
Training a Named Entity Recognizer on the Web

David Urbansky, James A. Thom, Daniel Schuster, Alexander Schill

Dresden University of Technology
RMIT University

{david.urbansky,daniel.schuster,alexander.schill}@tu-dresden.de
james.thom@rmit.edu.au

Abstract. In this paper, we introduce an approach for training a Named
Entity Recognizer (NER) from a set of seed entities on the web. Creating
training data for NERs is tedious, time consuming, and becomes more
difficult with a growing set of entity types that should be learned and
recognized. Named Entity Recognition is a building block in natural lan-
guage processing and is widely used in fields such as question answering,
tagging, and information retrieval. Our NER can be trained on a set
of entity names of different types and can be extended whenever a new
entity type should be recognized. This feature increases the practical
applications of the NER.

1 Introduction

Named Entity Recognition (NER) is an information extraction task that the
Message Understanding Conference 6 (MUC-6) originally defined in 1996. The
goal of the task was to identify six types of entities. These were names of people,
organizations, geographic locations, times, currencies, and percentage expres-
sion in texts [12]. NER is an important task in the chain of natural language
processing, and other techniques such as co-reference resolution, machine trans-
lation, language understanding, and question-answer finding build upon it. With
the trend toward a more entity-centric search paradigm, NER will become even
more important in the future. Essentially, there are three types of NER systems:
Those that use hand-crafted rules, those that use supervised machine learning
algorithms, and those that use unsupervised machine learning [23]. Hand-crafted
rules are often more precise, but yield lower recall. Moreover, they require a lot
of manual work. When there are annotated corpora available, the preferred tech-
nique is to use supervised machine learning. Often we do not have corpora to
train a named entity recognizer, and compiling one is a very time consuming
task. Consider an application that wants to detect mentions of mobile phone
names in news feeds. The usual tagged corpora contain only four entity types
– person, organization, location, and miscellaneous. Training the NER on such
a corpus would not be beneficial since mobile phone names fall under the cate-
gory miscellaneous, as would digital cameras, cars, movie names, etc. We would
therefore need to label the mobile phone names in a corpus of news feed texts.
If our application advances and we also want to recognize mentions of digital



cameras, we need to update that corpus and label all mentions of digital cameras
as well. This scenario parallels the ambitions of the WebKnox research project
[28] in which the goal is to extract unknown entities from the web.

In this paper we try to answer the following research questions:

– How much labeled data is necessary to train a well-performing NER?
– How well do state-of-the-art NERs perform on web texts recognizing many

different entity types?
– How well does a NER perform when it is automatically trained on the web?

Our contributions are answers to these questions using two datasets, one with 4
entity types (CoNLL) and one with 22 entity types (TUDCS4). It is important
to note that almost all related work limits its findings to a very small number
of entity types as found in the MUC or CoNLL datasets. First, we analyze the
performance of three state-of-the-art NERs based on the size of the training data
and the number of entity types that need to be recognized. Second, we propose a
technique to train a NER on a set of seeds automatically, and show how well this
approach performs compared to supervised learning. Another contribution is the
release of our dataset on the research platform Areca1 to allow other researchers
use the corpus. Furthermore, our developed Named Entity Recognizer and all
related tool are available free for research purposes2.

2 Related Work

There are three major approaches to named entity recognition. First, there are
lexicon-based recognizers that can only detect entities that they have stored in
their lexicon or gazetteer [21, 14]. Often there are ambiguous entities such as
“Paris”, which is both a city (and there are many cities called Paris) and a
forename. Using lexicons is therefore not simple and matches need to be dis-
ambiguated. This approach is not of interest to us, however, since our goal is
to recognize unknown entities. Second, there are hand-crafted rules for NERs
[18, 6]. One such rule could be “the uppercase sequence of words after the to-
ken ‘Mr.’ is a name”. Ripper [7] is a system used to create such if-then rules.
Rule-based systems were mainly popular in the early days of NER research and
resulted in high precision. This approach does not scale well, however, since rules
need to be created by experts and must be maintained for every new entity type
that should be recognized [19]. For instance, the example rule for detecting per-
son names using the prefix “Mr.” has to be refined when the NER is supposed
to differentiate between various kinds of people, such as politicians, actors, or
professors. Third, there are statistical machine learning approaches that have
become increasingly popular. These approaches can broadly be divided into un-
supervised and supervised machine learning. In unsupervised machine learning,
the learning algorithm does not know the entity types and clusters the detected

1 http://areca.co
2 http://palladian.ws

http://areca.co
http://palladian.ws


mentions. This approach often relies on patterns and lexical resources such as
WordNet [22]. Downey et al. [10] researched the task of detecting any type of
entity in web texts instead of learning particular predefined classes. However,
they do not propose a solution for entity classification, but rather only provide
a means to delimit boundaries. The most common approach is supervised ma-
chine learning in which the NER is trained on a labeled corpus of text, e.g.
“<PER>John Hiatt</PER> is a musician from <LOC>Indiana</LOC>”. The NER
builds a model from the training data and uses it to recognize the learned entity
types for untagged texts later. Many machine learning techniques have been ap-
plied including hidden markov models [3], maximum entropy models [4], Support
Vector Machines [2], decision trees [26], and conditional random fields [17]. Also,
various researchers [30, 15, 16] have shown that combining several weak classi-
fiers yields a stronger single classifier. Apart from these three main approaches,
a number of hybrid methods have been developed which combine rules, lexicons,
and machine learning, for example [19].

The problem of creating labeled training was quickly recognized and re-
searchers have since tried to ease the compilation of training data. One method
to train a NER is to use a list of seed entities per entity type. The contexts
around the seeds can be gathered and used for learning rules. There were several
experiments with the size of the seed lists varying from only 7 per entity type
[9] up to 100 [5]. Collins and Singer [8] show that only as few as 7 seeds are
needed to create well-performing rules. Cucerzan and Yarowsky [9] have tested
the performance using between 40 and 100 seeds and found that the larger the
number of seeds, the higher the F-Measure due to an increased recall. On the
other hand, Buchholz and van den Bosch [5] showed that precision increased
when using smaller lists with only a slight drop in recall. Seed lists are therefore
an easy and fast way to train a NER, but as Meulder et al. [19] pointed out,
the recall of those systems is usually quite low. The recall problem can be coun-
tered using the so-called “bootstrapping” technique, which means that the rules
learned from the contexts of the seed entities are again used to find other entities
which are then again seeds for the next learning phase [9, 24]. [27] use the web to
overcome the sparseness problem with labeled data. In particular, they improve
the best CoNLL 2003 NER F-Measure by more than 1% by using search engine
hit counts to improve the boundary detection of the token-based NER. Further-
more, they use Hearst pattern [13] queries and WordNet with entity candidates
to perform disambiguation between ambiguous entities.

Most approaches that we have reviewed research the problem on a very nar-
row domain of about four classes which are typically person, organization, lo-
cation, and miscellaneous. Some papers introduce other types such as products
[24], which is still very broad and insufficient for complex applications [11]. We
want to be able to recognize a wide variety of different entity types without
creating and maintaining a training corpus. Downey et al. [10] have realized this
problem and researched the problem of “Web NER”, that is, the problem of
detecting entities of any type. While they perform only entity delimitation by
finding the correct boundaries around the entities but not the entity type, we



want to scale the named entity detection and classification on the web level using
a flat ontology of 22 entity types.

3 Palladian NER

Our hypothesis states that we can train a NER from the web using only seed
lists for each type as learning input. In order to test our hypothesis, we designed
a named entity recognizer that can be trained with sparsely-annotated training
data. Usually, supervised NERs need to be trained on completely annotated
input data such as the CoNLL 2003 dataset and each token must be labeled by an
expert. In the case of the CoNLL corpus, this means that every token has either
the label PER (person), LOC (location), ORG (organization), MISC (miscellaneous),
or O (no entity / outside). As discussed in the previous section, compiling such a
training set is tremendously labor intensive. Our NER must therefore be able to
learn from sparsely-annotated texts in which not every token has a label. Thus,
we have an open world instead of a closed world as in supervised learning. If a
token has no label, we can not assume that it is not an entity (O).

3.1 Training the NER

We divide the training on sparse data into three parts: creating the training data,
training the text classifier, and analyzing the contexts around the annotations.

Creating the Training Data The input for our named entity recognizer is not
a completely annotated corpus but rather a set of seed entities. For example, for
the concept Actor we could use “Jim Carrey” as one of the seeds. While there
are no limitations on the choosing of the seeds, popular, and more importantly,
unambiguous entities with many mentions on the web are the preferred input.
Figure 3.1 shows the algorithm for creating the training data. We have n concepts
C = [S1, ..., Sn], each with a set seeds S. We now query a search engine3 with
the exact seed name and its concept and take the top URLs from the result set.
Each of the result URLs is downloaded and we extract the textual content of the
page using the Palladian Content Extractor [29], removing the header, footer,
and navigational elements to acquire only the “main content” of the web page.
Next, we annotate all our seed entities for the given concept in the text and
save it. We use XML annotations in the form of <TYPE>seed</TYPE>. The last
operation is cleaning and merging the annotated text files to one. In the cleaning
process, we remove all lines that have no annotated seed, are shorter than 80
character, or have no context around the seed.

Train the Text Classifier After generating the training data we train a
dictionary-based text classifier using the seed entities and the surrounding con-

3 We used http://www.bing.com in our experiments

http://www.bing.com


begin
mentions := 10
for each concept in C

S := seeds for concept
for each seed in S

URLs := querySearchEngine(seed,concept,mentions)
for each url in URLs

webPage := download(url)
text := extractPageText(webPage)
for each seed in S

text := annotateSeed(seed,text)
save(text)

end
cleanAndMerge()

end
end

end
end

Fig. 1. Generating Training Data

texts that we found on the web. Unlike many other NERs, we do not em-
ploy a large feature vector of numeric features such as TFxIDF, token posi-
tion, or length. Instead, we treat the entity classification purely as a text clas-
sification problem. The input for our text classifier is a sequence of charac-
ters that is then divided into character level n-grams. The dictionary is built
by counting and normalizing the co-occurrences of one n-gram and an entity
type. The dictionary might then resemble Table 1 in which each column is
an entity type (Person, Location, and Product) and each row is a 7-gram.
In each cell, we now have the learned relevance for each n-gram and entity
type relevance(ngram, entityType). The sum of the relevances in each row
must add up to one. The n-gram “John” is more likely to indicate a Person
(relevance(r.John, Person) = 0.9) than Location (relevance(r.John, Location) =
0.05) while the n-gram “Gibson” is a little bit more likely to be a Person than
a Product (relevance(sonjr., Person) = 0.5.

n-gram Person Location Product

r. John 0.9 0.05 0.05

Indiana 0.1 0.85 0.05

son jr. 0.5 0.1 0.4

Table 1. N-Gram dictionary with relevances for entity types



We build four dictionaries of this kind. One holds only on the seed names and
their relevance with the entity types. A second one uses the complete context
before and after the annotation within a certain window size. A third one uses
only the three context words before and after the mention of the seed entity.
A fourth one holds case signatures for all tokens in the training data. We store
three case signatures, “A” for completely uppercase words, “Aa” for capitalized
words, and “a” for lowercase words. We will show how we use these dictionaries
to classify entity candidates in Section 3.2.

Analyze Contexts Apart from training a text classifier on the context around
the seeds, we also build a dedicated context dictionary with context patterns
that we find adjacent to the entities. The rationale behind this approach is that
the sequence of words before or after a word are good indicators for the entity
type. For example, consider the following phrases: “X traveled to Y”, “X was
born in Y”, or “X came back from Y”. All of these two to three word contexts
indicate that Y might be a location when used as a left context pattern and
that X might be a person when seen as a right context pattern. We therefore
build a dictionary similar to the one shown in Table 1, but with context phrases
instead of n-grams. This approach is similar to [11]. We use context phrases with
a length between one and three words. Also, we map all numeric expressions to
the word “NUM”. This gives us a higher recall in context phrases with numbers.
For instance, it does not matter whether the phrase is “X paid 2 dollars” or
“X paid 3 dollars” so we capture “paid NUM dollars” as the context phrase.
The context dictionary will be used in the last step of the entity recognition in
Section 3.2.

3.2 Using the NER

Once we have trained our named entity recognizer on the automatically gen-
erated training data, it is ready to be used. We divide the recognition problem
into three parts: entity detection, entity classification, and post processing. These
steps are executed sequentially on each given text.

Entity Detection In the entity detection phase we need to find entity candi-
dates in the text. An entity candidate is a sequence of characters of an unknown
type. The output of the entity detection phase is a list of candidate annota-
tions. For instance, given the text “John Hiatt is a great musician from Indiana,
USA”, we expect the entity detector to tag the candidates as “<CANDIDATE>John
Hiatt</CANDIDATE> is a great musician from <CANDIDATE>Indiana</CANDIDATE>,
<CANDIDATE>USA</CANDIDATE>”. Our NER is supposed to work for English lan-
guage texts only. We therefore use a rule-based detection with regular expressions
to find possible entity mentions. In particular, our expression covers sequences
of capitalized words, but also allows a few lower-cased words. For example it
covers “of” in order to detect “United States of America”. For each detected
entity candidate, we perform the same feature generation as shown in Section
3.1.



Entity Classification The second phase is the classification of the candidates.
To classify an entity candidate, we again create all n-grams (3 <= n <= 7),
look up the relevance scores in the dictionary, and assign the entity type with
the highest score S to the candidate. The score for each entity type and given
entity candidate is calculated as shown in Equation 1 and 2 where NCandidate

is the set of n-grams for the given entity candidate and T is the set of possible
types that the NER was trained to recognize.

S(type|candidate) =
∑

n εNcandidate

relevance(n, type) (1)

type = arg max
type ε T

S(type|candidate) (2)

Post Processing In the last phase of entity recognition we filter the classified
entities, change their boundaries if necessary, and reclassify their types by using
the learned patterns. We apply the following post processing steps.

– We remove all entities that are date fragments such as “Monday” and “July”.
This step is necessary because these fragments are capitalized like the entities
we actually want to detect, and because they fall under the tagging rules of
the entity candidate detector. Of course, we lose a little recall since there are
people named “April” and movies with the name “August”, but the precision
rises significantly more than the recall drops when applying this filter.

– We remove those date fragments from other entity candidates and change
their boundaries. For instance, “July John Hiatt” becomes “John Hiatt”.

– In the entity detection phase, we generate many entity candidates that con-
sist of words at the beginning of a sentence. For instance with “This is a
sentence”, we would generate “This” as a candidate entity, when it is not.
To filter out these incorrect detections, we employ the case dictionary that
we have generated in the training phase. We calculate the ratio of uppercase
to lowercase occurrences and remove the entity if the ratio is lower than or
equal to one. The rationale behind this approach is that capitalized words
at the beginning of sentences might appear more often in a lowercase form
indicating that they are not entities. The word “This” from the example has
a very low uppercase to lowercase ratio since it most often appears in the
lowercase form. We borrow this idea from Millan et al. [20].

– We switch the classified entity type when we found the entity in the training
data but classified it incorrectly.

– We now apply the information from the context dictionary that we trained.
Again, we take the context around the candidate and look up the score of
each entity type matching the context words. We merge the score outcomes of
the entity classification, the context classification, and the context words to
reassign the most likely entity type to the candidate. For example, if we have
classified “Paris” as a person but now the context “born in Paris” suggests
that the candidate is much more likely a location, the context classifiers
overrule the candidate-only classifier and switch the label. We now use our



set D of dictionaries. These are (1) candidate-only, (2) context n-grams, and
(3) context patterns. As shown in Equation 3 we combine the scores. We
then use Equation 2 to get the most likely entity type for the candidate.

S(type|candidate) =
∑
d εD

Sd(type|candidate) (3)

– In the last step, we use the learned left context information to change the
boundaries on multi-token candidates. For example, we have detected the
candidate “President Obama”, but knowing that the token “President” ap-
peared many times before the actual entity in the training set, we drop this
token and change the boundaries so that the candidate represents “Obama”
only.

4 Evaluation

4.1 Datasets

We use two datasets for our evaluation, the CoNLL 2003 and the TUD 2011
dataset. In this section, we will describe the properties, similarities, and differ-
ences between the datasets.

CoNLL 2003 The CoNLL 2003 dataset4 was developed for the shared task on
CoNLL in 2003. The participants in that task were asked to provide a language-
independent named entity recognition tool to work on English and German data
recognizing the types: person, organization, location, and miscellaneous. In our
evaluation we only use the English part of the dataset. The dataset also comes
with additional data such as list of names, POS-tags, and non-annotated data
which we do not use in our experiments. The data is separated into training
(68%), validation (for tuning the systems, 17%), and test (15%). A Reuters
corpus of news wire articles was annotated by the University of Antwerp for this
dataset.

While the CoNLL 2003 dataset is a valuable resource it comes with a num-
ber of drawbacks. Most importantly, only three entity types in addition to MISC

type are tagged. We have noticed that the MISC type very often represents a
nationality identifier such as “Spanish”. Since there are many more entities that
could fall into this category (products, buildings, landmarks, etc.) it is ques-
tionable whether the type of articles covers enough variety. As we have argued
in the motivation of this paper, this categorization is too broad for many real
world applications. Therefore, the performance levels that NERs can reach on
this dataset might be misleading. It is unclear whether they would work with a
much finer grained classification. Furthermore, we found that some documents
in the dataset do not seem to resemble a real text but rather look as if they were
scraped table contents.

4 http://www.cnts.ua.ac.be/CoNLL2003/ner/

http://www.cnts.ua.ac.be/CoNLL2003/ner/


TUD 2011 The TUD 2011 dataset5 was developed at the Dresden University
of Technology to evaluate Named Entity Recognition on a finer grained level.
Furthermore, it was important to us that we did not get data solely from one
source otherwise the writing tends to be too homogeneous. We therefore used
different web pages as sources for the dataset. Two annotators spent about 100
hours annotating 22 entity types in the dataset. In the first step, 20 seed entities
per entity type were collected from web sources. We then used the algorithm
from Figure 3.1 to automatically find possible mentions of the seed entities on
the web. Documents for each entity type were then hand tagged for about four
hours. We tried to assign the most specific type to each entity; if there was no
fitting type we went up in the hierarchy and if nothing matched there, we had
to assign MISC. For example, “Jim Carrey” would be annotated as Actor while
“Bill Gates” would be a Person since there is no specific matching type. The
127 documents are separated into training (50%) and test (50%) sets.

Table 2 shows the number of tagged entities per type in the training and test
part of the dataset. While the five top level types are almost evenly distributed,
the 17 more specific types show more variation in the number of annotated
instances. This variation is due to the fact that country names, for example, also
occur in documents about airplanes, but not the other way around. Altogether,
3,400 mentions were annotated.

Entity Type Training Test Total Entity Type Training Test Total

Person 216 166 382 Car 19 14 33

Politician 54 66 120 Comp. Mouse 18 21 39

Actor 59 28 87 Movie 28 30 58

Athlete 60 78 138 Mobile Phone 24 24 48

Location 178 145 323 Organization 201 231 432

Country 143 119 262 Newspaper 70 39 109

City 142 142 284 Team 60 75 135

Lake 28 14 42 University 14 17 31

Airport 40 30 70 Restaurant 19 20 39

Product 64 44 108 Band 37 20 57

Airplane 92 118 210 Misc 243 150 393

Table 2. Number of tagged entities per type

4.2 Comparisons

In this section, we evaluate our named entity recognizer on the two datasets and
compare it with state-of-the-art NERs. In particular, we compare it to Ling-
Pipe6 [1], which uses a character language model on top of a hidden markov

5 http://areca.co/7/Web-Named-Entity-Recognition-TUDCS4
6 http://alias-i.com/lingpipe

http://areca.co/7/Web-Named-Entity-Recognition-TUDCS4
http://alias-i.com/lingpipe


model, OpenNLP7, which uses a maximum entropy approach for tagging, and
the Illinois LBJ Tagger8 [25], which is based on conditional random fields. All
these recognizers work in a supervised manner, needing manually-labeled train-
ing data. Palladian works either in supervised mode (named just “Palladian” in
the charts) but can learn from sparsely-annotated training data on the web, too
(named “Palladian Web” in the charts). We use the MUC evaluation scores for
precision, recall, and the F1 measure. Furthermore, it is important to note that
all evaluation is done on “unseen” data, that is, we ignored annotations in the
test set which could have been learned in the training data. We do this to avoid
as much dictionary learning as possible since our goal is to extract new entities
from text, not primarily to recognize what we know already.

Evaluation on CoNLL 2003 Figure 2 shows the comparison of the four NERs
on the CoNLL data. All taggers were trained on 68% training data and tested
on 15% test data from the dataset. This graphic shows what we can reach when
using supervised learning with the training data.

0 0.2 0.4 0.6 0.8 1

Palladian

OpenNLP

LingPipe

Illinois LBJ

Palladian OpenNLP LingPipe Illinois LBJ
MUC F1 0.84 0.62 0.83 0.86
MUC Recall 0.86 0.62 0.83 0.87
MUC Precision 0.82 0.61 0.83 0.85

Fig. 2. Comparison of recognizers with supervised learning on CoNLL

Figure 3 shows the performance of the NERs based on the size of the training
data. We evaluated the performance by continuously increasing the training set
by ten documents (in total, CoNLL provides about 600 training documents). We
can see that all NERs benefit from more training data. The dashed line signifies
the performance of Palladian Web – Palladian in web training mode. We used
1 to 50 seed entities per type and automatically generated training data using
the algorithm from Figure 3.1. The upper x-axis shows the number of seeds that
were used for training Palladian Web. While this approach works without hand-
labeled training data, the F1-Score is about 29% below the maximum F1-Score

7 http://incubator.apache.org/opennlp/
8 http://cogcomp.cs.illinois.edu/page/software_view/4

http://incubator.apache.org/opennlp/
http://cogcomp.cs.illinois.edu/page/software_view/4


of the best tagger when using completely annotated training data. Still even for
20 training documents the web training approach still outperforms LingPipe and
up to over 250 training documents it beats OpenNLP’s performance.

1 10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421 441 461 481 501

Number of training seeds

M
U

C 
F1

Number of training documents

Illinois LBJ LingPipe OpenNLP Palladian Palladian Web

Fig. 3. Comparison of recognizers based on the size of training data on CoNLL

Evaluation on TUD 2011 Figure 4 shows the comparison of the four NERs
on the TUD data. All taggers were trained on 50% training data and tested on
the other 50% test data from the dataset. It is clear that the performance is dra-
matically worse for all the NERs compared to the CoNLL dataset. The worsened
performance stems from a smaller number of training documents, more diverse
training data, and more importantly the higher number of entity types that
need to be recognized. From this chart, we can conclude that even state-of-the-
art NERs perform poorly on diverse web text when the task is to extract unseen
entity mentions. The performance could be improved by allowing gazetteers, but
this is not our focus.

Figure 5 shows the performance of the NERs based on the size of the training
data from the TUD dataset (in total, the dataset provides about 60 training
documents). We increased the number of training documents by five for each
evaluation. We can see a similar behavior of the taggers as in Figure 3. We
trained the Palladian Web tagger the same way as before, supplying it with
automatically generated training data. It takes the Illinois LBJ tagger about
ten training documents to reach the performance of the Palladian Web tagger
trained on 10 seeds. This time, however, the number of training documents
is too small for LingPipe and OpenNLP to reach the automatically trained
tagger’s performance at all. Training Palladian Web with 50 seed entities per type
performs only about 9% worse than the Illinois LBJ after 56 training documents.
We can see a promising direction of automatically training the NER on the web



0 0.2 0.4 0.6 0.8 1

Palladian

OpenNLP

LingPipe

Illinois LBJ

Palladian OpenNLP LingPipe Illinois LBJ
MUC F1 0.53 0.22 0.35 0.52
MUC Recall 0.53 0.26 0.25 0.50
MUC Precision 0.52 0.18 0.59 0.55

Fig. 4. Comparison of recognizers with supervised learning on TUD

since acquiring training data is extremely costly, and when a new entity type
should be extracted, the complete data needs to be manually re-annotated.

1 10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21 26 31 36 41 46 51 56

Number of training seeds

M
U

C 
F1

Number of training documents

Illinois LBJ LingPipe OpenNLP Palladian Palladian Web

Fig. 5. Comparison of recognizers based on the size of training data on TUD

5 Conclusion & Open Questions

In this paper, we have presented the named entity recognizer Palladian, which
can be automatically trained on the web requiring only a small number of seed
entities per entity type. While this approach is outperformed by training su-
pervised state-of-the-art NERs on manually-labeled training data, it is rather
competitive when little training data is given and many different entity types



should be extracted. Furthermore, we have shown that named entity extraction
which focuses on recognizing unknown entities is a rather difficult problem when
the task is done on heterogeneous web texts and a larger number of entity types
need be recognized. In our future studies, we will combine the presented NER
with the entity extraction techniques from [28] to improve the quantity and
quality of the entity extractions.

References

[1] Alias-i. Lingpipe 4.0.1, 2011. http://alias-i.com/lingpipe.
[2] M. Asahara and Y. Matsumoto. Japanese named entity extraction with redundant

morphological analysis. In Proceedings of Human Language Technology Conference
(HLT-NAACL), pages 8–15, 2003.

[3] D. M. Bikel, S. Miller, R. Schwartz, and R. Weischedel. Nymble: a high-
performance learning name-finder. In Proceedings of the fifth conference on Ap-
plied natural language processing, pages 194–201. Association for Computational
Linguistics Morristown, NJ, USA, 1997.

[4] A. Borthwick, J. Sterling, E. Agichtein, and R. Grishman. NYU: Description of
the MENE named entity system as used in MUC-7. In Proceedings of the Seventh
Message Understanding Conference (MUC-7), volume 6, 1998.

[5] S. Buchholz and A. van den Bosch. Integrating seed names and n-grams for
a named entity list and classifier. In Proceedings of the Second International
Conference on Language Resources and Evaluation, pages 1215–1221, 2000.

[6] L. Chiticariu, R. Krishnamurthy, Y. Li, F. Reiss, and S. Vaithyanathan. Do-
main adaptation of rule-based annotators for named-entity recognition tasks. In
Proceedings of the 2010 Conference on Empirical Methods in Natural Language
Processing, EMNLP ’10, pages 1002–1012, Stroudsburg, PA, USA, 2010. Associ-
ation for Computational Linguistics. URL http://portal.acm.org/citation.

cfm?id=1870658.1870756.
[7] W. W. Cohen. Fast effective rule induction. In Machine Learning, International

Workshop then conference, pages 115–123. Morgan Kaufmann Publishers, 1995.
[8] M. Collins and Y. Singer. Unsupervised models for named entity classification.

In Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora, pages 189–196, 1999.

[9] S. Cucerzan and D. Yarowsky. Language Independent Named Entity Recognition
Combining Morphological and Contextual Evidence. In Proceedings of the Work-
shop on Very Large Corpora at the Conference on Empirical Methods in NLP.,
pages 90–99, 1999.

[10] D. Downey, M. Broadhead, and O. Etzioni. Locating complex named entities in
web text. In Proceedings of IJCAI, 2007.

[11] M. Fleischman and E. Hovy. Fine Grained Classification of Named Entities. In
Proceedings of the 19th international conference on Computational linguistics, vol-
ume 1, pages 1–7. Association for Computational Linguistics, 2002.

[12] R. Grishman and B. Sundheim. Message understanding conference-6: A brief his-
tory. In Proceedings of the 16th conference on Computational linguistics-Volume 1,
pages 466–471. Association for Computational Linguistics Morristown, NJ, USA,
1996.

[13] M. A. Hearst. Automatic acquisition of hyponyms from large text corpora. In
Proceedings of the 14th conference on Computational linguistics-Volume 2, pages
539–545. Association for Computational Linguistics Morristown, NJ, USA, 1992.

http://alias-i.com/lingpipe
http://portal.acm.org/citation.cfm?id=1870658.1870756
http://portal.acm.org/citation.cfm?id=1870658.1870756


[14] F. Iacobelli, N. Nichols, and L. B. K. Hammond. Finding new information via
robust entity detection. In Proactive Assistant Agents (PAA2010) AAAI 2010
Fall Symposium, 2010.

[15] D. Klein, J. Smarr, H. Nguyen, and C. D. Manning. Named entity recognition
with character-level models. In Proceedings of CoNLL, volume 3, 2003.

[16] Z. Kozareva, B. Bonev, and A. Montoyo. Self-training and co-training applied to
spanish named entity recognition. MICAI 2005: Advances in Artificial Intelligence,
pages 770–779, 2005.

[17] A. McCallum and W. Li. Early results for named entity recognition with con-
ditional random fields, feature induction and web-enhanced lexicons. In Seventh
Conference on Natural Language Learning (CoNLL), 2003.

[18] D. D. McDonald. Internal and external evidence in the identification and semantic
categorization of proper names. Corpus processing for lexical acquisition, pages
21–39, 1996.

[19] F. D. Meulder, W. Daelemans, and V. Hoste. A named entity recognition system
for dutch. Language and Computers, 45(1):77–88, 2002. ISSN 0921-5034.

[20] M. Millan, D. Sánchez, and A. Moreno. Unsupervised Web-based Automatic
Annotation. In Proceeding of the 2008 conference on STAIRS 2008: Proceedings
of the Fourth Starting AI Researchers’ Symposium, pages 118–129. IOS Press,
2008.

[21] D. Milne and I. H. Witten. Learning to link with wikipedia. In Proceeding of the
17th ACM conference on Information and knowledge management, pages 509–518.
ACM, 2008.

[22] D. Nadeau and S. Sekine. A Survey of Named Entity Recognition and Classifica-
tion. Named Entities: Recognition, Classification and Use, pages 3–28, 2009.

[23] D. Nadeau, P. D. Turney, and S. Matwin. Unsupervised named-entity recognition:
Generating gazetteers and resolving ambiguity. In Proceedings of the Canadian
Conference on Artificial Intelligence, pages 266–277. Springer, 2006.

[24] C. Niu, W. Li, J. Ding, and R. K. Srihari. Bootstrapping for named entity tag-
ging using concept-based seeds. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for Computational Linguistics on Hu-
man Language Technology: companion volume of the Proceedings of HLT-NAACL
2003–short papers-Volume 2, pages 73–75. Association for Computational Linguis-
tics, 2003.

[25] L. Ratinov and D. Roth. Design challenges and misconceptions in named entity
recognition. In Proceedings of the Thirteenth Conference on Computational Natu-
ral Language Learning, pages 147–155. Association for Computational Linguistics,
2009.

[26] S. Sekine. NYU: Description of the Japanese NE System used for MET-2. In
Proceedings of the Seventh Message Understanding Conference (MUC-7), 1998.

[27] G. Szarvas, R. Farkas, and R. Ormándi. Improving a state-of-the-art named en-
tity recognition system using the world wide web. Advances in Data Mining.
Theoretical Aspects and Applications, pages 163–172, 2007.

[28] D. Urbansky, M. Feldmann, J. A. Thom, and A. Schill. Entity Extraction from
the Web with WebKnox. In Proceedings of the Sixth Atlantic Web Intelligence
Conference, 2009.

[29] D. Urbansky, K. Muthmann, P. Katz, and S. Reichert. Palladian: A toolkit for
Internet Information Retrieval and Extraction. Website, May 2011. http://www.
palladian.ws/documents/palladianBook.pdf.

[30] D. Wu, G. Ngai, M. Carpuat, J. Larsen, and Y. Yang. Boosting for named entity
recognition. 20:1–4, 2002.

http://www.palladian.ws/documents/palladianBook.pdf
http://www.palladian.ws/documents/palladianBook.pdf

	Training a Named Entity Recognizer on the Web

