
Service-based Development of Mobile Real-time Collaboration Applications for
Social Networks

Daniel Schuster, Thomas Springer, Alexander Schill
TU Dresden, Computer Networks Group

Dresden, Germany
{daniel.schuster, thomas.springer, alexander.schill}@tu-dresden.de

Abstract—Social Networks will unfold their full potential
when connected people are enabled to collaborate - any time,
appropriate to the current location, activity and computing en-
vironment. However, development of collaborative applications
in pervasive environments is still a big challenge.

In this paper we present a service-oriented approach for
the development of collaborative applications on top of social
networks. It consists of a conceptual platform providing a set of
generic services for real-time collaboration and the integration
of existing social networks. In an experimental evaluation
we implemented the conceptual platform for Android devices
using the Extensible Messaging and Presence Protocol (XMPP)
family together with a set of reusable services for Facebook
integration, user location and proximity detection, media shar-
ing, and collaborative editing. We developed several case study
applications by composing generic collaboration services to
demonstrate the feasibility and value of the approach.

Keywords-Real-time Collaboration; Mobile Social Network-
ing; Service-oriented Platform; Extensible Messaging and Pres-
ence Protocol (XMPP); Android;

I. INTRODUCTION

Social networks have developed into widely-used plat-
forms for interconnecting people with support for collabora-
tion features like chatting or content sharing. The availability
of rich features for collaboration - any time, adapted to the
users current context - would unfold the full potential of
social networks. Especially features for real-time collabora-
tion - the IP-based communication and collaboration with
synchronous interaction among geographically distributed
participants - with features like shared editing of documents
would increase the value of social networks. But even if
recent technological innovations enable resource rich mobile
devices and constant wireless connections with sufficient
data rate, the integration of rich collaboration features across
web-based and mobile platform is still a big challenge.

Service developers are confronted with a large number of
highly heterogeneous platforms, partitioned into separated
islands with respect to user communities, (user-generated)
content data, provided services and technological base. As
a result, for the creation of value-added services on top of
social networks usually either a certain platform has to be se-
lected (either web-based or mobile) or basic social network-
ing functionality like user management, profile handling and

collaboration features have to be re-implemented. Advanced
functionality for real-time collaboration in wireless network
infrastructures like shared editing requires high development
effort and the adoption of specific communication protocols.
In consequence the development of value-added services in
the domain of mobile real-time collaboration (MRTC) is
very complex and costly.

In this paper we present a service-oriented approach to
improve the development of MRTC applications. With the
Mobilis platform [?] we already defined a conceptual archi-
tecture consisting of four layers and several collaboration
services. We now refine this concept through the course of
this paper with a mapping to concrete technologies and a
client/server architecture. The paper describes three main
contributions: First, we define an XMPP-based realization of
the architecture defined in [?] that builds upon standardized
XMPP extensions (XEPs) to support real-time collaboration
functionality in a service environment. Broker services act as
XMPP clients thus leveraging XMPP as an infrastructure for
service user to service provider communication. Second, we
provide a set of reusable collaboration services for group
management, social networks integration, location updates,
shared editing of XML documents and media sharing. These
services can be composed to ease and accelerate the develop-
ment of applications. Third, we provide several case studies
with implementations of different MRTC applications to
show the feasibility of our approach.

In the following, we first analyse the requirements for
service-based development of MRTC applications in Sec-
tion II. We present the architecture of our service environ-
ment and introduce a set of reusable services for MRTC
in Section III. Our case study and discussion of results is
described in Section IV. We end the article with a summary
and an outlook to future work.

II. REQUIREMENTS ANALYSIS

To get an impression of the need of the developers
of MRTC applications we performed a technology survey
in [?] comprising the top 50 proposals of Google’s Android
Developers Challenge. More than 80% of these applications
use at least one collaboration feature while 30% combine at
least three collaboration features. Most of these applications



where built from scratch, thus re-implementing collabora-
tive functionality. Some of the applications already provide
coupling to a special social network (often Facebook), but
many of them rely on their own user basis to be built.

The following general requirements to a service platform
for MRTC applications can be derived from this observation.
They are devided into three functional and three non-
functional requirements:

A. Functional requirements

Enriched presence: The provisioning of enriched pres-
ence information as well as intuitive means for users to
manage preferences is one of the major prerequisites for
MRTC applications. This comprises at least the ability to
localize other participants by a world-wide unique identifier
and to be able to use this identifier to send messages as
well as to call them directly. Furthermore, information on
the user’s availability, device, location, activity and further
context are of importance to many MRTC applications.

Collaboration services: An extensible set of collab-
oration services shall be provided which are commonly
used by a number of MRTC applications eliminating the
need to re-implement their functionality. This includes basic
communication features, media sharing, shared editing and
dynamic group formation and management.

Web 2.0 integration: MRTC applications should not only
create their own user communities but coexist with and
complement the world of Web 2.0 applications like social
networks, media sharing portals, location-based services,
blogs and forums. The platform should provide connectors
to existing Web 2.0 applications, emphasizing support of
existing social networks.

B. Non-functional requirements

Support of heterogeneous mobile platforms: As the
landscape of mobile devices is very heterogeneous, multi-
platform support is essential for any MRTC service envi-
ronment. It is not sufficient to only stick to one mobile
environment like the iPhone, Google Android, or Windows
Mobile but to define open protocols that may be equally
implemented on a number of platforms. Support of mobile
platforms also includes mobility issues like handling discon-
nections and varying network bandwidth and delays.

Configuration, adaptation, and extensibility: Due to
the heterogeneity of mobile devices and wireless network
technologies a "one-size-fits-all" application would fail to
meet the challenges raised by heterogeneity. The MRTC
service environment should thus be configurable and include
adaptation mechanisms to be able to work in a number of
different environments. Furthermore, the ability to add and
modify services of the platform (extensibility) is of great
importance regarding the fast development in the area of
MRTC applications in the last years.

Security and privacy: Special security requirements arise
from the new possibilities of the platform. If I am able to
publish my location as well as to use information from my
social networks, this information should be handled with
care. A compromise between enriched presence features and
privacy has to be found. The service environment should
therefore support the user in controlling who sees what
information and to enforce fine-grained access policies.

As a secondary non-functional requirement, we also want
to mention compliance to open standards here. There are
already a number of open standards in the area of com-
munication and collaboration such as SIP, XMPP and the
emerging Google Wave. Standards-compliance can already
be derived from the requirements multi-platform support,
Web 2.0 integration, and extensibility, but it also has a fur-
ther dimension by its own. Any new collaboration platform
not compliant to open standards would only create a new
island of isolated users not able to communicate with anyone
outside this island. Thus standards-compliance is essential
for any MRTC application.

In the following, we want to show how these require-
ments can be fulfilled using open standards as a starting
point. We first introduce the architecture of our service
environment before discussing concrete MRTC applications
building upon the platform.

III. THE MOBILIS SERVICE ENVIRONMENT

After discussing several design alternatives in detail, we
decided for the eXtensible Messaging and Presence Protocol
(XMPP) [?] as the basis for our service environment. Classic
approaches for reusable services like SOAP or REST are
not adequate for MRTC with its real-time requirements.
XMPP already contains a lot of useful extensions called
XMPP Enhancement Proposals (XEP). Many basic services
needed for collaboration such as multi-user chat, service
discovery, file transfer, and enriched presence are already
part of XMPP and its XEPs. Furthermore, XMPP provides
a good extension mechanism making it easy to integrate own
services into the architecture.

To design a highly flexible architecture, instead of ex-
tending a special XMPP server implementation we use an
XMPP server as a black box as illustrated in Figure 1.
The services of the platform are provided as XMPP re-
sources with their own ID thus acting like ordinary XMPP
clients. XMPP offers the possibility to identify each poten-
tial collaboration participant by a unique ID in the form
user@server.org/resource where each user may be logged
in with more than one resource at the same time (e.g.,
PC, notebook, iPhone). This mechanism is the core of our
service environment as it enables the clients to connect to the
different services of the service environment. A permanent
connection is established between client and collaboration
service allowing for fast exchange of real-time data, e.g.,
for shared editing.



Figure 1. Architecture of the Mobilis service environment

Each Mobilis service environment contains exactly one
Coordinator which also acts like an XMPP client resource
and connects to the XMPP server using a well-known ID
such as mobilis@server.org/coordinator. We use the service
discovery extension XEP-0030 [?] to find so-called Broker
services. A Broker service bundles functionality used by one
or more MRTC applications. These Broker services again
act like XMPP client resources allowing to directly connect
Mobilis clients to their respective Broker service. The Broker
services register themselves at the Coordinator to be found
by the discovery.

One layer below the Broker services a number of col-
laboration services exists offering the actual reusable func-
tionality of the platform. Each Collaboration service may
be used by one or more Broker services. Thus reuse of
functionality is possible within the server without creating
too much overhead as the collaboration services and their
features are not included in the service discovery.

The functionality and mode of operation of the collabo-
ration services is described in the following.

A. Group and Multicast Service

If a user wants to join a collaboration group, a request is
issued to the local instance of the group management ser-
vice. It contacts the Coordinator with an info/query XMPP
message with type get and the namespace mobilis:iq:groups
returning a list of items with the name of the each group
and their respective IDs. The user then issues a JoinGroup
request to the Coordinator using again info/query XMPP
messages. Once the group is established, a multicast mech-
anism is available to send messages to the whole group.
These may be simple chat messages or complex protocol
messages such as difference updates for shared editing.

B. Location Service

The location service receives location updates from the
repspective clients and forwards them to interested services
in a publish/subscribe manner. Some of the Broker services
only need location updates for proximity checks such as the
Mobilis Buddy broker who gives an alert whenever one of
your Facebook contacts using the same application is in your
proximity. While a user may be willing to share his position
for proximity checks, he may want to restrict direct access
to his location. So the location service is not accessible
directly from the clients, but mediated by the Broker services
enabling application-dependent access restrictions.

C. Social Network Integration Service

The Social Network Integration Service is targeted at the
requirement Web 2.0 integration. It provides an abstract
interface to login to a social network and to get a list of
friends with their respective XMPP IDs. Often this type of
access requires the registration of an extension application
at the social networking platform, e.g., a Facebook app
for the Facebook platform. In the case of Facebook, an
authentication token is acquired which has to be authorized
by the user. This token can then be used to retrieve the list
of Facebook friends. The mapping to internal IDs is done at
the Social Network Integration Service. MRTC applications
building upon the Mobilis service environment can thus
make use of the community structures already available.

D. Media Sharing and Content Services

The Media Sharing Service and the Media Content Ser-
vice allow to register and unregister media objects like
pictures or videos tagged with meta data about geo-location,
owner and time as well as self-defined tags. It is then
possible to browse the media collection using again XMPP



info/query messages defined in an XMPP extension protocol
on media sharing. The actual transfer of media objects is
already possible with XMPP means using the standardised
XMPP extension SI File Transfer [?]. We devide media
sharing functionality in accessing the repository and meta
data (Media Sharing Service) and storage and retrieval of
media files (Media Content Service) as this enables the
distribution of these services for better scalability.

E. Shared Editing Service

As one of the key components for sharing applications,
we offer a service for shared editing of XML documents.
It builds upon the Collaborative Editing Framework for
XML (CEFX) [?] allowing for concurrent editing of XML
structures in real-time using operational transformation al-
gorithms. It is a very powerful and flexible service as
these XML structures may be formatted text documents as
well as graphics files (SVG) or geo-information (KML). A
local copy of the XML file being edited in the session is
maintained at each client to ensure timely updates in the case
of edit operations. The changes are then sent with a message
propagateLocalOperation to the server who then applies the
changes to the server copy, resolves any conflicts and sends
back changes to be made to have consistent versions of the
document on all clients (handleRemoteOperation).

IV. CASE STUDIES

To evaluate the feasibility of our approach, we imple-
mented several case studies on top of the platform using the
Android developer SDK V1.5, G1 phones, and the OpenFire
XMPP server. In the following, we introduce MobilisMedia,
MobilisMapDraw, MobilisGuide, MobilisBuddy and Mo-
bilisTrader to demonstrate the reusability of the services
defined in Section III. Moreover, we discuss the experiences
made with our approach, especially with respect to XMPP,
Android and service composition.

A. MobilisMedia

MobilisMedia allows the user to share image and video
files that were created using the mobile phone at a certain
location and time. The left part of Figure 2 shows a detail
view allowing to download or replace an image in the
media repository. The repository itself consists of a multi-
dimensional meta data store and a content store.

Location information can be used to create a map-based
view of a media repository. In addition, the user may also
look for images specifying a specific user and/or time span
when the image was created. The protocol of the Media
Sharing Service described in the last Section is generic
enough to support such SQL-like queries and returns a list of
media files to the client. The transfer to the Media Content
Service is done using XMPP mechanisms and thus even
works between Mobilis Media and any other Jabber client
that supports file transfer.

Figure 2. Screenshots of the Mobilis Media (left) and Mobilis Map Draw
(right) case studies

Using the Social Network Integration Service, images can
be shared between people connected in a social network.
The user can take pictures while on travel and submit them
to the media repository restricting access to all his Facebook
friends. The Location Service is used to set up a closed group
among these participants. It is even possible to keep the files
on the Android phone and to only publish the meta data to
the repository. File transfers requested by remote participants
may then be accepted or rejected individually by the owner
thus keeping his images under control.

B. Mobilis Map Draw

Mobilis Map Draw enables users to collaboratively draw
on a map. The drawing operations are propagated in real-
time to ensure a consistent view shared by all participating
users. The right part of Figure 2 shows the current state
of the collaborative session where some friends connected
via Facebook discuss a common trip from Hamburg to
Dresden. It is visualized as an overlay of a Google Map.
The underlying Shared Editing Service supports editing of
arbitrary XML content. For the Mobilis Map Draw the edited
content is a KML file which allows to store drawings with
geo-coordinates. In this way all session participants share
the same content, even if the individual map visualization
is different. The drawings are correctly placed and scaled to
the current map section. Moreover, drawings and routes can
be exchanged with external tools like Google Earth.

As already described for Mobilis Media, Mobilis Map
Draw uses the Social Network Integration Service and the
Group Management Service to set up closed groups for
collaborative editing on a map based optionally based on
contacts from social networks.

C. MobilisGuide

MobilisGuide is collaborative tourist guide where mem-
bers of a closed group can see each other on a map and
discover a city. The application provides a map-based view



enabling extended presence of the grouped tourists. The
Group and Multicast service is the basis to maintain closed
groups and the communication among group members via
multi-user chat. The Location service enables the sharing
of location information within the group. In addition, the
Media Sharing service allows tourists to publish and access
multimedia content like photos or short video clips with
other group members.

D. MobilisBuddy and MobilisTrader

MobilisBuddy gives an alert if one of your Facebook
friends is in your close proximity and allows to contact him
or her. MobilisTrader is a location-based trading application
allowing to search for specific goods in your proximity. Both
applications set up on Facebook by the means of the Social
Network Integration service and use the Location service
to realize proximity-based mechanism and the Group and
Multicast service for multi-user chat.

E. Discussion

We believe that the full potential of social networking
can be exploited only in combination with collaboration
features and vice versa. We have demonstrated the value of a
service-based approach which allows the creation of MRTC
applications by composing collaborative services. Our case
studies illustrate the reusability of collaboration services
in different applications. This avoids the re-implementation
of functionality for shared editing, media sharing, dynamic
grouping and location management from scratch and thus,
increases the efficiency of application development. Partic-
ularly important is the integration of existing web-based
platforms which has been demonstrated with the provision-
ing of the Social Network Integration Service implemented
for Facebook. While it enables the integration of existing
user communities further work is required to also integrate
content data and platform functionality to overcome the
isolation of mobile and web-based social networks.

XMPP has proven to be an open standard appropriate for
the implementation of real-time collaborative applications
in social networks. All described functionality and services
could either be mapped directly to the XMPP protocol and
its extensions, or be implemented using XMPP-compliant
own extension protocols. The fundamental extensibility of
XMPP and its openness for various interaction paradigms
like request/response and publish/subscribe ensures its adop-
tion in many further application areas. The concept of
representing all Mobilis clients and Broker services as
XMPP clients in combination with a standard XMPP server
infrastructure ensures high flexibility, scalability and ex-
tensibility of the approach. Each part of the environment
is loosely coupled so that new Mobilis components can be
added easily. The XMPP server technology is exchangeable.

Anyway, XMPP is not particularly designed for wireless
networking infrastructures and mobile devices. Especially,

XMPP sessions depend on persisting TCP connections. This
requires at the one hand a constant connection which is not
guaranteed in wireless networks. At the other hand the en-
ergy consumption is might be higher. Moreover, in the case
of network outages, established sessions are immediately
terminated. In consequence, the login procedure and session
setup have to be repeated for connection re-establishment. A
possible solution with respect to network outages might be
XEP-0198 Stream management which contains a mechanism
for stream resumption.

Our current implementation is based on Android which
supported the development of our case study applications in
many respects. Especially, the map access and views, gath-
ering of location information from GPS and distance mea-
suring are well supported by standard functionality provided
by Android. In addition the general concepts of Android for
application and user interface development, namely intents,
activities, and services enabled a fast implementation of the
Mobilis service environment.

Nevertheless, the goal of our approach is multi-platform
support. Based on the platform independent specification
we will implement the Mobilis service environment on
further platforms in the future, namely iPhone and Windows
Mobile. Because the protocols all rely on XMPP and are
defined as XMPP extensions, they may be reimplemented
easily on any platform that supports XMPP. Our strategy
of adopting platform specific technologies has proven to be
successful, especially with respect to user interfaces [?].

V. RELATED WORK

Proem [?], ContextPhone [?], and the George Square
System [?] are examples of frameworks focusing on different
aspects of collaboration. Proem includes services realized
as a high-level Java API that manage areas like presence,
community management and a common data space. Con-
textPhone enables mobile applications to use sophisticated
context information on top of the Nokia Series 60 platform.
The George Square System is a map based collaborative
system for tourism. It primarily analyses how tourists work
together in groups and collaborate around maps. However,
the underlying communication protocols are application spe-
cific and directly define the syntax of messages, thus, no
open standards are used.

Google Wave [?] is an emerging Web application for
instant communication and collaboration supporting shared
editing of XML documents, instant sharing of pictures, and
integration of third-party gadgets through an extension API.
It is based on open protocols which allow interoperation
between different Wave servers. Especially, Google Wave
Federation protocol is based on XMPP. It includes the
possibility to merge updates for concurrent XML editing
and to ensure consistency on all copies of the wave.

Regarding these existing environments for MRTC applica-
tions, many of them are platform-specific, restricting the use,



e.g., only to Nokia phones. Collaboration services offered by
these frameworks often only include basic communication
and context gathering features. Especially shared editing of
XML documents and media sharing is often not part of the
frameworks. These features are fully covered by Google
Wave, so why is there a need for yet another platform?
As Google Wave is completely Web-based, the individual
features of Google Wave can not be embedded as services
in own applications developed for mobile phones. Services
and Web applications can be integrated into Google Wave
but not vice versa. So we believe that service environments
targeting the needs of developers of MRTC applications
will not extinct because of Google Wave. They will rather
coexist with this new form of mixed-mode communication
and provide appropriate interfaces. This is especially easy to
realize within the Mobilis environment, as the Google Wave
Federation protocol is XMPP-based and thus our Mobilis
server could also act as a proxy using XMPP messages to
synchronize with Google Wave servers.

Regarding the area of mobile social networking,
SAMOA [?] is an example for mobile social networks who
create groups of users based on physical proximity, common
affinities, attitudes, and social interests. As a companion
approach, the MobiSoC [?] middleware for Mobile Social
Computing provides an API to develop new mobile social
networking applications that can use generic services for
finding users of the same platform in close proximity of
other mobile-specific functionality. The main drawback of
these and other comparable approaches is that they create a
new social network instead of using the profiles and person
links already available in existing networks.

While integration of existing social networks in MRTC
applications is already possible by means of APIs like the
Facebook API or the OpenSocial API, this requires an ex-
tension application for each of the MRTC applications to be
written for each of the social networks the MRTC app wants
to support. Our environment only needs one such extension
application per social network for the whole platform thus
drastically reducing the effort for social network integration.

VI. CONCLUSION

Based on our observation of applications developed for
mobile phones, there is a strong need for a service en-
vironment supporting the collaboration functionality and
integration of existing Web 2.0 applications. We developed
such a service environment based on open standards, es-
pecially XMPP and its extensions. As can be seen from
this paper, XMPP at its current mature state is more than
appropriate to serve as the core of such an environment.
We used existing extensions for service discovery, group
management, and file transfer and added new extensions
for location updates, shared XML editing, media repository
management, and social network integration. With a number
of showcase applications built on the Android platform

the flexible composition of MRTC applications based on
reusable services has been demonstrated.

In the future we plan to cover more target platforms such
as the iPhone and Windows Mobile. We plan to make the
source code of our platform publicly available to foster the
contribution of other interested parties to the platform as
well as the use in future mobile applications.

ACKNOWLEDGEMENT

The authors would like to thank István Koren, Benjamin
Söllner, and Dirk Hering for their contributions to the
Mobilis service environment and MobilisMedia and Mobil-
isMapDraw case study applications. The work of the authors
was partially supported by the German Federal Ministry of
Education and Research (BMBF) under grant BRA 06/037.

REFERENCES

[1] Xmpp standards foundation, 2008. http://xmpp.org.

[2] D. Bottazzi, R. Montanari, and A. Toninelli. Context-aware
middleware for anytime, anywhere social networks. IEEE
Intelligent Systems, 22(5):23–32, 2007.

[3] B. Brown and E. Laurier. Designing electronic maps: an
ethnographic approach. In Map Design for Mobile Applica-
tions. Springer Verlag, 2004.

[4] A. Gerlicher. Developing Collaborative XML Editing Systems.
Phd thesis, University of the Arts London, 2007.

[5] Google. Google wave - communicate and collaborate in real-
time, 2009.

[6] A. Gupta, A. Kalra, D. Boston, and C. Borcea. MobiSoC: a
middleware for mobile social computing applications. Mob.
Netw. Appl., 14(1):35–52, 2009.

[7] J. Hildebrand, P. Millard, R. Eatmon, and P. Saint-Andre.
Xep-0030: Service discovery. Technical report, XMPP Stan-
dards Foundation, 2008.

[8] G. Kortuem. Proem: a middleware platform for mobile peer-
to-peer computing. SIGMOBILE Mob. Comput. Commun.
Rev., 6(4):62–64, 2002.

[9] T. Lange, M. Kowalkiewicz, T. Springer, and T. Raub. Over-
coming challenges in delivering services to social networks
in location centric scenarios. In LBSN ’09: Proceedings of
the 2009 International Workshop on Location Based Social
Networks, pages 92–95. ACM, 2009.

[10] T. Muldowney, M. Miller, and R. Eatmon. XEP-0096: Si file
transfer, 2004.

[11] M. Raento, A. Oulasvirta, R. Petit, and H. Toivonen. Con-
textphone: A prototyping platform for context-aware mobile
applications. IEEE Pervasive Computing, 4(2):51–59, 2005.

[12] T. Springer, D. Schuster, I. Braun, J. Janeiro, M. Endler,
and A. A. F. Loureiro. A flexible architecture for mobile
collaboration services. In Companion ’08: Proceedings of the
ACM/IFIP/USENIX Middleware ’08 Conference Companion,
pages 118–120, New York, NY, USA, 2008. ACM.


