Adaptively Caching Distributed Components

Christoph Pohl *

Abstract

Caching is commonly employed to achieve locality
of reference in distributed systems. It is however
hardly supported by middleware platforms like EJB
or CCM, despite being a non-functional aspect. This
forces application programmers to explicitly use de-
sign patterns etc. Our approach is to transparently
cache component attributes while adapting to chang-
ing access characteristics, thus fully preserving dis-
tribution transparency.

Typical use cases comprise highly interactive “fat
client” applications operating on server-side data
models, e.g. e-learning or distributed multimedia, but
also web servers accessing components on application
servers.

Approach

Our concept is implemented as an extension to the
open-source J2EE application server JBoss!. It cur-
rently follows the EJB component model, hence at-
tributes are exposed on component interfaces by
means of get/setXyz method pairs. Cacheability
of attributes is preconfigured at design time using
tagged JavaDoc comments on these methods, which
are evaluated by an XDoclet? template to generate
descriptors etc.

JBoss features a dynamic proxy architecture for
component stubs based on the Java Reflection API,
including an interface for chained interceptors simi-
lar to those defined by the OMG. We implemented
an additional pair of configurable client-/server-side
caching interceptors as shown in the figure.

*TU Dresden, Institute for System Architecture, Chair for
Computer Networks — http://www.inf.tu-dresden.de/~cp6

1S
"
Cachd<

Client
Interceptor

Server |-
Interceptor

The client interceptor retains results of cacheable
attribute queries in a local in-memory cache like
JCS3. Invalidation, update propagation, and adap-
tation to changing read/write ratios is accomplished
via additional payload contexts attached to regular
invocations by the interceptors in a piggy-back man-
ner.

Outlook

Potential performance benefits have been proved by
first tests. In-depth measurements will follow as
soon as the implementation matures. Further inves-
tigations will include prefetching, i.e. possibilities to
transfer data to client-side caches before it is queried;
automatic generation of walue objects, i.e. grouped
of attributes to decrease the transfer overhead; and
persistent caching to permit off-line client scenar-
ios. The results of this work are integrated into the
COMQUAD project?.

Notes

Thttp://www.jboss.org/
2http://xdoclet.sf.net/
3http://jakarta.apache.org/turbine/jcs/
4http://www.comquad.org/


http://www.inf.tu-dresden.de/~cp6/

