
RAFT-REST - A Client-side Framework for
Reliable, Adaptive and Fault-Tolerant RESTful

Service Consumption

Josef Spillner, Anna Utlik, Thomas Springer, Alexander Schill

Technische Universität Dresden,
Faculty of Computer Science,
01062 Dresden, Germany

{josef.spillner,thomas.springer,alexander.schill}@tu-dresden.de,
anna.utlik@mailbox.tu-dresden.de

Abstract. The client/server paradigm in distributed systems leads to
multi-stakeholder architectures with messages exchanged over connec-
tions between client applications and services. In practice, there are many
hidden obstacles for client developers caused by unstable network con-
nections, unavailable or faulty services or limited connectivity. Even if
many frameworks and middleware solutions have already been suggested
as corrective, the rapid development of clients to (almost) RESTful ser-
vices remains challenging, especially when mobile devices and wireless
telecommunications are involved. In this paper we introduce RAFT-
REST, a conceptual framework aimed at engineers of clients to RESTful
services. RAFT-REST reduces the effort to achieve reliable, adaptive and
fault-tolerant service consumption. The framework is applied and vali-
dated with ReSup, a fully implemented flavour for Java clients which run
on the desktop and on Android mobile devices. We show that by using
the framework, message loss can be reduced significantly with tolerable
delay, which contributes to a higher quality of experience.

1 Introduction

As the World Wide Web and the Internet of Services become more enriched with
different kinds of information and functionality, private and commercial partici-
pants in these networks find new ways to expose their internal data, applications
and even hardware resources. From the user’s point of view, the interaction with
such services is not restricted anymore to read-only access to information, but
also includes utilisation and modification of data resources for creating com-
plex applications and systems. Web services following the paradigm of Repre-
sentational State Transfer, or simply RESTful web services, are attracting the
attention of an increasing number of individual developers and service-driven
companies as an easy and scalable way to provide an interface to different user
groups. This has led to an enormous growth of the adoption of distributed REST-
ful applications. Many popular Internet-scale services like Facebook, Twitter,
Dropbox, Flickr and Amazon S3 rely on the RESTful service paradigm.



This development is a result of major advantages RESTful services offer.
Based on HTTP for resource access and service invocation in almost all practi-
cal realisations of the RESTful approach, overhead with auxiliary data otherwise
used for encapsulating messages in envelopes and expressing operations [1] is re-
duced. Compared with SOAP-formatted and other procedural service protocols
[10], RESTful services are easier to develop and use and fit more naturally the
underlying stateful entity model like databases and hardware resources. Addi-
tionally due to the absence of the auxiliary data and the predictable nature of
their requests they typically offer better performance. The latter property allows
these services to be consumed with less restrictions on devices with limited com-
putational power, such as mobile phones, tablets and embedded systems. Thus,
with the simultaneous increase of radio communication and wireless network
covered areas, RESTful services give their consumers a possibility to access and
store valuable information in any place, at any time, and from the most com-
fortable terminal.

The other side of the coin is a high dependency on a stable and continuously
available network connection, which raises a set of challenges for the develop-
ment of RESTful service clients, especially when mobile devices and wireless
telecommunications are involved. The addressed statelessness prevents services
from keeping any information about clients on the service side, thus making
the client responsible for maintaining the session integrity and handling its in-
terruption due to network volatility and service failures. Mitigating this issue
implies writing fault-handling code that is individual to every service. Addi-
tionally, a high dependency on external services makes mobile applications and
other clients consuming RESTful services unusable during a network downtime,
as no data which would be necessary for these applications can be received. It is
left to the client developer if caching of data and its further reuse from a cache
storage should be implemented in the application or not. However, the RESTful
paradigm encourages caching and provides sufficient means to benefit from this
technique.

As another drawback, the wild growth of services and client programming
techniques for them has led to the lack of standardisation and formalised ser-
vice description and engineering methodologies. Although the basic principles of
REST are well known [4] and a lot of best practices and recommendations have
been published in developer-oriented literature [11, 9, 14] to determine one good
way of designing RESTful services, many implementations bypass some or even
all those rules and hence require treatment of almost-REST anomalies.

The current approach to develop RESTful service clients is to use a service-
specific framework offered by service providers. These frameworks provide a
high-level API which might be the most convenient and appropriate solution
if a client for a particular service should be implemented. As soon as a RESTful
service client should consume services provided by different vendors service-
specific frameworks are not appropriate. In addition, as we will discuss in the
related work section, these frameworks only have a very limited support for fault-
handling, disconnection support and configurability. Altenative approaches use



low-level network programming based on HTTP or support access to REST-
ful services at message or service level. While these approaches are more gen-
eral, flexibile, configurable and reusable, implementation effort is also signifi-
cantly higher. Especially, advanced mechanisms for fault-handling, configura-
tion, caching and adaptivity have to be implemented by the developer. Thus,
development of RESTful service clients, especially for mobile devices, is currently
a challenging, costly and time consuming task.

In this paper we therefore introduce RAFT-REST, a conceptual framework
for reliable, adaptive and fault-tolerant access to RESTful services. Any imple-
mentation of it is targeted to the provision of service handling support on the
client side in the context of unreliable network conditions combined with often
sloppy almost-RESTful service interfaces. The conceptual framework proposes a
novel way of accessing and consuming RESTful services from applications which
cannot assume high-quality networks and service behaviour.

The contribution of the paper is threefold. Firstly, we describe the results of
an analysis of 12 highly popular RESTful services and a set of fault-tolerant con-
sumption frameworks with respect to support for the aformentioned problems.
This analysis underpins the current state of service-specific frameworks as stated
before. Secondly, we introduce the concepts of RAFT-REST as a conceptual,
generic and portable client-side framework for rapid and cost efficient develop-
ment of reliable, fault-tolerant and adaptive RESTful service clients. Thirdly,
we describe ReSup, a concret implementation of the RAFT-REST concepts for
Java clients running on a desktop or Android device. We especially present and
evaluation of fault-handling, configurability and performance for the use case of
reliable mobile service consumption.

The remainder of the paper is organized as follows: In Section 2 we present
and compare related client-side service integration approaches. Then, we intro-
duce RAFT-REST as a concept and an architecture for reliable service consump-
tion in Section 3. Through a reference implementation on Android, RAFT-REST
is then evaluated for the use case of reliable mobile service consumption in Sec-
tion 4. Finally, the performed work and its results are summarised and directions
for future research towards more failure-aware service-oriented architectures are
explained.

2 Related Work: SDKs and Fault-Tolerant Frameworks

Developers of clients for RESTful service interfaces have a choice in the level
of assistance which coincides with the level of restriction to certain libraries,
toolkits and providers. The following methodologies exist:

– Low-level network programming through APIs such as socket or, slightly
more comfortable, on the HTTP level, such as HttpUrlConnection, Http-
Client and curl. These libraries partially offer functions to overcome com-
munication issues, but do not understand service response semantics.



– Message-level programming where each message is represented as a data
structure. The data types are generated from message and interaction de-
scriptions such as RPC IDL, Protocol Buffers, ggzcommgen or XML Schema.
In this methodology, the message transport (e.g. HTTP or message buses)
needs to be selected but not explicitly handled by the client developer.

– Service-level programming where messages descriptions are complemented
by interfaces and endpoints, metadata about the provider and service con-
text, as well as quantitative non-functional properties describing for instance
the cost of a single invocation [8]. In this methodology, the most suitable
message transport is selected automatically.

– Provider-level programming by using a provider-specific software develop-
ment kit (SDK). This methodology trades the ability to switch flexibly be-
tween providers for a simplified programming model, in particular avoiding
the need to configure endpoints within the application. Sometimes, the SDKs
even offer graphical elements aimed at instant service consumption by hu-
mans.

None of these practical methodologies are well-suited for imperfect network
conditions and generic service faults. Researchers have found several API and
SDK shortcomings and proposed improvements. We will summarise the find-
ings and extend them with our own observations. Additionally, we will high-
light some proposed service consumption concepts which focus on reliability and
fault-tolerance, and explain why they don’t fully match the needs of developers
of applications in imperfect networks.

2.1 Conventional consumption frameworks

RESTful services and programmable web APIs are expected to follow certain
established guidelines and best practices. Among them are (1) well-designed
URIs as resource identifiers, (2) well-projected request semantics on top of the
method semantics which the transport channel provides, (3) appropriate status
codes, (4) conscious use of metadata along with each request and response, and
(5) correspondence between content types and well-formed messages.

Vendors of services typically offer SDKs for a variety of programming lan-
guages, frameworks and platforms. These SDKs are almost always restricted to
a single service endpoint. Furthermore, they mirror all design weaknesses which
violate the guidelines for service design.

As a complement to previous API and SDK analysis work [11, 14, 2], we have
performed an up-to-date analysis of 12 currently highly popular RESTful ser-
vices which confirms the view that more robust and reliable integration and
consumption techniques are needed. The analyis encompasses social interaction
(Shuffler.fm and Facebook), data storage (Dropbox and Amazon S3), images
(Flickr and Daisy), audio (SoundCloud) and video (Vimeo), open data (Open
311) and security and management of resources (CloudPassage and Sun Cloud).
These services differ not only in their domains, but also in technical character-
istics including the data model, message body formats, CRUD operations (Cre-



ate/Read/Update/Delete), HTTP headers and HTTP response codes. Further
differences exist in their adaptivity, security, internationality and documentation.

Guideline violations among this set of APIs are plentyful, hence we can only
briefly mention some notable examples. In the Facebook Graph API, POST
is used for both creations and updates, while PUT is not used. In Flickr, the
semantic difference between POST and GET is expressed with a GET parameter.
Amazon S3 transmits only stock response codes in the headers and delivers
meaningful error symbols in the body, and Flickr omits the codes altogether.

Table 1 summarises the SDK characteristics for services whose SDK offers at
least some fault tolerance or caching.

Table 1. Result of client libraries evaluation

Facebook Dropbox Amazon
S3

Flickr Sound-
Cloud

Representation of resource data
model as API types

+ + + + –

Wrapping of received exceptions
into verbose error messages

+ + + – +

Request retry techniques – – + – –
Handling of connection or read
timeouts

– + + - –

Data integrity checking – – + – –
Caching of successful responses + + – – –

2.2 Fault-tolerant consumption frameworks

Researchers have found existing SDKs to be essential for a quick adoption of new
services among application developers, and yet insufficient due to their restriction
to one service, mirroring of service design weaknesses, and assumption of perfect
networks [7, 3]. In this section, four proposals with partially existing framework
or code implementations will be presented and compared: iTX, FTWeb, DR-
OSGi and FT-REST.

The issue of maintaining a stable Internet connection in wireless networks
is a well known problem of mobile devices. Modern distributed applications,
typically developed on web services, often rely on mobile components, which
heavily depend on different types of wireless connection (WIFI, GPRS, UMTS,
Wi-Max, etc.). Apart from instability of applications, for mobile devices individ-
ually such network problems can cause performance and monetary costs. Many
research efforts have been started in this area in order to achieve resilience of
such application against network volatility.

The authors of the mobile recovery concept [15] describe the problem of
mobile client state recovery after the network disconnection and reconnection.
The goal of this work is to reduce the costs of recovery if a user was involved in a



long-lasting network transaction which was interrupted. The notion of Internet
transaction (iTX), as used in this work, has been taken from the familiar concept
of database transactions and describes the user interaction with one or more
network resources for achieving one or more objectives. The proposed solution
involves logging of user state for each step of iTX. As initial steps in transaction
can branch into several parallel and independent subtransactions, it is necessary
to track in which subtransaction the user is at any given moment, and evaluate
which actions should and can be recovered. Therefore, the proposed solution
allows to reuse the current state from the log and does not repeat the steps of
transactions again, thus saving network traffic. However, the algorithm of the
given solution requires continuous computation and updating of an action graph,
as well as persistent storage for user states. This is why mobile devices, due to
limited battery, memory and processing power, are a bad choice for placement
of this solution.

The authors of the FTWeb project [13] and the Fault Tolerant Web Service
Framework [12] both provide a fault tolerant layer for unreliable web services.
The model proposed in FT-Web provides a software layer that acts as proxy be-
tween client requests and service responses. This proxy ensures transparent fault
handling for client by usage of active replication. The given approach addresses
requirements of high service availability and reliability for distributed systems. In
contrast, the Fault Tolerant Web Service Framework project proposes customis-
able fault-tolerance connectors between client and service. Each such connector
is a software component which captures web service interactions and partially
performs built-in fault tolerance actions. It encapsulates pre-processing and post-
processing of requests, and recovery actions which can be parameterised by user.
Connectors reside on a third-party infrastructure between service providers and
consumers. An infrastructure assumption on which the given approach relies is
redundant services. This is used by recovery strategies which implement passive
and active replication of request between equivalent services. Both of these ap-
proaches are targeted at SOAP web services, and involve third party components
between clients and services.

The bundle-oriented DR-OSGi [6] proposes a systematic handling of net-
work outages in distributed system in a consistent and reusable way by imple-
menting fault tolerant strategies as reusable components. This solution is tar-
geting service-oriented applications implemented on top of the OSGi platform.
Hardening strategies for network volatility resilience, such as caching, hoarding,
replication, etc., are provided as OSGi bundles, and could be added to existing
applications transparently. Although the presented benchmarks are showing im-
proved results with DR-OSGi when network becomes unavailable in exchange
for a small performance overhead, this solution affords needless system resources
consumption. This circumstance prevents it from being widely used on mobile
devices. Also, the underlying OSGi framework restricts the usage of DR-OSGi
on platforms where OSGi is not supported, or must be pre-installed manually,
for instance on Android.



The work in FT-REST [3] presents an approach to fault handling in client
RESTful applications. This proposal consists of a domain-specific Fault Toler-
ance Description Language (FTDL) and client-side library. FTDL is used to
specify fault tolerance policies for RESTful application which are compiled af-
terwards by FT-REST framework into platform specific code. This code module
can be added to the business logic of applications and acts as a fault-tolerant
layer between the application and a RESTful service. The authors claim that this
concepts brings benefits in programmability – by separating the fault tolerance
concern from the underlying logic, the programmer can fully focus on imple-
menting the core of application; reusability – by reusing the XML-structured
FTDL specification of a service between different applications and across plat-
forms; and extensibility – by robust extension of FTDL fault-tolerant strategies
instead of writing fault-tolerant code. FT-REST encapsulates the following fault
tolerance strategies: retry (reattempting a service endpoint), sequential (itera-
tion through the set of equivalent endpoints), parallel (simultaneous invocation
of equivalent endpoints), and composite (combinations of the aforementioned).
However, client-side caching and other disconnected operations techniques are
not considered in this work.

Many scientific works are focused on adding resilience to distributed network
applications, but only few of them consider the client as a point of network and
service fault handling. Among the introduced works, FT-REST can be considered
as highly related, as it provides fault handling support for the client and is
aimed at consuming RESTful services. However, no previous approaches have
been found which provide developers with an out-of-the-box solution that helps
to implement RESTful mobile application with necessary fault tolerance.

3 Service Consumption Concept

In this section, the design choices and concepts behind a framework for reliable,
adaptive and fault-tolerant RESTful service consumption (RAFT-REST) will
be presented. This includes a detailed description of the logical and the derived
structural architecture, a service consumption workflow and a consideration of
component interactions.

3.1 Logical Architecture

RAFT-REST is a conceptual framework which ensures a high level of reliability,
resilience, adaptivity and fault tolerance for service consumption subject to net-
work and service failures. It is intended to achieve service-oriented architectures
of higher quality, in particular for mobile clients and embedded cyber-physical
systems connected to often brittle service interfaces in the cloud.

The high-level logical architecture of RAFT-REST is shown in Fig. 1. It con-
sists of an API Mapping Component, a Request Executor, a Network Manager
as well as a Cache and a Request Queue. The purpose of the API Mapping
Component is to transform requests and messages into a format understood



by the service interface. The Network Manager monitors the network connec-
tions maintained by the client device and notifies the other componentens of
the RAFT-REST framework about changes of connectivity. The heart of the
RAFT-REST logical architecture is the Request Executor. As an active compo-
nent it manages the Cache and Request Queue and handles incoming request
from clients as well as response messages from services. Access to the network is
managed based on the connectivity information provided by the Network Man-
ager. The Request Queue fulfills the requirement of asynchrony by enqueuing all
outgoing request received from a client. The Cache is responsible for temporar-
ily storage of requested resources in the persistent memory of the client device.
Thus, it is a key component to handle short-time network failures and longer
disconnection phases.

Fig. 1. RAFT-REST Logical Architecture

As a particular design choice, the framework should be as generic as pos-
sible, while allowing for almost-REST service-specific workarounds. Therefore,
messages can be adapted by the API mapper when instructed to do so by the ap-
plication. A typical use case is to substitute an error code for a success indication
in cases of occurred problems.

3.2 Structural Architecture

The structural architecture of RAFT-REST, which is derived from the logical
one, is shown in Fig. 2. It describes the framework from the perspective of a
developer.

Client and Service. The Service component represents a RESTful service,
which provides a RESTful service API. The Client component represents the
Application client which intents to consume the RESTful service.

The Core Structure of the framework is build around the RequestQueue for
request messages and the Cache for resource representations. The Request Ex-
ecution Manager acts as mediator with fault tolerance and adaptation func-
tions. The fault tolerant part checks network and message errors, including re-
sponse error codes, makes decisions about whether such errors can be mitigated,
and applies fault handling techniques. The adaptive part is mostly specific to



certain services. It adapts resources to the device context apart from general
adaptations, e.g. to work around wrongly modelled response codes. The Request
Execution Manager provides an interface, via which clients can pass requests
and receive responses. During the instantiation a client can configure some of
the network and performance related parameters using the Configuration com-
ponent.

Fig. 2. RAFT-REST Structural Architecture

The Network Manager is aware of network conditions, and supply this
information to other components, which rely on it (i.e. Requests Queue and
RequestExecution Controller). As it is possible to have more than one type of
network connection on mobile devices, and retrieving information about connec-
tion state is associated with inquires to hardware, Network Manager must rely
on Network Monitoring components, which are platform specific. Thus, the
framework can be extended with custom Network Monitoring components at
this point.

The Canonicalization component is present in the architecture to supply
the framework with canonical entities of the requests and responses. The most
widespread service descriptions now exist as plain text, which can be understood
by human. In such situation RESTful service endpoints, corresponding HTTP



methods and responses should be transformed manually by the developer. Plug-
gable components can be added to achieve automatic transformation.

Finally, the Administrative component collects statistics and manages
the level of information that is printed into log messages.

3.3 Service Consumption Workflow

The intended workflow for RAFT-RESTful service consumption is represented
in Fig. 3 to illustrate the behavior of the RAFT-REST framework. The complete
workflow is organized into three phases.

In Phase 1 the client initiates the interaction with a service by handing a
service request over to the framework. As a first step this request is transformed
into a canonical representation which allows the framework to process different
types of service interfaces in a common way. As a second step, the cache is
checked. If the reply to this request is found in the cache, e.g. the result of an
idempotent request which is always cacheable, it is returned immediately to the
client.

Otherwise, Phase 2 is entered and the request is placed into a request queue
where it stays until an active network link to the service is available. For mitigat-
ing the absence of a connection, a random delay time is added before messages
can be forwarded using a re-established network connection to avoid request
overhead after service ior network failures.

In Phase 3 the resource is requested from the service and eventually error
responses could be received. In this phase the framework is responsible for eval-
uating the cause of an error and deciding about appropriate error handling. For
instance a retry of a message can be triggered. Parameters for error handling
such as the maximum number of retries and the back off time between retries
are configurable. Finally the response is handled (e.g. response data is cached)
and forwarded to the initiating client.

Fig. 3. Workflow of RESTful service consumption according to the RAFT-REST con-
cept

Table 2 offers a comparative summary of the characteristics of RAFT-REST
and FT-REST. While RAFT-REST lacks a structured description of faults, for



which a domain-specific language is yet to be defined, it offers additional func-
tionality especially through caching and error mitigation. Equivalent endpoint
invocation is a feature already found in general adaptive service proxies and
therefore can be combined with RAFT-REST while keeping the framework lean.

Table 2. Comparison of characteristics: FT-REST vs RAFT-REST

Characteristics FT-REST RAFT-REST
Separation of concerns - separating
of fault-tolerant layer from applica-
tion logic

yes yes

Fault condition description for each endpoint, in
XML document

for each endpoint
(optionally hierar-
chical), in generated
classes

Handling strategies configuration for each endpoint for all application
Timeout handling yes yes
HTTP response error codes han-
dling

yes yes

Mitigation of errors, embedded in
the message

no yes

Service binding code no yes
Fault handling techniques
Retrying of request yes yes
Equivalent endpoints invocation yes no
Cache no yes
Asynchronous request invocation
(due to network conditions)

no yes

4 Validation: The ReSup Framework

ReSup (RESTful Support), a Java framework for the development of service-
bound mobile and desktop applications, turns the RAFT-REST concepts into
practice for service clients implemented with the Java language and correspond-
ing networking libraries. ReSup consists of a proxy library located between the
application and the network stack, similar to existing HTTP client libraries, and
an Eclipse wizard to generate service-specific message classes by mapping API
specifications to code. A screenshot of the wizard in Fig. 4 highlights the possib-
lity to import WADL (Web Application Description Language) service descrip-
tions to reduce the manual class modelling effort [8]. Both the wizard and the li-
brary need to be present as JAR files (org.tud.resup.apimapper_1.0.0.2013-
MMDD.jar, Resup_1.0.0.2013MMDD.jar) in the plugins folder of Eclipse. The
library is subsequently copied into the resulting project archive and used at
runtime.



Fig. 4. Eclipse wizard to generate API mapping classes for use with the ReSup library

The ReSup library delivers and caches message objects which may be created
manually in the application code or as instantiations of the generated classes.
Each message object represents a service resource or a request targeting one.
The way ReSup is used depends mainly on the application requirements. Fig. 5
demonstrates the possible configuration directive combinations.

Fig. 5. Flexible configuration of the ReSup objects depending on the desired applica-
tion behaviour

The integration of ReSup is particularly easy by its HttpClient interface
which mimicks the API of the widely used Apache HttpClient library. Hence,
developers can switch to ReSup by just substituting a Java import statement
and afterwards gradually turning on and testing its RAFT features. ReSup can
also run as a transparent stand-alone proxy so that applications do not have to
be modified except for a system-wide forced HTTP proxy configuration. Prox-
ies, gateways and networked intermediaries are common architectural elements
for RESTful service consumption [5]. However, on mobile systems such as An-
droid, this requires system modification access and is therefore often not a viable
solution.

In order to demonstrate the capabilities of ReSup, and therefore acknowl-
edge the RAFT-REST concepts, we have performed a number of measurements



and experiments in an evaluation study which includes existing services with
RESTful interfaces in both simulated and real imperfect networks. Fig. 6 shows
the setup of the experiment. Off-the-shelf networking tools such as Burp, an
intercepting proxy, Trickle, a bandwidth variator, and Netem, a packet loss gen-
erator, are used to simulate reproducible low-quality connections. Trickle allows
scaling the bandwidth within the constraints imposed by the hardware from a
zero-throughput connection to the typical speeds of mobile networks, WLANs
and LANs. Netem varies typical WAN parameters such as delay, loss, duplication
and re-ordering (shuffling).

Fig. 6. Test suite for the experiments involving RESTful services and clients using the
ReSup library

The test environment consisted of the test suite running on an Intel Core
i5 machine with 4 times 2.4 GHz CPUs, 3 GB DDR2 RAM, the Ubuntu 12.04
operating system and Java 1.6.

The results are shown in Fig. 7 and 8, respectively. The first diagram shows
the distribution of error responses still successfully received from one of the
test runs, in this case a mobile connection with 50 kbps. On the whole range
of possible network losses, ReSup retrieves a higher number of error reponses
compared to a pure HttpClient connection. The increase is between 35% and
92%, but still recovers less than half of the lost packets when the loss rate
exceeds 80%. The second diagram measures the overall response times over a
bivariate range from a perfect connection (100 Mbps with 0% loss) to a nearly
unusable one (50 kbps with 80% loss). Due to the caching, ReSup is much faster
for all good-enough connections and considerably slower than HttpClient for all
worse ones due to the retries. Yet, the retries contribute to the higher success
rate as shown in 7, therefore even the highest run-time overhead of 55,4% for a
500 kbps connection with 60% loss will eventually improve the user experience
in practice.



Fig. 7. Error response numbers evaluation

Fig. 8. Response times evaluation

5 Conclusion

We have motivated and discussed RAFT-REST, a client-side RESTful service
integration concept which addresses reliability, safety and quality concerns. Com-
pared to previous integration concepts, the combination of conventional fault-
tolerance schemes, graceful error handling and caching achieves a great user expe-
rience for distributed applications connected by imperfect networks. The ReSup
framework targets mobile application developers through an API-compatible
HTTP client library and an Eclipse code engineering plugin with the aim to in-
crease real-world application robustness through RAFT-REST. It is made avail-
able as open source toolkit for use and further improvements1.

Subsequent research questions focus on the global view, i.e. the server-side
and total load behaviour when using any of the offered RAFT-REST mecha-
nisms, as well as on extended validation with real-time statistics collection and
visualisation for immediate feedback about the waiting state of applications to
the user.
1 ReSup website and source code: http://serviceplatform.org/wiki/ReSup



Acknowledgements

This work has received funding under project number 080949277 by means of
the European Regional Development Fund (ERDF), the European Social Fund
(ESF) and the German Free State of Saxony.

References

1. Aihkisalo, T., Paaso, T.: Latencies of Service Invocation and Processing of the
REST and SOAP Web Service Interfaces. In: Eighth IEEE World Congress on
Services (SERVICES). pp. 100–107 (June 2012), Hawaii, USA

2. Belqasmi, F., Glitho, R.H., Fu, C.: RESTful Web Services for Service Provisioning
in Next-Generation Networks: A Survey. IEEE Communications Magazine 49(12),
66–73 (December 2011)

3. Edstrom, J., Tilevich, E.: Reusable and Extensible Fault Tolerance for RESTful
Applications. In: 11th International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom). pp. 737–744 (June 2012), doi:
10.1109/TrustCom.2012.244

4. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine (2000)

5. Kelly, M., Hausenblas, M.: Using HTTP Link: Header for Gateway Cache Inval-
idation. In: Proceedings of the First International Workshop on RESTful Design
(WS-REST). pp. 23–26 (April 2010), Raleigh, North Carolina, USA

6. Kwon, Y.W., Tilevich, E., Apiwattanapong, T.: DR-OSGi: Hardening Distributed
Components with Network Volatility Resiliency. In: Proceedings of the ACM/I-
FIP/USENIX 10th International Conference on Middleware. Lecture Notes in
Computer Science (LNCS), vol. 5896, pp. 373–392 (December 2009), Urbana
Champaign, Illinois, USA

7. Leitner, P., Rosenberg, F., Dustdar, S.: Daios – Efficient Dynamic Web Service
Invocation. Internet Computing 13(3), 72–80 (May/June 2009)

8. Maleshkova, M., Pedrinaci, C., Domingue, J.: Supporting the creation of seman-
tic RESTful service descriptions. In: 8th International Semantic Web Conference
(ISWC) (October 2009), Washington D.C., USA

9. Masse, M.: REST API Design Rulebook. O’Reilly (2011)
10. Mulligan, G., Gracanin, D.: A comparison of SOAP and REST implementations of

a service based interaction independence middleware framework. In: Proceedings
of the Winter Simulation Conference (WSC). pp. 1423–1432 (December 2009),
Austin, Texas, USA

11. Mulloy, B.: Web API Design: Crafting Interfaces that Developers Love. e-Book
(March 2012)

12. Salatge, N., Fabre, J.C.: Fault Tolerance Connectors for Unreliable Web Services.
In: 37th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). pp. 51–60 (June 2007), Edinburgh, UK

13. Santos, G.T., Lung, L.C., Montez, C.: FTWeb: A Fault Tolerant Infrastructure for
Web Services. In: Proceedings of the Ninth IEEE International EDOC Enterprise
Computing Conference. pp. 95–105 (September 2005), Enschede, The Netherlands

14. Tilkov, S.: REST Anti-Patterns. InfoQ Article (July 2008)
15. VanderMeer, D., Datta, A., Dutta, K., Ramamritham, K., Navathe, S.B.: Mobile

User Recovery in the Context of Internet Transactions. IEEE Transactions on
Mobile Computing 2(2), 132–146 (April–June 2003)


