HTTP.

With this mechanism the presented Mobilis Services (see section 5.4) can be
used by client-side web applications that are based on JavaScript. A convenient
level of abstraction is given, because the Mobilis JavaScript client library hides
all the details of connection management and exchanging XMPP stanzas. It also
has a plugin interface and can thereby be extended with further functionality.

6 Evaluation

The previous sections highlighted conceptional aspects and implementation de-
tails of the Mobilis platform. This section focuses on the evaluation of the frame-
work especially concerning the functional requirements de�ned in 3. The easiest
way to prove that Mobilis meets the stated requirements is to show applications
that use exactly this functionality. Various mobile apps have been developed with
Mobilis and there is always at least one demonstration app for each framework
service. Some of these apps should be discussed in the following.

MobilisMapDraw demonstrates the server-side Collaborative Editing Service.
The graphical user interface of the mobile app shows a drawing area that can
be overlaid with a geographical map. The user can join a collaborative drawing
session or start a new one. Within the session all participants can draw simulta-
neously on the map or the shared whiteboard as illustrated in Figure 7 on the
left. Use cases of shared drawing can be found in various scenarios, for example
in a tourism scenario to manage a trip within a group of participants.

MobilisMedia enables the exchange of multimedia content. More precisely it
allows users to store their geotagged photos in repositories. The content of these
repositories can be browsed by location, time and author name. The photos
are arranged on a map as it can be seen in Figure 7 in the middle. Addition-
ally it is possible to send photos directly to friends without the usage of server
repositories.

The basic idea of MobilisXHunt is the transformation of the board game
Scotland Yard by Ravensburger into the reality. It is a game for two to six
players. One player is the wanted Mister X and the others are the agents looking
for him. The position of Mister X is unknown to the agents but will be published
regularly, for example in every third round. In the original game every player
has various tickets (taxi, ferry, bus, tram) to move on the board game. The game
ends once an agent is on the same station as Mister X or if Mister X could not get
caught within a prede�ned number of rounds. In MobilisXHunt the players are
provided with smartphones (with built in GPS receivers) and go on the hunt for
Mister X in a real city using real transportation means to get from one station to
the next. The user interface of MobilisXHunt is shown in Figure 7 on the right.

MobilisLocPairs is a transformation of the famous children's game Pairs.
It can be played inside of buildings which are tagged with special bar codes



16 Lübke et al.

Fig. 7. Screenshots of MobilisMapDraw (left), MobilisMedia (middle) and MobilisX-
Hunt (right).

(QR codes). Behind each code hides one card with a picture. By scanning these
codes, the players can see these pictures on their smartphones. The game is
also turn-based like the original Pairs but it must be played in teams of two
players. Each round has a prede�ned maximum time (e.g. 60s). In this time the
�rst teammate virtually turns a card by scanning the �rst bar code. The second
teammate then has the task to �nd the corresponding card / bar code. The aim
of the game is to �nd as much pairs as possible. There is also a special bene�t
in the game. In every bar code scanning process the smartphone measures the
signal strength to all visible WiFi access points and saves this information in a
�ngerprint which is then sent to a central server. These �ngerprints can later
be used to improve the indoor positioning in the building where the game took
place.

MobilisGroups is a mobile application for location-based group formation,
that uses the server-side Grouping Service of the Mobilis framework. The man-
agement of user groups as it is known from common social networks is enriched
by temporal and spatial aspects. Most of the groups (e.g. associations, commu-
nities of interest, sports clubs) and events (e.g. concerts, parties, BarCamps) are
located at a special place, for example where the head o�ce is located or meet-
ings take place. These groups sometimes also have an allocated time period, that
for example de�nes when an event happens. The idea of MobilisGroups is to ex-
tend the group management of common social networks with these temporal and
spatial values as restrictions. To join or even to see certain groups the user has
to be at a certain place at a certain time. The user interface of MobilisGroups
is shown in Figure 8. The main component is the map view showing all visible
groups in the surroundings of the user. Furthermore the user can administrate
own groups, see a list of his friends and browse through the groups they are



Mobilis 17

Fig. 8. Screenshots of MobilisGroups.

subscribed to. Every group also has a multi-user chat room that can be used by
all members.

MobilisContext is a prototype app with the main goal to demonstrate the
functionality of the server-side User Context Service. In the tabs of the appli-
cation's main view one can see the di�erent types of context information that
can be shared: the mood of the user (based on XEP-107 [16]), the music he is
actually listening to (based on XEP-0118 [17]) and his current location (based
on XEP-0080 [15]). Besides these standardized context formats it is also possi-
ble to publish and subscribe to generic context information updates. If a user
subscribes to another user's context updates, an authorization request is sent to
the given XMPP-ID of the user.

MobilisBuddy realizes location-based search for friends on mobile devices.
The start screen of MobilisBuddy is a normal map view on which the user
can see his own position. In the menu one can organize di�erent XMPP and
Facebook accounts. These accounts are used to fetch the user's buddy lists. If
one of the user's Facebook friends or XMPP buddies also uses MobilisBuddy
and if this friend is located within a special visibility radius (e.g. 500m) of the
user, then both receive a noti�cation. So MobilisBuddy is a mobile application
for proximity detection and proximity alerts. Within the radius both users can
see each other's live location updates. That makes spontaneous meetings very
easy. If one user leaves the visibility radius, one can see a gray �ag on the user's
last known location. This improves the privacy, because only nearby friends can
receive live location updates.

This section showed that the framework functionality is used in real apps.
We also wanted to point out that the developed apps come from various areas
and therefore cover a wide range of use cases. Most of the presented mobile apps
are prototypes of student theses or the results of practical courses for mobile
app development. All student developers had enough time to get familiar with



18 Lübke et al.

the Mobilis framework and it's functionalities. The detailed investigation of the
learning curve remains an open issue.

In a survey with 35 students who were developing mobile apps we wanted
to evaluate the bene�t for the developers. The majority (56,25%) of the mobile
app projects included features that are o�ered by the Mobilis framework. The
concrete bene�t (e.g. in time and LOC) will be explored in future surveys.

7 Conclusion

The main idea of this paper is to provide a reusable framework for mobile social
software. It contributes with an infrastructure for easy communication, collabo-
ration, grouping, media sharing and other functionalities that are often used in
mobile social networks. A unique feature is that major parts of the framework
can be used independently from the mobile platform. The evaluation section
showed the variety of mobile applications that were already implemented with
the Mobilis framework.

The protocols, the prototype implementations and the framework compo-
nents are freely available on our Sourceforge page13 and can be reused by other
applications. We are constantly re�ning and extending the framework and want
to encourage the community to use it for their own research projects.

Acknowledgment

The authors want to thank the many contributors of the Mobilis platform for
their conceptual and implementation work. The thesis of Nikolas Jansen served
as a very good basis for section 5.6. Daniel Esser and the anonymous reviewers
helped to improve this article with their feedback.

References

1. Clint Heyer, Mobile Social Software. Phd thesis, The University of Queensland,
April 2008.

2. M. Endler, A. Skyrme, D. Schuster, and T. Springer, �De�ning Situated Social
Context for Pervasive Social Computing,� in Second IEEE Workshop on Pervasive
Collaboration and Social Networking (PerCol), (Seattle, USA), March 2011.

3. M. Arb, M. Bader, M. Kuhn, and R. Wattenhofer, �VENETA: Serverless Friend-
of-Friend Detection in Mobile Social Networking,� in 4th IEEE International
Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob), (Avignon, France), 2008.

4. A. Beach, M. Gartrell, S. Akkala, J. Elston, J. Kelley, K. Nishimoto, B. Ray,
S. Razgulin, K. Sundaresan, B. Surendar, M. Terada, and R. Han, �WhozThat?
Evolving an ecosystem for context-aware mobile social networks,� IEEE Network,
vol. 22, pp. 50�55, July 2008.

13 http://mobilisplatform.sourceforge.net/



Mobilis 19

5. K. A. Li, T. Y. Sohn, S. Huang, and W. G. Griswold, �Peopletones: a system for
the detection and noti�cation of buddy proximity on mobile phones,� in MobiSys
'08: Proceeding of the 6th international conference on Mobile systems, applications,
and services, (Breckenridge, CO, USA), 2008.

6. Andoni Lombide Carreton, Dries Harnie, Elisa Gonzalez Boix, Christophe Schol-
liers, Tom Van Cutsem, and Wolfgang De Meuter, �Urbi�ock: An experiment in
Dynamic Group Management in Pervasive Social Applications,� in First Inter-
national Workshop on Communication, Collaboration and Social Networking in
Pervasive Computing Environments (PerCol), (Mannheim, Germany), 2010.

7. C. M. Gartrell, �SocialAware: Context-Aware Multimedia Presentation via Mobile
Social Networks.� Master Thesis, University of Colorado, Department of Computer
Science, 2008.

8. Dario Bottazzi, Rebecca Montanari, and Alessandra Toninelli, �Context-Aware
Middleware for Anytime, Anywhere Social Networks,� IEEE Intelligent Systems,
vol. 22, pp. 23�32, 2007.

9. A. Gupta, A. Kalra, D. Boston, and C. Borcea, �MobiSoC: a middleware for mobile
social computing applications,� Mobile Networks and Applications, vol. 14, pp. 35�
52, 2009.

10. A.-K. Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, and C. Diot, �MobiClique:
middleware for mobile social networking,� in WOSN '09: Proceedings of the 2nd
ACM workshop on Online social networks, (Barcelona, Spain), 2009.

11. �XMPP Standards Foundation,� June 2011.
12. P. Saint Andre, �XEP-0045: Multi-User Chat,� tech. rep., XMPP Standards Foun-

dation, July 2008.
13. J. Hildebrand, P. Millard, R. Eatmon, and P. Saint Andre, �XEP-0030: Service

Discovery,� tech. rep., XMPP Standards Foundation, June 2008.
14. P. Millard, P. Saint-Andre, and R. Meijer, �XEP-0060: Publish-Subscribe,� tech.

rep., XMPP Standards Foundation, July 2010.
15. P. Saint Andre and J. Hildebrand, �XEP-0080: User Location,� tech. rep., XMPP

Standards Foundation, September 2009.
16. P. Saint Andre and R. Meijer, �XEP-0107: User Mood,� tech. rep., XMPP Stan-

dards Foundation, October 2008.
17. P. Saint Andre, �XEP-0118: User Tune,� tech. rep., XMPP Standards Foundation,

January 2008.
18. Thomas Muldowney, Matthew Miller, and Ryan Eatmon, �XEP-0096: SI File

Transfer,� tech. rep., XMPP Standards Foundation, April 2004.
19. J. Hildebrand and P. Saint Andre, �XEP-0138: Stream Compression,� tech. rep.,

XMPP Standards Foundation, May 2009.
20. A. K. Dey, �Understanding and Using Context,� Personal Ubiquitous Comput.,

vol. 5, pp. 4�7, January 2001.
21. R. Lübke, D. Schuster, and A. Schill, �Mobilisgroups: Location-based group forma-

tion in mobile social networks,� in 2011 IEEE International Conference on Perva-
sive Computing and Communications Workshops (PERCOM Workshops), pp. 502
�507, March 2011.

22. I. Paterson, D. Smith, P. Saint Andre, and J. Mo�tt, �XEP-0124: Bidirectional-
streams Over Synchronous HTTP (BOSH),� tech. rep., XMPP Standards Founda-
tion, July 2010.

23. I. Paterson and P. Saint Andre, �XEP-0206: XMPP Over BOSH,� tech. rep., XMPP
Standards Foundation, July 2010.


