
PICav: Precise, Iterative and Complement-based
Cloud Storage Availability Calculation Scheme

Josef Spillner, Johannes Müller
Technische Universität Dresden
Faculty of Computer Science

Cloud Storage Lab (lab.nubisave.org)
01062 Dresden, Germany

Email: josef.spillner@tu-dresden.de, johannes.mueller1@mail.inf.tu-dresden.de

Abstract—Cloud storage controllers combine multiple hetero-
geneous storage services into a unified virtual storage area for
users. The overall storage quality depends on all the individual
service qualities as well as on the controller’s ability to mitigate
quality issues, for instance with caches and proper scheduling to
improve the availability of data. Given a set of storage services
with an estimated capacity and average availability for each, the
problem arises how to distribute the data and which amount
of redundancy needs to be generated in order to maintain a
certain overall availability. There are few previous algorithm
proposals for this computationally hard problem which produce
high transmission overhead and imprecise results. We present a
novel algorithm which minimises the overhead and achieves exact
values in short time. Furthermore, our algorithm takes storage
service interdependencies into account. We validate our claims
with synthetic failure distributions and real traces from three
cloud services.

I. PROBLEM STATEMENT

Pervasive data access across devices and services with-
out worries about insecurity or unavailability is one of the
promises of cloud storage proponents. The solutions which
come closest to this vision are typically combining multiple
storage services, partitioning and splitting data to be stored
among them with a certain added redundancy [1], [2]. The
amount of redundancy influences the overall availability of
data in case of service failures. If data is split into two halves
with 50% added redundancy, and stored across three services
(on independent storage nodes) with 98% estimated availabil-
ity for each, this scheme results in an overall availability equal
to 99.88% compared to only 96% without the redundant node.

In practice, both the availabilities (a) and the capacities
(c) of online storage services differ significantly and cannot
be assumed to be equal. Table I lists a few popular free
and paid services with their characteristics collected from
different sources. An unavailability of 0.1% translates into
43:48 minutes per month on average. Furthermore, retrieval
and restore times differ as well and additionally depend
on the user’s network connection. Registries, brokers and
marketplaces are used by storage controllers to dynamically
select suitable services based on their properties although
they suffer from incomplete and out of date information [3].
The optimal selection for a user, based on their capacity
requirements and a presumed always-available overall service
quality, can nevertheless be matched closely with a selection

from the marketplaces. This results in heterogeneous sets of n
out of h available storage services to which k significant and
m redundant data fragments are assigned.

TABLE I
STORAGE SERVICES CHARACTERISTICS

Service Capacity c Availability a

Google Drive 15 GB 99.9% (SLA)
Amazon S3 on-demand 99.9% (SLA), 98.86% in July 2008

AT&T on-demand 99.5% (Nasuni study 2011)
Linode 1-96 GB 99.951% (CloudHarmondy study 2011)
iCloud 5 GB 99.65% (Cérin et al. 2012 [4])

With such diverse settings, determining the right amount of
redundancy becomes challenging. Given the previous example,
it would be possible to increase the amount of redundancy to
60% with erasure coding. Unless the number of independent
storage services also increases, there would however be no
gain in availability. The problem is explained in its general
form in Fig. 1.

c(apacity)

a(vailability)

c

a

c

a

...
1 2 n

2 n

data redundancy

...

#elements

per service?

1

k+m=n active services with: h-n standby

elements elements elem.

a c;

Fig. 1. Problem definition for a set of heterogeneous storage services with
varying availabilities and capacities; not considering cost or other properties

Research into optimal distribution of erasure-coded data to
storage services with heterogeneous availabilities suggests to
generate a fixed number of e.g. n = 100 equally-sized ele-
ments (fragments), which is significantly larger than the num-
ber of storage services, and distribute the individual elements
proportionally to the availabilities [5]. This rather simple
strategy can lead to up to 70% redundancy savings, without the

overhead of having to search a large multidimensional space.
Three problems arise when applying this strategy in a cloud
storage environment. First, encoded data is split into numerous
files, which results in a multiplication of network overhead per
storage service. Second, when working with small files, there
may be a storage overhead. For instance if we use a word
size of w = 8 and a packet size packetsize = 512bytes,
each element is at least elementsizemin = w ∗packetsize =
4096bytes large. Assuming we work on a file of filesize =
100bytes, the overhead is overhead = n∗elementsizemin−
100bytes = 409.5KB. To avoid the first problem, instead
of producing many small files, the resulting elements per
service are assembled into a single file for the transmission
process which can be split back into separate elements before
decoding. Further, to reduce overhead, the packetsize and
wordsize parameters are minimised. This leads to a decrease
in throughput as shown in [6]. The third remaining problem is
a lack of precision for the global availability results. To counter
the performance loss, further decrease overhead by reducing
the number of erasure code elements, and gain precision as
well, we propose a novel element distribution algorithm called
PICav. We show that PICav can be used to quickly generate
fragment distributions with similar availability compared to the
proportional distribution of a high number of elements, while
at the same time showing improved throughput and higher
precision.

II. ALGORITHM DESCRIPTION

We pursue the construction of the PICav algorithm as
follows: First, we outline our assumptions and the model
which is constrained by them. Then, we present the calculation
scheme. For completeness, we look at service dependency and
recovery aspects before finally evaluating the scheme.

A. General Considerations

The cloud storage model consists of n mostly indepen-
dent storage services, each with an estimated value for data
availability a. It assumes that availability of data can only
be impaired by a failure that causes a service to be offline
or its data to be lost or corrupted. Thus, availability is the
ratio of time when the service’s data is accessible to the
time it is inaccessible. Accessibility here means that the
original data can be retrieved. In general, the term availability
may be defined more broadly and include further end-to-
end resource uncertainty factors such as corrupt network
routes or slow responses. The interpretation of these factors
is implementation-dependent (e.g. timeouts in the transport
connectors, multipath connections, caching) and hence omitted
from our model although we will discuss their influence in the
discussion section. The availability is often an approximate
value that may be determined empirically by reading and
verifying the data in a periodic monitoring process, or by
comparing the service to similar ones with a known availabil-
ity. The resulting value is used as input to predict the actual
availability in the future. The binary states {available,
unavailable} follow a stochastic distribution. According

to previous analyses, incidents are mostly temporal and the
availability is generally high [7]. A Weibull distribution, a
more specific exponential distribution, as well as normal and
beta distributions can be found in the literature to describe the
nature of service availabilities over time. We will first follow
the previous work in assuming a beta distribution [5] but then
argue for a normal distribution as well, which yields better
results. An additional assumption is that the user is interested
in the minimum availability instead of the mean one, and that
the erasure-coded data is distributed with a parallel scheduling
as opposed to, for instance, round-robin distribution. This
restriction, too, will be elaborated on in the discussion section.

We informally derive the availability calculation in Eq. 1.
A more formal definition is given in other works, e.g. [5].

First, C is the combination of the n services s which is used
to store data. Second, the powerset P(C) of this combination
is calculated. Third, the powerset is filtered so that it merely
contains all combinations of services with enough chunks to
restore the original data. This filtered set is referred to as
Pf (C) and represents every possible combination of services
that suffices to restore the original data. Therefore, the minimal
availability of data is the probability of at least one subset of
services Sj∈ Pf (C) to be available. Further, the availability
a is the sum of the set probabilities aj for each combination
Sj to be available exclusively. This means that the services
sj,k ∈ Sj are available, while the other services in C are
unavailable. Consequently, aj is the multiplication of the
availability of each service aj,k multiplied by the probabilities
uj,l for the other services in Tj ∈ C \ Sj to be unavailable.
The unavailability uj,l is the multiplication of the complement
of the availability of each service in Tj . If Tj is empty, aj is
simply the multiplication of the availability of each service
aj,k, since every service in the term Tj is unavailable with
absolute certainty. Like in the formula before, it is assumed
that each of the sets and subsets of services previously
discussed is substituted by a multiset with the availabilities
of the services in the respective set or subset. For the case
that C \ S in the formula, which corresponds to Tj , is empty,
the product over the thereby empty set is defined as one.

availability =
∑

S∈Pf (C)

∏
a∈S

a ·
∏

u∈{1−ub|ub∈(C\S)}

u

 (1)

B. Calculation Scheme

The proposed availability calculation scheme is charac-
terised by yielding precise values on the visible interface level
and by being iterative and working on availability complement
values in its implementation. Hence, we call it a precise,
iterative and complement-based scheme (PICav).

The use of complements leads to a higher performance. It
marks an improvement in the algorithm used to calculate avail-
ability for a set of heterogeneous storage nodes, decreasing
worst case and average complexity by half. This is sufficient
to calculate availabilities for configurations with less than 30
nodes, which enables the user interfaces of storage controllers

to respond fluently to changes in the configuration. We assume
fixed parameters n and k for the erasure code. Colloquially,
as presented before, availability is calculated as the sum of
probabilities of all storage node combinations which suffice
to reconstruct the original data, whereas a combination’s
probability is the probability that each of its stores is on-
line while the others are off-line. The complexity of O(2n)
with n being the number of nodes is due to the growth in
possible combinations that need to be considered. The worst
case occurs when m is largest, i.e. many redundant nodes can
be excluded. To decrease the number of nodes that need to be
considered when determining overall availability, we propose
to calculate the complement of the availability when k is
smaller than n

2 , and then simply inferring the availability from
this result. To calculate unavailability, we simply substitute the
set of combinations in the previous calculation with the set of
combinations that store less than k blocks. More precisely,
we add up all probabilities of all storage node combinations
that are not sufficient for data reconstruction. With this,
we decrease the number of combinations that need to be
considered, and thus reduce the algorithm worst case runtime
by half. For 30 storage nodes or more, we implement the
calculation for storage services with homogeneous availability,
which is not as accurate, but more scalable [5].

The subsequent iterative distribution algorithm increases the
number of elements according to the variance in availability.
First, it starts at distributing one element to each service, which
is optimal in the homogeneous case. Services are divided
into a growing number of separate classes according to their
availability. To this end, we define an interval of availabilities
for each class. The first single interval is exactly between
the lowest and highest availability of all services. If possible,
this single interval is divided in two, three, four and more
evenly sized intervals, each corresponding to a separate class
of nodes with the according availabilities. The algorithm adds
one element to the nodes in the first non-empty class, two
to the second, three to the third, and so on. The separation
into more classes stops if we have reached a fixed number of
elements, which we set to 30 in our approach. It starts with
choosing the first variation, and only takes the next variation
if it increases availability, and if it monotonically converges
against the desired redundancy.

Fig. 2 presents a graphical explanation of how the algo-
rithm works with an example of five storage services which
have a wide range of availabilities for didactic purposes. It
ultimately results in splitting the data into 9 fragments which
are distributed unevenly over the five services.

C. Service Dependencies

We extend the model to calculate data availability in order to
consider single uni-directional dependencies between storage
services. For instance, Dropbox and Ubuntu One depend
on Amazon’s S3 storage. We assume that if Amazon S3
is unavailable, Dropbox is unavailable as well. The error
introduced by ignoring such dependencies can be considerable.
For instance, if we replicate data to Amazon S3 and Dropbox

Storage Services & Estimated Availabilities

93,3% 99,7%

93,

3%

99,

7%

94,

7%

98,

3%

97,

3%

Distribution Iterations

1(a): 2 1(b): 3

2(a): 2 2(b): 1 2(c): 2

2(a): 2 2(b): 0 2(c): 2 2(d): 1

Fragment Distribution

1 31 22

0: 5

Fig. 2. Iterative distribution algorithm

with availabilities of 99.9% and 99% respectively, the overall
availability is actually 99.9%, instead of 99.99%. Further, we
use knowledge of interdependencies to reduce redundancy.
For example, if we have 10 services with a homogeneous
availability of 90%, we need to store 2.5 times the amount
of the original data to achieve an availability greater than
99.999%. If one of the services depends on an other one, the
redundancy factor to achieve this availability is about 3.333.
Thus, by using only services without interdependencies, we
can reduce the storage cost by about 25%.

D. Retrieval and Recovery

After optimising storage cost with respect to a desired avail-
ability, other optimisation goals like cost reduction and storage
capacity utilisation shall be pursued. The retrieval extension
to PICav reduces cost for data transfer by preferring nodes
that produce no or little additional cost for data downloads.
Many cloud storage providers like Dropbox, Sugarsync, or
TelekomCloud do not bill the user for downloading data,
whereas Amazon S3 bills about 12 ¢ per downloaded GB1.
Thus, only downloading from the former services does not
involve additional costs. Further, when a storage has reached
its capacity, the scheme automatically tries to find a suitable
substitute from a preconfigured set of services, in order to
maintain the desired availability. Otherwise, not all storage
space could be used, considering services with different capac-
ity limits, since one of the services would reach its limit before
the others, or due to storing more data per file according to the
erasure code distribution policy. Similar mechanisms can be
applied to increase performance by substituting or excluding
components exhibiting low throughput.

When a data storage service in our model fails for a long
time, we can consider it to have failed permanently. For this
case we propose a strategy to reconstruct the lost data to
uphold the availability goal, and to protect against possible
data loss. Nonetheless, we first need to restore the goal
availability value for new data. Three practical examples,

1Amazon S3 costs: http://aws.amazon.com/s3/pricing

based on experience with SugarSync and Dropbox, serve
to illustrate how such data loss might be possible with
current cloud storage providers. First, SugarSync deletes
free accounts that were not used frequently with an email
warning seven days prior to the deletion: You haven’t
used your SugarSync account for more than
three months. SugarSync regularly deletes
accounts which have been inactive for more
than three months. If a user does not check notification
e-mails often enough, or if the email is accidentally deleted
by a spam filter, account data will be lost. Second, SugarSync
recently abandoned continuous free of charge service, pressing
users to move to a paid account to maintain full access to
SugarSync. Third, Dropbox states similar terms of service,
stating that they might delete accounts after 12 month of
account inactivity2. To prevent data loss, we first increase
redundancy. However, using this approach, we can only
increase availability until we have a replica of the original
data on each service, which might not suffice to restore the
goal value for data availability. Another drawback of this
approach is that data migration is generally more expensive
when the redundancy comes closer to its maximum. Further,
when accessing large files, we cannot combine the bandwidth
of several providers to increase throughput, since in the
worst case, one replica needs to pass through the connection
of one provider alone. Therefore, we consider adding one
or several new services to the storage array, to keep the
number of storage nodes constant over time. The second
approach alone may not be able to restore the desired data
availability for new data if the additional storage service’s
availability is lower than that of its predecessor. Thus, we
combine it with the first approach by gradually increasing
redundancy after adding another service to the storage array.
If another storage service becomes available, we may repeat
this process until the goal availability value is met. Apart
from better performance, and less migration costs, we assume
that in practical scenarios it is often possible to meet the goal
availability by dispersing data to more nodes. This hypothesis
is supported by the results of [5] which compares redundancy
savings in multiple scenarios with 10 and 100 nodes, and
by our own experience. Just in case though, we evaluate the
results of integrating a new storage to exclude solutions that
add more redundancy than needed in the scenario before
the node failure, if it is feasible. After having restored an
environment that meets the goal data availability, we need
to restore the lost data. We could use regenerating erasure
codes for more efficient reconstruction compared to using the
regular Cauchy-Reed-Solomon (CRS) code. However, most
regenerating codes do not reduce the number of elements that
need to be accessed, but rather reduce I/O operations. As the
transport layer transfers elements atomically such a scheme
is inapplicable. Bandwidth saving regenerating codes might
require the storage provider to process data before sending
them, which makes them inapplicable for general cloud

2Dropbox ToS: https://www.dropbox.com/terms

storage. NCCloud’s functional minimum-storage regenerating
code implementation (F-MSR) comes closest in terms of
desired properties [8]. Next to being maximum-distance
separable (MDS), it can reconstruct data by accessing one
of two fixed size regions in an element. Thus, we could
separate every element in two, to reduce repair bandwidth
by about 25% to 50%. Despite these advantages, there are
numerous reasons not to use F-MSR. First, it only offers to
tolerate two element failures, even though first approaches
exist to tolerate more erasures, such as Xorbas [9]. Due
to the improvements coming with PICav, F-MSR cannot
effectively be used to reduce repair traffic. In particular,
since we operate on up to n = 100 elements, the F-MSR
implementation could not provide enough redundancy, as it
only considers two element failures. Further, dividing the
100 elements in two would lead to an enormous network
overhead. Even when we forfeit our approach, we would
still have twice as many files to store, which even without
F-MSR proved to be a performance bottleneck. Therefore, we
propose complementary improvements in the transport layer
to assemble collections of several elements (small files) into
archives which are represented as one large file per service
before transferring them to the services. Consequently, the
elements that were split in two for the sake of reducing repair
bandwidth would not be transferred individually anyway.
To still decrease repair cost, we propose the following
scheme. We increase the number of elements, as well as the
number of coding elements by one. Then we store one of
the data elements on the local hard disk. When a node fails
permanently, we can use the local data elements to replace the
data on the failed storage. This approach has the drawback
that it can only be used once during the overall lifetime of the
data. Nonetheless, it improves repair bandwidth dramatically
considering that the minimal amount of data needs to be
transferred for reconstruction. Furthermore, it only needs
to be uploaded to the new service, so that the bandwidth
and performance of the unaffected services are not further
impaired by reconstruction, which should allow for normal
operation during repair. Once the repair is finished, we could
start to restore the previous situation, which would involve
reading and replacing the whole data set file by file, which
might in turn be quite expensive considering high transfer
costs. Nevertheless, this reconstruction can take place while
the system is under low load, and might be spread over a
long period of time in order to maintain system performance.
Also, considering permanent loss unlikely, the potential cost
for this reconstruction process might still be sensible.

III. EXPERIMENTAL EVALUATION

The evaluation consists of two parts. First, we implemented
PICav as a standalone script to verify the numerical results,
and integrated the implementation into a storage controller.
Then, we performed a number of experiments based on
this implementation to check the availability gain and the
corresponding reduction in elements.

A. Implementation Description

We have implemented PICav into NubiSave, an open source
cloud storage controller [2]. Its configuration GUI now allows
users to define a goal availability and to derive the splitting
and redundancy configuration in real-time. Furthermore, the
suggested transport layer improvements were integrated into
CloudFusion, a connector to various popular cloud storage
services. A screenshot of the configuration dialogue is shown
in Fig. 3.

Fig. 3. The NubiSave configuration GUI with minimum redundancy derived
from the availability goal

The standalone script availability.py has been im-
plemented in Python. It is invoked with two parameters: The
number of significant fragments k, and a list of tuples/triples
which represent the storage services. Each tuple contains
the estimated availability and the number of erasure code
elements. Service dependencies result in a lifting to a triple
by adding the tuple position of the dependendee service,
starting at 1. Thus, a sample invocation for three services
would be python availability.py 2 "[(0.5,3),
(0.5,1,0), (0.6,1,1)]" resulting in a = 0.5. The
script is publicly available from the NubiSave Git repository
[2].

B. Experiments Results

Our experiments work has been initiated with an availability
gain analysis. In Fig. 4, which exemplifies storage services
with 50% availability, it becomes apparent that already with
two redundant elements, the difference in overall availability
is 18 days, or 7.99%, when using only four nodes instead of
eight.

Fig. 5, Fig. 6, Fig. 7, and Fig. 8 compare our proposed algo-
rithms and the proportional distribution directly, by displaying
the difference in achieved availability, and the difference in
the number of erasure code elements in separate charts with
varying values for the variance in availabilities. We generate
node availabilities for 10 stores 100 times, using the beta
distribution implementation from the Python standard library3.
The experiment uses the same mean availabilities and vari-
ances from [5], translating them into the corresponding alpha

3https://docs.python.org/2/library/random.html

Fig. 4. Potential gains when calculating the overall availability

and beta values by using the definition of mean and variance
for beta distributions from [10]. Instead of only considering
the results for availabilities 0.9, 0.99, and 0.999, we show
the complete spectrum of achieved availability between a
redundancy of 5, and 10 time replication. The value for a
replication factor of ten is omitted, as the optimal distribution
for ten storage targets in this case is having one replica per
storage, which is achieved by our distribution scheme, since
the novel algorithm considers a homogeneous distribution first.
The generated tables actually encompass the complete range,
beginning with the redundancy of a single replica up to but not
including a redundancy factor of ten. But since the achieved
availability varies greatly at low redundancy, the comparatively
small difference between a redundancy factor of five and ten
becomes invisible in the complete figures. For this reason,
only the partial diagrams are shown with redundancy of five
or more.

To use more comprehensible units than availability percent-
age, the charts show the availability gain of using the novel
distribution strategy in seconds per year, assuming a year has
31556952 seconds. The y-axis is used to map the different
variances into a three dimensional graph, to view the effect
of changed variances immediately, except for Fig. 8, which
uses the y-axis to display the corresponding pair of mean and
variance values. The mapping of several similar configura-
tions leads to a more compact representation. To visualise
differences despite the distortion caused by the 3D view, a
colour coded plane is drawn, which passes through ever point
of the individual curves for each mean value, and variance
pair. The actual functions are discontinuous, as they do not
have a corresponding availability for every redundancy factor.
Nonetheless, the charts show them as continuous functions by
using the achieved availability for a redundancy closest, but
less than or equal to the current redundancy factor.

Fig. 5, Fig. 6, and the simulation of Skype traces in Fig. 8
show that our algorithm performs much worse for availabilities
lower than 0.5 between a redundancy factor of 7 and 10.
The results for stores with higher availabilities, which is the
case for the mean availability of 0.75 displayed in Fig. 7,
the results generated for the mean availability and variance

5
6

7
8

9
10 0.01

0.02

0.03

0.04

-1e+06
-500000

0
500000
1e+06

1.5e+06
2e+06

Availability Gain [s/year]

Redundancy Factor

Variance

-1e+06

-500000

0

500000

1e+06

1.5e+06

2e+06

5
6

7
8

9
10 0.01

0.02

0.03

0.04

-20
-19
-18
-17
-16
-15
-14

Reduction in Elements

Redundancy Factor

Variance

-20

-19

-18

-17

-16

-15

-14

Fig. 5. Availability gain compared to proportional distribution of 30 erasure
code elements with corresponding reduction in used erasure code elements
for 10 nodes with mean availability of 0.25, and different variances

from traces of PlanetLab, and Microsoft, are nearly equal to
the proportional distribution strategy, differing only by a few
minutes of availability per year, which is less than 0.01% of
availability. In case of the simulation for PlanetLab, there is an
increase of availability by about one minute. In every case, our
novel algorithm succeeds in decreasing the average number of
erasure code elements by at least 14, which is nearly half the
number of elements. Interestingly, especially when using low
redundancy, the achieved availability of both strategies can be
several days worse or better, whereas between a redundancy
factor of seven and ten, the average results do not fluctuate
much, as the maximum possible availability for each strategy
has already been achieved.

The proportional distribution policy was applied with only
30 erasure code elements, in order to better compare the
results, and because previous work by the same authors
suggests that 30 elements is a good choice in their testing
environment [11]. Nonetheless, we also re-ran all experiments
with 100 erasure code elements. As the results do not differ
significantly from the current results except for the obvious
increase of required elements for the proportional strategy, we
omit a detailed presentation.

5
6

7
8

9
10 0.01

0.02

0.03

0.04

-60000
-40000
-20000

0
20000
40000
60000
80000

100000
120000
140000

Availability Gain [s/year]

Redundancy Factor

Variance

-60000
-40000
-20000
0
20000
40000
60000
80000
100000
120000
140000

5
6

7
8

9
10 0.01

0.02

0.03

0.04

-20

-19

-18

-17

Redundancy Factor

Variance

Reduction in Elements

-20

-19.5

-19

-18.5

-18

-17.5

-17

Fig. 6. Availability gain compared to proportional distribution of 30 erasure
code elements with corresponding reduction in used erasure code elements
for 10 nodes with mean availability of 0.5, and different variances

IV. DISCUSSION

Finding a good configuration for erasure code parameters,
and erasure code element distribution for satisfying a cer-
tain availability is hard for a user, especially if she is not
acquainted to erasure codes and the term availability. For
higher transparency, NubiSave represents these statistics in
more established units like unavailability in time per year or a
redundancy factor, which describes how much redundancy is
used compared to using a single replica. A user can easily play
around with a redundancy slider, which covers a meaningful
range of different redundancy values for each strategy. More-
over, to give the user a good starting point, NubiSave needs
to provide an automatic search, that chooses the best storage
strategy with the lowest redundancy to achieve a desired
availability, so that a user can simply state the upper bound
for unavailability in percent or in time per year i.e. 0.01% or
5 minutes. This can easily be done, by letting the GUI iterate
over the possible configurations for each storage strategy, and
finding the best fit. To gain more comparable results, we eval-
uated our redundancy scheme by using the beta distribution to
generate random node availabilities, as the same distribution
is used by the authors proposing the proportional redundancy
scheme. It seems that the beta distribution generates rather
heterogeneous availabilities despite of a low variance. It would

5
6

7
8

9
10 0.01

0.02

0.03

0.04

-300
-200
-100

0
100
200
300
400
500

Redundancy Factor

Variance

Availability Gain [s/year]

-300
-200
-100
0
100
200
300
400
500

5
6

7
8

9
10 0.01

0.02

0.03

0.04

-20

-19

Reduction in Elements

Redundancy Factor

Variance

-20

-19.8

-19.6

-19.4

-19.2

-19

Fig. 7. Availability gain compared to proportional distribution of 30 erasure
code elements with corresponding reduction in used erasure code elements
for 10 nodes with mean availability of 0.75, and different variances

be interesting to see a comparison to our algorithm when
using a normal distribution instead, as the original design goal
besides a reduction in required erasure code elements was to
perform well with near homogeneous node availabilities. The
beta-distribution is used to simulate exceptions which diverge
greatly from the average values. Since these exceptions are
hard to predict, a normal distribution would be a suitable
alternative. Fig. 9 shows the element reduction potential when
using a normal distribution, compared to Fig. 7 which assumes
a beta distribution of availability incidents.

Viewed critically, availability guarantees in cloud provider
SLAs are insignificant in certain use cases, like a backup
scenario, where data is rarely accessed. A short failure period
of ten minutes every day would in the worst case delay a multi-
hour backup process by about ten minutes. Similarly, when
restoring the complete backup for data recovery, a multi-hour
download process would only be delayed for a short time. In
this case, statistics like mean and maximum periods of unavail-
ability are meaningful. Further, SLA guarantees are only an
indication of the actual availability. First, an SLA can define
availability differently to our definition. Second, the guarantee
only states what happens in the case of a certain guarantee
violation. Data durability would be an interesting statistical
metric, but giving good estimates seems hard when we need

5
6

7
8

9
10

Skype (0.544,0.105)

-70000
-60000
-50000
-40000
-30000
-20000
-10000

0
10000

Redundancy Factor

Availability Gain [s/year]

-70000
-60000
-50000
-40000
-30000
-20000
-10000
0
10000

5
6

7
8

9
10

Planetlab (0.816,0.063)

Microsoft
(0.738,0.061)

-400
-300
-200
-100

0
100
200
300

Redundancy Factor

Availability Gain [s/year]

-400
-300
-200
-100
0
100
200
300

5
6

7
8

9
10

Skype (0.544,0.105)

Planetlab (0.816,0.063)

Microsoft (0.738,0.061)

-20

-19

-18

-17

-16

-15

Redundancy Factor

Reduction in Elements

-20

-19

-18

-17

-16

-15

Fig. 8. Availability gain compared to proportional distribution of 30 erasure
code elements with corresponding reduction in used erasure code elements
for 10 nodes with mean availabilities and variances from actual availability
traces

to consider factors like economic lifetime, catastrophes and
attacks on the provider’s infrastructure over a decade or more.
In this case, a diversification strategy seems optimal to guard
against data loss of a single provider by storing enough data
to other providers to be able to recover from data loss. The
multi-purpose optimisation shows that NubiSave can offer a
good solution for a variety of user profiles, including those
for free storage, high durability, high performance, and free

5
6

7
8

9
10

0.01

0.02

0.03

0.04

89

90

Redundancy Factor

Variance

Reduction in Elements

89

89.2

89.4

89.6

89.8

90

Fig. 9. Reduction in used erasure code elements for 10 nodes with mean
availability of 0.75, assuming a normal distribution

read access. Additionally, when combined with an encryption
module, these profiles can also offer security.

NubiSave retrieves data from the providers through a trans-
port layer. Implementations of this layer improve the availabil-
ity of data by using caches and sophisticated error handling,
but they might also impair availability by bugs in the program
code. The model disregards these influences which might be
incorporated into NubiSave once ample statistics about the
component reliability are collected. The values for availability
are estimations and should be refined by empirical results for
accuracy. The data availability presented by NubiSave is the
minimal availability of a single data chunk according to the
current configuration. Instead, a mean value for availability
may be used, but the model merely considers the parallel use of
storage services, by which any set of a number of elements can
equally be used in reconstructing the original data, and the dis-
tribution of the elements does not alter over time. In this case,
the minimal availability equals the average availability. Other
erasure codes depend on certain combinations of elements
when decoding data. Also, the round-robin strategy, which
alternates between a set of storage targets of the same size for
load distribution, is another strategy implemented in NubiSave.
Its mean availability that can differ greatly from its minimal
availability. For simplicity, the model does not consider the
latter two cases. Another simplification is that data availability
refers to a single small chunk of data, even though a large file
consists of several chunks. Logically, due to different transfer
times, it is more probable to successfully retrieve a small
chunk than a sequence of chunks, since storage nodes are
more likely to fail over an increased period of transfer time.
Problematically, there are few comprehensive studies on the
availability of cloud storage services. For the same reason,
durability, which means long term availability of data, has
found little consideration as a quality parameter in the thesis.
Long term studies would need to factor in large scale disaster
like storms or floods, war, economic crisis or more general
economic change, especially in the cloud provider domain, and
finally technical change, which can lead to incompatibility for

devices and data formats.

V. CONCLUSION

PICav is a novel scheme to precisely and quickly calculate
the overall availability and data distribution in heterogeneous
cloud storage environments with minimal fragment size and
transmission overhead. We have shown that, on average, PICav
compares well against related work. By extending NubiSave,
we have successfully realised PICav in an existing cloud
storage controller and verified its usefulness from the practical
perspective. Future research will concentrate on fragment dis-
tribution decisions under additional constraints such as privacy
and computability.

ACKNOWLEDGEMENTS

This work has been partially funded by the German Re-
search Foundation (DFG) under project agreements SCHI
402/11-1.

REFERENCES

[1] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon, “RACS: A
Case for Cloud Storage Diversity,” in 1st ACM Symposium on Cloud
Computing (SoCC), Indianapolis, Indiana, USA, June 2010, pp. 229–
240.

[2] J. Spillner, J. Müller, and A. Schill, “Creating Optimal
Cloud Storage Systems,” Future Generation Computer
Systems, vol. 29, no. 4, pp. 1062–1072, June 2013, dOI:
http://dx.doi.org/10.1016/j.future.2012.06.004.

[3] V. Abhishek, I. A. Kash, and P. Key, “Fixed and Market Pricing for
Cloud Services,” in 7th Workshop on the Economics of Networks,
Systems, and Computation (NetEcon), Orlando, Florida, USA, March
2012, pp. 7–12.

[4] C. Cérin, C. Coti, P. Delort, F. Diaz, M. Gagnaire, Q. Gaumer, N. Guil-
laume, J. L. Lous, S. Lubiarz, J.-L. Raffaelli, K. Shiozaki, H. Schauer,
J.-P. Smets, L. Séguin, and A. Ville, “Downtime statistics of current
cloud solutions,” International Working Group on Cloud Computing
Resiliency, June 2013.

[5] L. Pamies-Juarez, P. García-López, M. Sánchez-Artigas, and B. Herrera,
“Towards the design of optimal data redundancy schemes for heteroge-
neous cloud storage infrastructures,” Comput. Netw., vol. 55, no. 5, pp.
1100–1113, April 2011.

[6] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-O’Hearn,
“A Performance Evaluation and Examination of Open-Source Erasure
Coding Libraries For Storage,” in 7th USENIX Conference on File and
Storage Technologies (FAST), February 2009, pp. 253–266.

[7] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, , and S. Quinlan, “Availability in Globally Distributed
Storage Systems,” in 9th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI), Vancouver, British Columbia, Canada,
October 2010, pp. 61–74.

[8] O. Khan, R. Burns, J. S. Plank, W. Pierce, and C. Huang, “Rethinking
Erasure Codes for Cloud File Systems: Minimizing I/O for Recovery
and Degraded Reads,” in 10th USENIX Conference on File and Storage
Technologies (FAST), San Jose, California, USA, February 2012.

[9] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “XORing Elephants: Novel
Erasure Codes for Big Data,” The 39th International Conference on
Very Large Data Bases (VLDB), vol. 6, no. 5, pp. 325–336, August
2013.

[10] A. K. Gupta and S. Nadarajah, Handbook of Beta Distribution and Its
Applications. Dekker, 2004, p. 362.

[11] L. Pamies-Juarez, P. García-López, and M. Sánchez-Artigas,
“Heterogeneity-Aware Erasure Codes for Peer-to-Peer Storage
Systems,” in Proceedings of the 38th International Conference on
Parallel Processing (ICPP), Vienna, Austria, September 2009, pp.
412–419.

