
A Framework for QoS Contract Negotiation in
Component-Based Applications

Mesfin Mulugeta and Alexander Schill

Institute for System Architecture
Dresden University of Technology, Germany
{mulugeta|schill}@rn.inf.tu-dresden.de

Abstract. The support of QoS properties in component-based software
requires the run-time selection of appropriate concrete QoS contracts
at the ports of the interacting components. Such a selection process is
called QoS contract negotiation. This paper discusses the architecture of
a QoS contract negotiation framework and how it is implemented in our
prototype. The framework can be integrated in a component container
and act as a run-time support environment when QoS Contracts are
negotiated under different application scenarios. Our approach is based
on: (i) the notion that the required and provided QoS properties as well
as resource demands are specified at the component level; and (ii) that
QoS contract negotiation is modeled as a constraint solving problem.

1 Introduction

Component-Based Software Engineering (CBSE) allows the composition of com-
plex systems and applications out of well defined parts (components). In today’s
mature component models (e.g. EJB and Microsoft’s .NET), components are
specified with syntactic contracts that provide information about which meth-
ods are available and limited non-functional attributes like transaction proper-
ties. This underspecifies the components and limits their suitability and reuse
to a specific area of application and environment. In [2], component contracts
have been identified in four different levels: syntactic, behavioral, synchroniza-
tion, and QoS. The explicit consideration of component QoS contracts aims at
simplifying the development of component-based software with non-functional
requirements like QoS, but it is also a challenging task.

For applications in which the consideration of non-functional properties (NFPs)
is essential (e.g. Video-on-Demand), a component-based solution demands the
appropriate composition of the QoS contracts specified at the different ports of
the collaborating components. The ports must be properly connected so that the
QoS level required by one must be matched by the QoS level provided by the
other. This matching requires the selection of appropriate QoS contracts at each
port. Generally, QoS contracts of components depend on run-time resources (e.g.
network bandwidth, CPU time) or quality attributes to be established dynam-
ically. QoS contract negotiation involves the run-time selection of appropriate
concrete QoS contracts specified at the ports of the interacting components.



In [9], we presented how QoS contract negotiation can be formulated as a
constraint solving problem and proposed two-phased heuristic algorithms in a
single-client - single-server and multiple-clients scenarios. This paper focuses on
a conceptual negotiation framework that can be integrated in a component con-
tainer to act as a run-time support environment when QoS contracts are negoti-
ated under different application scenarios. We also discuss details of our proto-
type implementation of the framework. The advantages of having the framework
are the following. Firstly, it can be directly used for various types of applications
as long as similar QoS contract specification schemes are used. Secondly, the
framework can be extended to handle different scenarios either by incorporating
new negotiation algorithms or by including more features with respect to the
basic components of the framework.

The rest of the paper is organized as follows. In section 2 we examine related
work. Section 3 details our QoS contract negotiation framework. Section 4 is
devoted to the discussion of how we have implemented the proposed framework
by demonstrating the ideas based on an example application scenario. The paper
closes with a summary and outlook to future work.

2 Related Work

The work in [4] offers basic QoS negotiation mechanisms in only a single con-
tainer. It hasn’t pursued the case of distributed applications where components
are deployed in multiple containers. In [11] QoS contract negotiation is applied
when two components are explicitly connected via their ports. In the negotia-
tion, the client component contacts the server component by providing its re-
quirement; the server responds with a list of concrete contract offers; and the
client finally decides and chooses one of the offers. This approach covers only
the protocol aspect of the negotiation process. It hasn’t pursued the decision
making aspects of the negotiation.

In [8] a model is described where a component provides a set of interre-
lated services to other components. These components are QoS-aware and are
capable of engaging in QoS negotiations with other components of a distributed
application. The paper attempts to create a framework for software components
that are capable of negotiating QoS goals in a dynamic fashion using analytic
performance models. The QoS negotiation between two components occurs by
taking performance as a QoS requirement and concurrency level as a means of
negotiation element. Our treatment of QoS negotiation is more generic and gen-
eral, which may be applied for a larger set of problems. Moreover, the container
handles the negotiation between components in our case, which enhances the
reusability of the components. QuA [13] aims at defining an abstract compo-
nent architecture, including the semantics for general QoS specifications. QuA’s
QoS-driven Service Planning has similarities to our concept of QoS contract ne-
gotiation. Complexity issues, however, haven’t been accounted for in the service
planning.



Fig. 1. Architecture of a QoS Contract Negotiation Framework

The Quality Objects (QuO) framework offers one of the most advanced con-
cepts and tools to integrate QoS into distributed applications based on CORBA
[7]. In QuO, a QoS developer specifies a QoS contract between the client and
object. This contract specifies the QoS that the client desires from the object,
the QoS that the object expects to provide, operating regions indicating possible
measured QoS, and actions to take when the level of QoS changes. Having to
provide the adaptive behavior explicitly in the QoS contract is a burden on the
QoS developer. In our work, we have taken the approach that instead of spec-
ifying the pre-determined adaptive behavior in the QoS contract, we leave the
reasoning on adaptation (or negotiation) to the component containers, which
they would perform based on the specification of the component’s QoS profiles.
One advantage of this approach is that it makes the application development
process easier.

3 Framework Architecture and Interaction

3.1 Architecture

Our framework can be seen as a reusable design that consists of the repre-
sentation of important active components, data entities, and the interaction of
different instances of these to enable QoS contract negotiation. Fig. 1 shows the
conceptual architecture of our framework represented as a UML class diagram.

Negotiator coordinates and performs the contract negotiation on behalf of
the interacting components. In order for Negotiator to decide on the solution
(i.e. selection of appropriate concrete QoS contracts at the ports of components),
it has to make reference to: (i) the QoS specification of all the cooperating com-
ponents, which is assumed to be available declaratively in the form of one or more
QoS profiles, (ii) user’s QoS requirement and preferences, (iii) available resource
conditions, (iv) network and container properties, and (v) policy constraints.
Finally, Negotiator establishes contracts, which will have to be monitored and
enforced by the container. Next, we describe the different building blocks of our
framework.



QoS Profile Component’s QoS Contracts are specified with one or more QoS
profiles. A component’s QoS contract is distinguished into offered QoS contract
and required QoS contract [10]. We use CQML+ [12][5], an extension of CQML
[1], to specify the offered- and required-QoS contract of a component. CQML+

uses the QoS-Profile construct to specify the NFPs (provided and required QoS
contracts) of a component’s implementation in terms of what qualities a compo-
nent requires (through a uses clause) from other components and what qualities
it provides (through a provides clause) to other interacting components, and the
resource demand by the component from the underlying platform (through a re-
source clause). The uses and provides clauses are described by a QoS statement
that constrain a certain quality characteristic in its value range. A simplified
example shown below depicts these elements for a VideoPlayer component that
may be used in video streaming scenarios.

QoSProf i l e aP r o f i l e f o r VideoPlayer {
prov ides frameRate=15, r e s o l u t i o n =352x288 ;
uses frameRate=15, r e s o l u t i o n =352x288 ;
r e s ou r c e s cpu=8.9%; networkBandwidth=2.1kbps ; memory=30KB;

}

It is assumed that the component developer specifies the QoS-Profiles after
conducting experiments and measuring the provided quality, required quality,
and the resource demands at the component level.

Connector Connector is an abstraction of the network and the containers that
exist between interacting components deployed on multiple nodes. A communi-
cation channel may have a number of QoS properties. For example, it introduces
a delay. The connector properties are used when matching conformance between
provided- and required-QoS contracts of components interacting across contain-
ers.

It is assumed that the values of the connector properties are available to
Negotiator before negotiation starts. Two possible approaches for estimating
the values are: (i) Off-line measurement - the required properties are measured
off-line by applying different input conditions (e.g. throughput) and load con-
ditions in the network and end-systems; and (ii) On-line measurement - the
properties are measured during the application launch and/or at run-time.

User Profile UserProfile is used to specify the user’s QoS requirements
and preferences. The user’s requirement may be specified for one or more QoS-
dimensions. Additional parameters such as user class need to be defined when
considering, for example, a multiple-clients scenario. UserProfile is assumed to
be constructed by the run-time system after obtaining the user’s request for a
given service. The user might be given the chance to select values of attributes
from one of many templates supplied for the application or specify the attributes
himself.

Resource Resource is used to store information about the available resources
at the nodes and the end-to-end bandwidth between nodes in which components



are deployed. Monitoring functions are used to supply data about a node’s load
conditions on CPU, memory, etc. It is assumed that the available resources
are monitored at run-time. Changes in available resources might initiate re-
negotiation.

Negotiator A user’s request to get a service is first intercepted by Negotiator
on the client node. The Negotiator at the client and server side exchange infor-
mation about the required service and the user’s profile before the negotiation
begins. Negotiator is responsible for selecting appropriate QoS-Profiles of the
interacting components that should satisfy a number of constraints (e.g. user’s,
resource, etc.). It is also responsible for finding a good solution from a set of pos-
sible solutions. Negotiator creates Contract after successfully performing the
negotiation. For an unsuccessful negotiation, the selection process is repeated
after systematically relaxing the user’s QoS requirement.

In order to accomplish the stated responsibilities, Negotiator relies on our
modeling of the QoS contract negotiation as a Constraint Satisfaction Optimiza-
tion Problem (CSOP) [14]. A CSOP consists of variables whose values are taken
from finite, discrete domains, a set of constraints on their values, and an objec-
tive function. The task in a CSOP is to assign a value to each variable so that all
the constraints are satisfied and a solution that has an optimal value with regard
to the objective function is found. The objective function maps every solution
to a numerical value.

In the above modeling, we take the variables to be the QoS-Profiles to be
used for the collaborating components. The domain of each variable is the set of
all QoS-Profiles specified for a component. The constraints identified are classi-
fied as conformance, user’s, and resource. As an objective function, we use an
application utility function [6], which is represented by mapping quality points
to real numbers in the range [0, 1] where 0 represents the lowest and 1 the highest
quality.

Contract The creation of contracts proceeds after the selection of appropriate
concrete QoS-profiles of the interacting components. Contracts may exist be-
tween components deployed in the same or different containers. In the case of a
front-end component, a contract exists between this component and the user. A
simplified abstraction of Contract is given below.

public c lass Contract {
QoSProf i l e s e l e c t edQoSPro f i l eC l i e n t ;
QoSProf i l e s e l e c t edQoSPro f i l e S e rv e r ;
Connector se l e c t edConnector
Us e rP ro f i l e u s e rP r o f i l e ;
double con t ra c tVa l i d i t yPe r i od ;
// . . .

} ;

If a contract is established between two components deployed in the same
container, the clauses of the contract contains the QoS offers and needs as well as
the resource demands of the components. That means, the selected QoS-profiles
of the client and server components would be clauses in the contract (in this case,



selectedConnector and userProfile are null). If a contract is established
between components across containers, a selected connector is also part of the
contract. For a contract between a user and the front-end component, a user’s
profile would become part of the contract (selectedQoSProfileClient and
selectedConnector are null in this case). Note that resources required from
the underlying platform are included in the contract through the QoS-profiles.
Additional parameters such as contract dependencies, etc. also need to be defined
in the contract in order to facilitate contract monitoring and enforcement.

Monitor After contracts are established, they can be violated for a number of
reasons like a shortage of available resources. Monitor constantly monitors con-
tracts to assure that no contract violations would occur and in case one occurs,
some corrective measures should be taken through contract re-negotiations.

Policy Constraints As described previously, Negotiator uses a CSOP frame-
work to find good solution. The CSOP framework in turn relies on the specifica-
tion of constraints and a utility function in order to find appropriate solutions.
There are, however, certain behaviors that cannot be captured in utility func-
tions. Such behaviors are modeled as policy constraint, which can be defined as
an explicit representation of the desired behavior of the system during contract
negotiation and re-negotiation. Negotiator can achieve, for instance, different
optimization goals based on varying specifications in the policy constraints. For
e.g., the service provider might want to allocate different percentages of resources
to different user classes (e.g. premium and normal users).

3.2 Interaction

The interaction diagram in Fig. 2 depicts an overall view of the negotiation pro-
cess. It is assumed that the application’s components are deployed in client and
server containers. The diagram shows a successful negotiation scenario performed
using a centralized approach. The following is demonstrated in Fig. 2.

– A user requests the application for a service by providing the service’s name
(e.g. playing a given movie or performing payment for usage of a particular
operation) together with his/her QoS and preference needs (step 1).

– Intercepting the user’s request, Negotiator at the client’s container con-
structs UserProfile and sends a message to the server container, which
will identify the components that participate to provide the required service
(step 2).

– In steps 3 to 5, the container that is responsible for the negotiation collects
QoS contracts specified for the collaborating components, resource condi-
tions at each node and the network, and policy constraints that may be
imposed by service providers.

– The responsible container performs the negotiation (step 6) in two phases
[9]. In the first phase, negotiation is made on coarse-grained properties (step



Fig. 2. Interaction between client and server containers (centralized approach)

7). When this is successful, negotiation on fine-grained properties continues
(step 8).

– The responsible container creates all contracts. A contract is established
between any two interacting components and between a user and the front-
end component (step 9).

– The client container retrieves relevant contracts from the server container
(step 10). These are contracts between components deployed in the client
container or between components connected across containers.

4 Implementation and Example

4.1 Example

As a proof-of-concept, we have developed a prototype of the framework proposed
in Fig. 1. Our prototype implements all the elements of the framework with
the exception of PolicyConstraints and Monitor. The framework has been
used to negotiate QoS contracts at run-time for a video streaming application
scenario. In the future we plan to extend our implementation to include contract
monitoring and the consideration of policy constraints. The prototype has been
implemented in Java as also demonstrated by the code snippets shown below.



Fig. 3. A video streaming scenario and QoS-profiles of VideoPlayer and VideoServer
implementations

The video streaming application scenario that we used involves a VideoServer
component deployed in a server container and a VideoPlayer component de-
ployed in a client container (Fig. 3). We use the Comquad component model
[5] that supports streams as special interface types and allows to specify non-
functional properties for them. VideoPlayer implements two interfaces: a uses
interface ICompVideo and a provides interface IUnCompVideo while VideoServer
implements a provides interface ICompVideo. VideoPlayer’s ICompVideo is con-
nected to VideoServer’s ICompVideo to receive video streams for a playback at
the client’s node.

We conducted an experiment to specify the QoS-Profiles of VideoPlayer and
VideoServer. The VideoPlayer component was implemented using Sun’s JMF
framework and the VideoServer component abstracts the video media file that
has been pre-encoded into many files with differing frame rates, resolutions, pro-
tocols, and coding algorithm. Fig. 3 depicts some of the measured QoS-Profiles
of VideoPlayer and VideoServer, with UDP protocol and mp42 coding. Note
that these QoS-Profiles depend on the content of the video. During the mea-
surements, average bandwidth and CPU percentage time have been considered.
The bandwidth requirement of VideoServer is taken to be the same as that of
VideoPlayer. The measured CPU requirements of VideoServer are too small
(in the range of 0.1%) and hence have been left out from Fig. 3.



4.2 Implementation

Next, we will see how the framework elements are instantiated and how they
interact during the QoS contract negotiation, which is initiated when a user
sends his request to get a service. Our subsequent discussion roughly follows the
sequence diagram in Fig. 2.

For the example in Fig. 3, a user requests to watch a video clip that is
streamed from the video provider to the user. The involved components are
VideoPlayer and VideoServer. A user also sends his QoS requirements from
which UserProfile is constructed. UserProfile is initialized with the user’s
QoS requirement, i.e. frameRate ≥ 12s−1 and resolution = 176× 144.

public c lass Use rP ro f i l e {
List<QoSStatement> uses ;
// . . .

} ;
5 u s e rP r o f i l e = new Use rP ro f i l e ({ frameRate=12, r e s o l u t i o n =176x144 } ) ;

The other element from the framework that needs to be instantiated be-
fore the negotiation is started is Resource. For the example in Fig. 3, three
instances of Resource are used as illustrated below. Let’s assume that the avail-
able resources at the client and server nodes as well as the end-to-end network
bandwidth are as indicated below.

public c lass Resource {
double cpu ; // in percentage
double memory ; // in KB
double networkBandwidth ; // in kbps

10 // . . .
} ;
c l i e n tRe sou r c e s = new Resource (80 , 150 , null ) ;
s e rve rResource s = new Resource (50 , 200 , null ) ;
endToEndBandwidth = new Resource ( null , null , 1000 ) ;

For the video streaming example, the QoS contracts are specified with mul-
tiple QoS profiles as shown in Fig. 3. A QoS-Profile for VideoPlayer is, for
example, represented as:

15 QoSProf i l e aP r o f i l e for VideoPlayer {
prov ides frameRate=15, r e s o l u t i o n =352x288 ;
uses frameRate=15, r e s o l u t i o n =352x288 ;
r e s ou r c e s cpu=8.9%; networkBandwidth=2.1kbps ; memory=30KB;

}

We used a data structure called ComponentMeta to store the QoS-Profiles
of each component (i.e. a component’s meta data) as shown below. Additional
variables are also needed to be defined. tempSelectedProfile holds temporarily
selected profiles during the negotiation process while selectedProfile stores
the selected profile after the negotiation is concluded. currentProfilePos indi-
cates the position of the temporarily selected profile in the array of QoS profiles,
which are stored from low to high quality. Although not shown in the code snip-
pet below, ComponentMeta defines, among others, the Set and Get functions for
the variables it defines.

20 public c lass ComponentMeta {



List<QoSProf i le> p r o f i l e s = null ;
QoSProf i l e s e l e c t e dP r o f i l e = null ;
QoSProf i l e t empSe l e c t edPro f i l e = null ;
int cu r r en tPro f i l ePo s =0;

25 // . . .
} ;
ComponentMeta c [ ] = new ComponentMeta [N ] ;
enum CG {On Client , On Server , Across Conta iner s } // component ’ s group

ComponentMeta is instantiated for each cooperating component. It is assumed
that profiles in ComponentMeta are populated with values after parsing the
QoS specification that is declaratively available as an XML file to the run-time
system. CG (Line 28) is used to identify whether a component is deployed on
the client, server, or connected across containers.

An instance of Connector is required during the negotiation when compo-
nents are deployed in distributed nodes. The following code snippet assumes that
only a delay property is specified.

public c lass Connector {
30 List<QoSStatement> p r op e r t i e s = new ArrayList<QoSStatement >() ;

// . . .
} ;
connector = new Connector ({ delay =0.001}) ;

Negotiator uses instances of c[i], userProfile, connector, clientResource,
serverResource, and endToEndBandwidth described above when performing
the negotiation. Additional variables are also required for the particular algo-
rithms used in the negotiation.

public c lass Negot iator {
35 ComponentMeta c [ ] = null ;

Resource c l i e n tRe sou r c e s = null ;
Resource s e rve rResource s = null ;
Resource endToEndBandwidth = null ;
U s e rP ro f i l e u s e rP r o f i l e = null ;

40 Connector connector = null ;
U s e rP ro f i l e boundPro f i l e = null ; // i n i t i a l i z e d to user ’ s QoS requirement
Contract con t r a c t s [ ] = null ;
// . . .
void GetUserPro f i l e ( ) {// ge t s data for use rPro f i l e }

45 void GetAvai lab leResources ( ) {// ge t s data for the various resources }
void GetQoSContracts ( ) {// ge t s data for c [ i ] . p r o f i l e s }
boolean FineGrainedNegot iat ion ( ) {//performs f ine grained negot ia t ion }

} ;

FineGrainedNegotiation() uses the standard branch and bound (B&B)
[14] technique to find a solution for a problem modeled with a CSOP. To apply
B&B to our problem, we need to define policies concerning selection of the next
variable and selection of the next value. We must also specify the objective
and heuristic functions. In our implementation, the variables (QoS-profiles to
be used by each component) are ordered for assignment by topologically sorting
the network of cooperating components. The assignment starts from the minimal
element (i.e. the front-end component, for e.g. VideoPlayer in Fig. 3) and from
there continues to the connected components, and so on. The possible values of
each variable, i.e. the QoS-profiles specified for each component, must be ordered
from lower to higher quality.



The heuristic function, hValue, maps every partial labeling (assignment) to
a numerical value and this value is used to decide whether extending a partial
labeling to include a new label would result in a ”better” solution. At any point
during the assignment of values to variables, the QoS property of the partially
completed solution can be taken as the provided QoS contract of the front-
end component. Hence, hValue (Line 53) can be calculated based on the utility
function by taking the QoS points in the provided-QoS contract of the front-end
component. Because of the ordering strategy of variables we followed, hValue
needs to be computed only at the beginning of each iteration, that is, when the
front-end component is assigned a new value (Line 52). If the new assignment
to the front-end component violates the user’s constraint, the choice is retracted
and the sub-tree under the particular assignment will be pruned. The process
will then re-start with a new assignment.

boolean FineGrainedNegot iat ion ( )
50 {

i f ( ConformanceCheck ( ) == fa l se ) return fa l se ;
for ( int i=c [ 0 ] . GetCurrentProf i l ePos ( ) ; i<c [ 0 ] . p r o f i l e s . s i z e ( ) ; i++) {

i f ( hValue ( c [ 0 ] . p r o f i l e s . get ( i ) . p rov ides )>hValue ( boundPro f i l e . uses ) ){
c [ 0 ] . SetTempSelectedQoSProf i le ( components [ 0 ] . p r o f i l e s . get ( i ) ) ;

55 c [ 0 ] . Se tCurrentPro f i l ePos ( i +1);
i f ( F indAppropr i a t ePro f i l e s ( ) ) {

for ( int k=0; k<components . l ength ; k++) {
c [ k ] . S e tSe l e c t edQoSPro f i l e ( c [ k ] . GetTempSelectedQoSProfi le ( ) ) ;

// change bound with the new value
60 boundPro f i l e = new Use rP ro f i l e ( ) ;

boundPro f i l e . uses = c [ 0 ] . GetSe l ectedQoSPro f i l e ( ) . p rov ides ;
} else break ; // break i s a termination condi t ion

}
}

65 }

ConformanceCheck() (Line 51) performs conformance consistency check to
every connected pair of components: (Ci, Cj) where Ci is the parent of Cj . It
removes QoS-Profiles from the domain of Ci for which no conformant profiles
have been specified in Cj . It returns false if there cannot be conformance between
at least two connected components.

int FindAppropr i a t ePro f i l e s ( )
{

FindConformantProf i l es (CG. On Client ) ;
i f ( CheckResourceConstraints (CG. On Client ) ) {

70 FindConformantProf i l es (CG. Across Contaners \CG. On Client ) ;
i f ( CheckResourceConstraints (CG. Across Contaners ) ) {

FindConformantProf i l es (CG. On Server\CG. Across Contaners ) ;
i f ( CheckResourceConstraints (CG. On Server ) )

return 1 ; // succe s s f u l
75 else return 0 ;

} else return 0 ;
} else return 0 ;

}

FindConformantProfiles() (Line 79) finds QoS-profiles, which are confor-
mant to one another for all the components specified in the input argument.
At each iteration this function improves the solution by one step based on the
specified QoS-profiles. IsMatching() (Line 92) checks the conformance between
two interacting components. Conformance [3] exists between two QoS-profiles



of interacting components when the server’s provided-QoS contract conforms to
the client’s required-QoS contract. If the interacting components are on differ-
ent containers (as identified by AreOnDifferentNodes() (Line 90)), the con-
nector properties are required during conformance check. A component may
belong to two groups in CG (Line 28). For example, a component deployed on
the client container and that also communicates across containers belongs to
On Client and Across Containers. The notation \ in (Lines 70,72) is read as
”less”. CheckResourceConstraint() (Lines 69,71,73) returns true when there
are enough resources for the current selection.

void FindConformantProf i l es (CG componentGroup )
80 {

int lowerIndex = GetLowerIndex ( componentGroup ) ;
int higherIndex = GetHigherIndex ( componentGroup ) ;
i f ( lowerIndex==0)

int s t a r t i ng Index = lowerIndex +1; // as the p r o f i l e of the
85 // front−end component has been already s e l e c t e d

else
int s t a r t i ng Index = lowerIndex ;

for ( int j=s t a r t i ng Index ; j<=higherIndex ; j++) {
Connector tempConn = null ;

90 i f ( AreOnDifferentNodes ( c [ j −1] , c [ j ] ) ) tempConn = connector ;
for ( i=c [ j ] . GetCurrentProf i l ePos ( ) ; i<c [ j ] . p r o f i l e s . s i z e ( ) ; i++) {

i f ( IsMatching ( c [ j −1] . GetTempSelectedQoSProfi le ( ) . uses ,
c [ j ] . p r o f i l e s . get ( i ) . provides , tempConn ) ) {

c [ j ] . SetTempSelectedQoSProf i le ( c [ j ] . p r o f i l e s . get ( i ) ) ;
95 c [ j ] . Se tCurrentPro f i l ePos ( i ) ; break ;

}
}

}
}

Let’s next see the outcome of a negotiation for the example depicted in Fig.
3. Suppose the various input conditions are:

– user’s QoS requirement: frameRate > 12fps, resolution = 176× 144; reso-
lution is preferred over frame rate,

– resource availability: at the client’s node, CPU=80%, memory=150KB; at
the server’s node, CPU=50%, memory=200KB; and the end-to-end band-
width is 1Mbps,

– QoS contracts of the components are as given in Fig. 3.

As the first solution, FineGrainedNegotiation() selects the 5th QoS profiles
of VideoPlayer and VideoServer, i.e. the ones with the offered QoS contract
of 176 × 144, 15fps. Further iterations improve the solution and ultimately the
6th QoS-profiles of VideoPlayer and VideoServer are selected. The next step
is to establish contracts between VideoPlayer and VideoServer and between
VideoPlayer and User. These contracts will then be monitored and enforced by
the run-time system.

4.3 Experiences

In the various application scenarios we studied, we had to conduct an experiment
to specify the QoS contracts of components. We used these data to check the



validity of our approach and its prototype implementation. In our prototype
we simulated different behaviors concerning: (i) user’s QoS requirements and
preferences, (ii) resource availability conditions concerning the client, server,
and network bandwidth, and (iii) the specified QoS-Profiles of the collaborating
components. Under various conditions, the outcome of the negotiation gives a
solution that has the highest utility as far as the most preferred QoS dimension
is concerned. The run-time complexity of the negotiation algorithm is O(nd2)
where n is the total number of cooperating components and d is the number
of QoS-Profiles specified for each component. Such a complexity is achieved by
assuming that the cooperating components form a tree so as to achieve a non-
backtracking solution (Lines 68-77).

It is to be noted that our entire approach extensively depends on the QoS-
Profiles of the collaborating components. The component developer specifies the
QoS-Profiles after conducting experiments and measuring the provided quality,
required quality and the resource demand at the component level. Given the
same application, constituting components, and same environment, the outcome
of the QoS contract negotiation can depend on the specified QoS-Profiles. One
of the drawbacks of this is that the solution obtained might not be the optimal
one. In order to overcome such a discrepancy, there must be some standard way
of specifying QoS contracts, which might be done by either using measurements
or analytical means.

5 Conclusions and Outlook

We presented a QoS contract negotiation framework that can be integrated in a
component container using the interceptor pattern, which enables adding cross-
cutting concerns like contract negotiation. The framework acts as a run-time
support environment when QoS contracts are negotiated in various applications.
As a proof-of-concept we have developed a prototype of the proposed frame-
work. This paper discussed the implementation details of the prototype. We
also illustrated how the framework can be applied to perform negotiation in a
componentized video streaming example application. In the future we plan to
extend our implementation to include contract monitoring and the consideration
of policy constraints.

References

1. J. Ø. Aagedal. Quality of Service Support in Development of Distributed Systems.
PhD thesis, University of Oslo, 2001.

2. A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making components
contract aware. IEEE Computer, 32(7):38–45, July 1999.

3. S. Frolund and J. Koistinen. Quality-of-Service specification in distributed object
systems. IOP/BCS Distributed Systems Engineering Journal, December 1998.

4. S. Göbel, C. Pohl, R. Aigner, M. Pohlack, S. Röttger, and S. Zschaler. The
COMQUAD component container architecture and contract negotiation. Tech-
nical Report TUD-FI04-04, Technische Universität Dresden, April 2004.



5. S. Göbel, C. Pohl, S. Röttger, and S. Zschaler. The COMQUAD Compo-
nent Model—Enabling Dynamic Selection of Implementations by Weaving Non-
functional Aspects. In 3rd International Conference on Aspect-Oriented Software
Development (AOSD’04), Lancaster, UK, 22–26 Mar. 2004.

6. C. Lee, J. Lehoczky, R. Rajkumar, and D. P. Siewiorek. On quality of service
optimization with discrete qos options. In IEEE Real Time Technology and Appli-
cations Symposium, pages 276–, 1999.

7. J. Loyall, R. Schantz, J. Zinky, and D. Bakken. Specifying and measuring quality
of service in distributed object systems. In Proc. 1st Int’l Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC ’98, Kyoto, Japan), Apr. 1998.

8. D. A. Menascé, H. Ruan, and H. Gomaa. A framework for qos-aware software
components. In The fourth international workshop on Software and performance,
pages 186–196, Redwood Shores, CA, USA, 2004.

9. M. Mulugeta and A. Schill. An approach for QoS contract negotiation in dis-
tributed component-based software. In In the 10th International ACM SIGSOFT
Symposium on Component-Based Software Engineering (CBSE 2007), Medford
(Boston area), Massachusetts, USA, July 2007. To appear.

10. Object Management Group. UML profile for modeling quality of service and fault
tolerance characteristics and mechanisms, v1.0. OMG Document, May 2006. URL
http://www.omg.org/docs/formal/06-05-02.pdf.

11. T. Ritter, M. Born, T. Unterschutz, and T. Weis. A QoS metamodel and its
realization in a CORBA component infrastructure. In proceedings of the Hawaii
International Conference on System Sciences, 2003.

12. S. Röttger and S. Zschaler. CQML+: Enhancements to CQML. In J.-M. Bruel, ed-
itor, Proc. 1st Int’l Workshop on Quality of Service in Component-Based Software
Engineering, Toulouse, France, pages 43–56. Cépaduès-Éditions, June 2003.

13. R. Staehli, F. Eliassen, and S. Amundsen. Designing adaptive middleware for
reuse. In ARM ’04: Proceedings of the 3rd workshop on Adaptive and reflective
middleware, pages 189–194, New York, NY, USA, 2004. ACM Press.

14. E. P. K. Tsang. Foundations of Constraint Satisfaction. Academic Press, London
and San Diego, 1993.


