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Abstract Current component plattforms usually consider only a limited
set of non-functional properties. Integration of these aspects is moreover
handled in a rather static way. This article elaborates on possible uses
of existing meta-programming facilities, notably interceptors, for custom
integration of orthongonal middleware facilities. The concept is demon-
strated with a concrete example of transparent client-side caching in
Enterprise Java Beans. Further use cases exploiting the same principle
in the contect of the COMQUAD project are presented in the second
part.

1 Introduction

Todays middleware platforms like Enterprise Java Beans [5] follow a separation
of concerns approach. Components are treated as black boxes, their business
logic is opaque to the container’s runtime environment. Middleware services
are mostly integrated at deployment time, using declarative descriptors with
meta-information about components’ non-functional aspects. With common dis-
tributed component models like EJB, CORBA Components, Microsoft’s COM+
and upcoming .NET [20], these aspects basically include transactional capabili-
ties, synchronization, and security (authorization). Other aspects are not covered
by their specifications and thus have to be integrated in vendor-specific ways.
The authors already published on several of these non-functional aspects, like
adaptation and caching [6, 18].

This article elaborates on how to seamlessly integrate these aspects with
current component architectures, using interceptors as reflectional programming
mechanism.

2 Related Work

Transparently adapting components’ behavior is not a new idea: It actually
dates back as early as 1982 when Smith published his thesis about reflection
[19]. Although models have changed greatly since then, the basic concept is that
components (programs) should have a notion about their current context and



(limited) control over their interpretative environment. This control is commonly
referred to as meta-programming, i.e. programming at the abstract meta-level

which is used to describe the executed code itself (classes, methods, etc.). Meta-

object protocols (MOP) define interfaces to this meta-level.

According to [14], distributed systems are inherently predestined for reflec-
tional programming, due to distribution transparency that is usually aimed at.
Distribution itself can be viewed as a non-functional aspect that should ideally
be separated from application logic by means of meta-programming mechanisms.

In distributed object-oriented systems, some sort of binding objects are typ-
ically employed as proxies to support location transparency. These proxies are
often used as access points for meta-programming. For instance in the CORBA
world, smart proxies have been developed as a simple meta-object protocol for
altering behavior by intercepting calls from clients. Smart proxies provide better
performance than portable interceptors as shown by [22], but they provide less
flexibility and are not standardized by the Object Management Group1. Portable
Interceptors have been in the focus of discussion for a few years and are now fi-
nally integrated in the OMG’s CORBA standard [16]. Furthermore, smart proxy
functionality can be implemented using interceptors2 but not vice-versa.
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Figure 1. The principle of interceptors

The basic scheme of interceptors is shown in Fig. 1. On both client and server
side, interceptors can be hooked into the control flow of (remote) operation
calls, basically to add parameters and to augment results, but generally to alter
virtually any property of a call’s context, even its semantics. Interception may
take place at different levels of call processing, hence there are request-, message-
, object-, and network-level interceptors. The OMG’s standard [16] currently
defines only request- and object-level interceptors; most of the others will surely
follow.

1 Some vendors like TAO [23], Inprise, and Iona adopted and pushed the development
of smart proxies but e.g. Iona is already discontinuing support for this feature.

2 see [12]



Several recent publications [2, 21] leverage interceptors for building frame-
works that more or less try to partly hide the complexity of meta-programming
or to add a higher abstraction level. Our goal is rather to pinpoint possible uses
of basic mechanisms that already exist in current component platforms.

3 Approach

This section first presents how non-functional services have been integrated in
available middleware using interceptors, instancing caching as a practical exam-
ple. The second part elaborates on future prospects for further integrations in
the field of adaptation.

3.1 Caching

While many existing distributed component-based applications follow a clear
thin-client approach, fat clients still are eligible in certain scenarios with high
user interactivity, e.g. e-Learning and collaborative multimedia. In these cases,
the common issue “Either data must come to the process or the process must
come to the data” can hardly be decided in the latter sense because this would
require network round-trips upon every interaction. On the other hand, efficient
client-side data access requires partial replication, which eliminates unnecessary
network calls for already queried component attributes, to provide the appropri-
ate locality of reference.

The authors already showed in previous publications [18] how caching func-
tionality, a special form of partial replication, can be integrated using smart-
proxy-like meta-programming techniques. This involved augmenting default (Java
RMI) proxies. Unfortunately, deployment of modified component stubs proofed
to be too complicated on most existing container (EJB) platforms because of the
numerous providers’ varying architectural concepts. For this reason, the current
prototype is now based on an open-source EJB container’s built-in facilities for
reflectional programming.

Integration with interceptors in JBoss. JBoss [10] was chosen for being a
vivid project with numerous cutting-edge software-architectural features, includ-
ing a framework for request-level interceptors as introduced in Sec. 2. Client-side
integration of these interceptors is shown in Fig. 2: Component proxies are trans-
parently generated and instantiated using Java’s Dynamic Reflection API. A
ClientContainer passes each request through a chain of Interceptors, whose
sequential order is determined by the bean provider or application assembler at
deployment time. The last interceptor always hands the request to the appropri-
ate InvokerProxy – JRMP in Fig. 2 for Java Remote Method Protocol – that
finally calls the server. Server-side interceptors are stacked in a similar fashion.
When a response returns from the server, it passes through the same interceptor
chain in reverse order as already shown schematically in Fig. 1.



Figure 2. Interceptors in JBoss

Even though CORBA Portable Interceptors are already part of Sun’s Java
2 Standard Edition 1.4 and JBoss’s IIOP provider JacORB [7], JBoss does not
yet employ the CORBA API for integrating interceptors because it doesn’t use
IIOP but JRMP by default for performance reasons. Fortunately, org.jboss.-
proxy.Interceptor’s functionality can be viewed as a sub-set of org.omg.Por-
tableInterceptor.Interceptor which should make future changes easy.

The integration of transparent client-side caching of component attributes ba-
sically relies on adding a CachingInterceptor to a component’s jboss-container
descriptor during deployment as the second link in the client interceptor chain
between Home- / EntityInterceptor and SecurityInterceptor. JBoss’s inter-
ceptor API basically contains a method Object invoke(Invocation i) throws

Throwable; where i contains all necessary information about the ongoing re-
quest, especially the component’s identity, called method and parameters. As-
suming, that component attributes are typically exposed at an EJB’s remote
interface via Java-Beans-style getXyz() methods, this information is sufficient
for attribute caching: The CachingInterceptor checks all Invocations i against
its back-end and returns the request’s response immediately if the result can be
served by the local cache. Otherwise, returning responses from not yet cached
invocations are automatically filed in the cache.

Cache back-end and multiple reference handling. Prototypically, the
cache back-end was implemented using a simple Hashtable with component
identity, method and parameters as combined keys and results as values, i.e.
(i,m, {p}) → r. A more sophisticated version uses a JCache3-like API that
caters for memory management, persistent caching etc. The basic granularity of

3 Submitted Java Specification Request [3], similar to Oracle’s Object Caching Service
for Java (OCS4J).



cached data is per-attribute but these are members of identifiable components
which enables collective invalidation of attributes.

As already elaborated in [18], multiple reference handling is also an impor-
tant issue for caching services in distributed component middleware. Component
references are typically passed around as marshaled objects (proxies / stubs)
which makes it possible for a client to obtain a number of proxy objects for one
and the same remote entity. This is counterproductive for memory consump-
tion. CachingInterceptors have also be leveraged to support efficient multiple
reference handling by checking all returned remote references, i.e. proxies, for du-
plicates in the local cache. As Sun’s EJB specification [5] explicitly discourages
direct equality checking between entities using equals(), and isIdentical()

may result in additional undesired remote calls, EJB handles4 are held liable for
component equality which is necessary for duplicate checking. Note that spe-
cial attention must be paid when collections of proxies are returned, e.g. when
accessing 1 : n relationships between entities. Corresponding accessor methods
have to be tagged (see below) before generating caching code which ensures that
every member of returned collections is checked for duplicates in the local cache.

UML and Computer-Aided Software Engineering. Simply caching every
component attribute the same way is quite naive; some means of configura-
bility would be appreciated. This can be accomplished by defining stereotypes
according to the Unified Modeling Language (UML) [17] for tagging component
attributes as shown in Fig. 3.

Figure 3. UML stereotypes for component attributes

Non-tagged attributes are considered volatile by default, i.e. their values are
considered to be subject of frequent changes which makes them inappropriate for
caching. The stereotype cachable denotes all attributes that usually change irreg-
ularly and prefetchable are frequently used attributes that should be transfered
immediately. This is especially useful in combination with Value Objects5.

4 JBoss’s proxy implementations already transfer handles upon initialization, hence
no additional network round-trips are needed.

5 Introduced in [9], this pattern became quite common for reducing network round-
trips by bulk state transfer.



The counterparts of stereotypes in Java source code are JavaDoc tags – spe-
cial commands or attributes embedded in code comments which where origi-
nally intended for formatting purposes of API documentations. So, a stereotype
<< cacheable >> becomes a /** @cacheable */ comment above an accessor
method. The auspicious code generation utility XDoclet [15] is used to evaluate
these tags and create additional classes, adapt deployment descriptors etc. XDo-
clet follows the one source approach, i.e. one source file contains all necessary
information about all supplementary classes, utilities, descriptors. It provides
merge points in its generator templates for adding specific parts in descriptors
or even for integrating custom templates capable of creating auxiliary classes.

Deployment. JBoss provides flexible ways for integrating custom deployers, i.e.
server components capable of processing certain types of component archives,
depending on file names, contained descriptors etc. This necessitates only the
implementation of a CachingDeployer for scanning component archives com-
prising special caching descriptors. This deployer is integrated using JBoss’s
JCA6 implementation and referenced by name from deployed components. Thus
component properties concerning cachability of attributes are dynamically in-
stalled in a client’s runtime environment with the component’s classes.

Synchronization and Consistency. Update synchronization is another im-
portant challenge for distributed caching systems. Most publications define graded
consistency levels [11, 4] because guaranteed transactional consistency would re-
quire two phase locking (2PC) which would in turn entail additional network
round-trips that have been economized before with the introduction of caching.

The simplest solution are regular cache purges, automated by a background
thread in the caching back-end that deletes cached objects after their expiration
limit has been reached . Expiration limits are configurable via source code tags
in the above described manner. Unfortunately, the lag until a given attribute
update reaches the last client equals the defined expiration time in the worst
case. This implies that expiration times have to be adapted to an application’s
least tolerable lag. On the other hand, much of caching’s savings get spoiled if
expiration times are much smaller than typical update cycles. Only heuristics
lead to appropriate adjustments.

Consequentially, the authors currently experiment with more sophisticated
update propagation algorithms. Instead of mixing the caching back-end’s mem-
ory management strategy, e.g. least recently used (LRU), with consistency issues
like expiration times, the caching interceptor should take care of these problems
itself. Some means of multicast or publish-subscribe propagation seem to be at
hand, where either modifying clients themselves notify other replicates (write-

through) or let a component’s originating server do so (write-back) [1]. Existing
proposals like [11, 8, 13] are either intended for use in intranets or they simply
abstract from underlying communication protocols. But todays typical network

6 J2EE Connector Architecture, see http://java.sun.com/j2ee/connector/.



scenarios feature network address translation (NAT) devices, firewall configu-
rations and similar obstacles that make direct server-to-client connections, i.e.
clients logically become servers, difficult if not impossible. For this reason, pro-
tocols should preferably be client-initiated.

A possible implementation of such a client-initiated protocol could regularly
poll its leased component’s servers with a list of component identities which
would be replied with a list of update time stamps of these components which
can be drawn on for cache invalidation. This performs poorly for large numbers
of component references per client. So, a slightly better solution is to let clients
send a list of name-value-pairs (identity, timestamp) to which servers reply only
with a list of updated identities, as they also know the current timestamps for all
identities. Directly replying with the updated objects instead of their identities
proofed to be less suitable. Anyway, a fast lookup facility for update timestamps
is required for all of these solutions, e.g. a stateless session bean.

Updates can also be transfered selectively without having to initiate direct
server-to-client connections by using either a JMS7-topic with clients as sub-
scribers or a piggy-back approach as it is common for TCP acknowledgements.
An additional server-side interceptor notices which component references are
handed out to which clients, enabling it to keep track of necessary notifications.
This solution is optimal in respect to bandwidth efficiency but it scales poorly
on server side because of the tremendous overhead for state management of
client-component-timestamp-relations.

Relations between components have already been mentioned above in the
context of multiple reference handling but they also become important in the
context of synchronization and consistency: Speaking in terms of UML [17],
these relations can be categorized into associations, aggregations and composi-

tions. Especially the latter ones imply life-cycle-dependencies of their members,
meaning that certain operations on one member affect the validity of the other
member’s cache. Up to now, such dependencies had to be analyzed manually,
corresponding operations had to be tagged by hand. Ways of automating this
tedious task are currently being worked on.

3.2 Adaptation

This section is to illustrate the use of interceptors in the context of the COM-

QUAD8 project. Component-based software engineering has become more and
more important in the last few years. However, two important properties of
modern distributed systems are not yet fully considered in existing concepts of
component based systems:

7 Java Message Service API, see http://java.sun.com/products/jms/. Although
JBoss’s own implementation JBossMQ (formerly spyderMQ) is not yet firewall-
enabled, there already exist commercial tunneling solutions for JMS.

8 COMponents with QU antitative properties and ADaptivity. DFG-funded research
group. See [6].



– Quantitative properties such as network bandwidth or response time can
neither be specified nor guaranteed in existing component models.

– Dynamic component adaptation is not explicitly supported. Components
are rather relatively static constructs that are difficult to adapt to changing
system and user environment. A possible classification of adaptational issues
is shown in Tab. 1

Classification Adaptation Description

Who? User-driven administrator
(Trigger) System-driven container

Where? Parametric within component
Structural within application

What for? System-side
User-/application-side

When? Static deploy-time
Dynamic run-time upon initialization

during connection

How much? (Overhead) additionally needed time & resources
Table 1. Classification of adaptation

The interplay of these two properties on changing quantitative properties
of an application is especially important. The COMQUAD project aims at the
development of a system architecture in conjunction with a development method-
ology supporting the composition of adaptable software from components with
consideration of non-functional properties. Examples of non-functional proper-
ties are bandwidth, processing time, throughput, delay, jitter, and also security
properties.

Figure 4. COMQUAD component model



In order to achieve these aims the classic component model has been en-
hanced, consisting of interfaces and binary code with monitor and adaptation
manager (cf. Fig. 4). The adaptation manager contains the logic for the dy-
namic reconfiguration of the component. It can be generated from a declarative
description of the adaptation behavior or manually programmed by develop-
ers. The monitoring part of the component is necessary to observe the assured
contracts at run-time. Meta-programming facilities like interceptors offer a con-
veniently simple way to obtain this information and make it available to the
components. A component’s container can transparently add appropriate inter-
ceptors at deploy-time or even upon initialization. The results of the monitoring
are forwarded to the adaptation manager by the container in order to trigger
the adaptation processes.

Monitoring. In the following we want to investigate which information can be
gained by means of interceptors:

Invocation statistics. Statistical information about invocations includes frequen-
cies of method calls and number of clients. These data are valid in a particular
interval and they are required to to monitor periodical tasks and to detect poten-
tial server overloads. The statistic belongs to component instances, component
classes or the entire server. An monitoring interceptor has to maintain a table
for all component instances, component classes, and the entire server.

Data throughput. Data throughput is the amount of data transmitted by method
invocations from client to server and back in a given interval. By means of the
Java serialization mechanism an interceptor is able obtain this value both at the
client and the server. Furthermore, the data throughput can be divided into data
of component instances, component classes, and the entire server.

Processing, response and delay times. The response time of a remote method
invocation consists of the processing time of the method at the remote server,
network transmission time, and the time for marshalling/unmarshalling param-
eters at client and server. These parameters are potentially very important in
real-time applications. The processing time is measured by means of a server-
side interceptor as the interval between forwarding a method invocation to a
component instance and its completion. In a similar way, the response time is
measured by a client-side interceptor.

The delay time of a remote method invocation is the interval between method
calling by the client and starting method processing by the server. In contrast to
response and processing time, this value is difficult to measure in a distributed
environment without exactly synchronized clocks. At least it is possible to get
good approximation. The difference between response time and processing time
results in the time for sending and receiving method invocations over the net-
work. If a constant network bandwidth is assumed the ratio between sending
time (another name for the delay time) and data size of sent parameters is the



same as the ratio between the receiving time (transmission from server to client)
and data size of return parameters. Hence, the delay time can be calculated.
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Figure 5. Transparent relocation of components with interceptors

Relocation of components. Interceptors can also be used to achieve trans-
parent relocation of components at run-time which is an important adapta-
tion mechanism. Components usually obtain references to other components by
means of a name service (JNDI in case of EJB) at run-time and then store
these references in a local variable for later usage. If a component is relocated to
another server, all references from other components become invalid. To avoid
this, an interceptor could forward a particular method invocation to the new
location of the component, because all method invocations must pass an inter-
ceptor. Hence, all component relocations must be reported to the interceptor
that maintains a table of old and new component references.

A sequence diagram of a possible relocation scenario is depicted in Fig. 5.
After relocation of component C2 from server B to server C any method call
to this component using an old reference is forwarded to the new location by
interceptor I2. Obviously, this leads to a higher delay and response time for the
client due to the additional step in the method call, but only for the first method



call. Later on, the client interceptor of computer A redirects any further method
invocations to C2 to the new location at server C. Prior to this, interceptor I2
sends a location update about component C2 to interceptor I1. The advantage
of this solution is that every relocation of a components only requires one ad-
ditional redirection. The processing time of the two interceptors at client and
server can be disregarded in comparison to the network transmission time. As
a drawback, local communication between components within one server must
also pass through interceptors.

4 Conclusion

This article presented how non-functional aspects can be easily integrated in
todays middleware plattforms using existing meta-programming facilities, no-
tably interceptors. Linking-up with software design and modeling facilities was
demonstrated exemplary, as well as leveraging of code generation tools. An out-
look was given to open issues the authors will tackle next, i.e. finding optimal
cache synchronization strategies for given usage scenarios, automated compo-
nent dependency analysis, and reference faulting mechanisms for more flexible
cache memory management.

The second part elaborated on possible uses advanced component concepts in
the COMQUAD project [6]. Especially for adaptational purposes, interceptors
present appropriate ties for monitoring and relocation of components. Other
synergies are currently being evaluated.
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[5] Linda G. DeMichiel, L. Ümit Yalc̃inalp, and Sanjeev Krishnan. Enterprise Jav-
aBeans Specification Version 2.0. Sun Microsystems, final release edition, 14 Au-
gust 2001.

[6] Technische Universität Dresden. COMponents with QUAntitative properties and
ADaptivity (COMQUAD). Project homepage: http:// www.comquad.org/, Au-
gust 2001. DFG research group.

[7] Freie Universität Berlin and Xtradyne Technologies AG. JacORB. Project home-
page: http:// www.jacorb.org/.



[8] Arun Iyengar. Design and performance of a general-purpose software cache. In
Proceedings of the 18th IEEE International Performance Conference (IPCCC’99),
1999.

[9] Design patterns catalog. In J2EE Design Patterns. Sun Microsystems, 2001.
[10] JBoss Group. JBoss. Project homepage: http:// www.jboss.org/.
[11] Rammohan Kordale, Mustaque Ahamad, and Murthy V. Devarakonda. Object

caching in a CORBA compliant system. Computing Systems, 9(4):377–404, 1996.
[12] Rainer Koster and Thorsten Kramp. Loadable smart proxies and native code-

shipping for CORBA. In Proceeding of the 3rd International IFIP/GI Working
Conference, USM, volume 1890, pages 202–213. Springer, 2000.

[13] Vijaykumar Krishnaswamy, Ivan B. Ganev, Jaideep M. Dharap, and Mustaque
Ahamad. Distributed object implementations for interactive applications. In
Middleware 2000, 2000.

[14] Jeff McAffer. Meta-level architecture support for distributed objects. In Gregor
Kiczales, editor, Proceedings of Reflection’96, pages 39–62, 1996. Published before
in IWOODS’95.
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