
peaCS - Performance and Efficiency Analysis for
Cloud Storage

Josef Spillner, Maximilian Quellmalz, Martin Friedrich, Alexander Schill

Technische Universität Dresden,
Faculty of Computer Science,

{josef.spillner,alexander.schill}@tu-dresden.de,
{maximilian.quellmalz,martin.friedrich}@mailbox.tu-dresden.de

Abstract. Those who need to store larger amounts of data either for
burst periods or for convenient synchronisation between devices are cur-
rently looking at new ways of how to integrate cloud storage services into
the data processing applications. The benefits (on-demand access and
pricing, elasticity) and the drawbacks (reduced control, increased depen-
dencies on providers) need to be well balanced. Recently, a new class of
applications called cloud storage controllers or integrators appeared with
a high potential to become a standard feature of operating systems and
network gateways. They seamlessly integrate single and bundled storage
services into the users’ digital environment. However, it is not clear which
controllers are better than others. Some are open source, some commer-
cial, some perform better than others, but some of the others provide
more data pre-processing and routing features. We solve this problem by
introducing peaCS as a test framework to analyse, compare and optimise
the functional and non-functional properties of such client-side storage
service integration solutions.

1 Motivation

Access to the cloud is shifting from an ad-hoc style to planned and systematic
integration. Often, either a hardware appliance (e.g. for cryptographic key man-
agement) or a software gateway (e.g. for enforcing a policy of not using compute
clouds during expensive periods) is used to manage the controlled access. For
cloud storage services in particular, differently named service-independent client-
side storage controllers, integrators, gateways, "cloud filesystems" or access ap-
plications are becoming more popular [24]. The popularity causes an increasing
number of prototypes to become available and thus ensures healthy competition
[18, 8]. On the downside, it becomes more difficult to evaluate and assess the best
solution for this task. Especially non-functional properties such as performance
or efficiency, while becoming more commonplace as standard metrics in service
descriptions [14], are hard to determine for client-side integration tools. The dif-
ficulty aggravates when considering coordinated distributed storage integration
across multiple independent services in which the individual service metrics shall
be encapsulated as much as possible [19].



This trend motivates us to present a test framework to systematically deter-
mine these metrics. Fig. 1 positions the testing methodology as a special case of
Service Bundle Integration Testing (SBIT) in which a number of independent
reference services, real or simulated, are used in combination during the test ex-
ecution. SBIT is distinct from Service Testing (ST) [7, 11] which focuses more on
invocation and protocols and less on the eventual effect on the client. It is also
unlike most Service Integration Testing (SIT) methods which focus on a single
service interface with one or multiple applications during one test run [3]. SBIT
is applicable to all XaaS service classes, including Cloud Storage on the IaaS and
PaaS levels for which the combination technique is data splitting, multiplexing
and dispersion.

Service Testing

Service Integration Testing

Service Bundle Integration Testing

Functional Non-Functional

API Conformance

Features

Performance

Efficiency

Simplicity

Quality

Test

AnalysisOptimisation

Comparison

Fig. 1. General overview about Service Bundle Integration Testing

The next section gives an overview about testable cloud storage controllers
and storage service integrators. Then, the peaCS test framework is introduced
and explained with multiple experiments in which we analyse, compare and
optimise storage controllers. In the fourth section, its functionality is compared
to related work, before concluding the paper in the fifth section.

2 Overview about Multiplexing Cloud Storage
Controllers and Libraries

The client-side integration of single and multiple cloud storage services happens
on multiple layers. The lowest layer encompasses the algorithmic treatment and
pre-processing of data, which includes dispersion, replication, de-duplication and
encryption. A middle layer offers an interface to applications, e.g. through a
service interface or a virtual file system, to let data in to and out of the lowest



layer. Higher layers offer storage service selection, attachment and configuration
as well as user and permission management. Such multi-layer integration systems
for cloud storage services are usually called storage controllers or integrators. We
will first present a number of file system-based prototypes which appear to be
the least common denominator among all types and are typically a superset of
all service-based unification interfaces like DeltaCloud or jClouds. Afterwards,
we extend the presentation to promising libraries for data treatment which may
influence future storage controllers and hence motivate the need for systematic
testing and comparison.

2.1 Controllers, Integrators, Gateways & Filesystems

NubiSave [19] is an Optimal Cloud Storage Controller which takes storage service
properties into account to achieve an optimal data distribution through replica-
tion and dispersion. It offers a FUSE file system interface and hence is a valid
candidate for file-based testing on all operating systems supported by FUSE,
such as Linux, BSD and Mac OS X. A strong characteristic of NubiSave con-
cerning testing is the hot-plugging of storage service providers by means of writ-
ing configuration files into a special directory. ChironFS1 is a RAIFS controller,
essentially functioning like a RAID controller on a file system level. Compared to
NubiSave, it only replicates files and doesn’t allow for more fine-grained config-
uration. The dispersing Secure Cloud Storage Integrator for Enterprises (SecC-
SIE) [16] focuses on Intranet integration and offers a CIFS interface to network
clients. Most operating systems can natively import CIFS drives as local directo-
ries. In a similar way, the Least Authority File System (Tahoe-LAFS) operates
as a gateway with HTTP(S) and (S)FTP interfaces which can be mapped to
a local directory [25]. Hence, SecCSIE and Tahoe-LAFS are also valid candi-
dates for file system-based testing. One design difference between them is that
SecCSIE integrates arbitrary storage services whereas the Tahoe-LAFS gateway
assumes Tahoe-LAFS storage backends. This difference is well hidden behind
a unifying file system interface. RACS, a Redundant Array of Cloud Storage
proxy [1], exposes an S3 bucket interface for which FUSE file system translators
exist. FUSE pass-through adapters typically add an overhead of about 8-15% in
the worst case so it remains feasible to test RACS. The Iris cloud file system,
in contrast, already offers a remote file system natively [20]. More FUSE mod-
ules exist for individual online and cloud storage services, e.g. CloudFusion2 for
DropBox and SugarSync, S3QL for Amazon S3, Google Storage and OpenStack
Swift, FuseDav for WebDAV and CurlFtpFs for FTP. In general, single-service
integration offers less parametrisation space compared to multi-service integra-
tion, but otherwise the former is a subset of the latter and hence the same test
methods are applicable.

Additional storage integration tools exist without an appropriate data man-
agement interface which can be accessed automatically as part of a SIT or SBIT

1 ChironFS: http://www.furquim.org/chironfs/index.en.html
2 CloudFusion: https://github.com/joe42/CloudFusion



test execution. Trust Store [10], for instance, requires the drag and drop inter-
action with a GUI to initiate the storage and retrieval of files. Such tools are
out of scope for peaCS and require GUI testing frameworks like Sikuli. Simi-
larly, Dependable Sky [4] only offers a library interface, the commercial product
Trusted Safe a Windows plugin interface and another unnamed platform [15]
a web interface which all require additional test agents with user interface in-
teraction intelligence. For Cloud Shredder [23], the interface is not specified. A
survey on distributed cloud storage integration compares the security character-
istics which are hard to measure and hard to assess in an automated way [18].
Characteristics determined in such a manual process complement the expected
results of automated test frameworks. Therefore, our work aims at a subset of
storage controllers (those with a file system interface) and a subset of metrics
(which can be measured or calculated).

2.2 Data Pre-Processing Libraries

The transformation and distribution of files and file parts is often captured in
specific libraries which are used by some of the systems presented in the previous
paragraph. A well-known dispersion and secret sharing library is Jerasure in
version 1.2 and 2.0 [12]. It performs erasure coding with optional encryption
of the resulting file fragments. Each fragment is then distributed to a storage
service by the surrounding controller. Both erasure codes and implementations
thereof are still subject to research, for instance, to adapt them to efficient SIMD
processor instructions and hard-wired cryptographic routines. Therefore, a test
framework is useful to track the progress of systems over time even when only
internal parts like a pre-processing library change.

Alternative dispersion libraries with comparable functionality are JigDFS,
Schifra, dsNet, Crypto++, IDA-Java, the Tahoe-LAFS library ZFec, JSharing
and StorageCORE. Varying run-time characteristics result from design and im-
plementation differences between them, last but not least due to different pro-
gramming languages – C/C++, Java, Python, Haskell and VHDL for the men-
tioned libraries. Further pre-processing, which includes compression, encryption,
de-duplication, steganography and versioning, is realised either by FUSE mod-
ules or by additional libraries. For some algorithms, like AONT-RS secret shar-
ing, no publicly available implementation exists.

It is important to understand that the performance and efficiency of dis-
tributed storage depends not only on the algorithms and implementations, but
also heavily on configurable parameters such as redundancy, degree of paral-
lelism, distribution scheduling, streaming support and file system buffers. For
cloud storage service bundles, service selection preferences influence the results
further. For arbitrary combinations of these parameters, a test framework must
support multi-dimensional result sets.



3 The peaCS Test Framework

We introduce the test framework peaCS, which stands for Performance and Ef-
ficiency Analysis for Cloud Storage, in order to allow for systematic testing,
analysis and comparison of file-based cloud storage controllers and integrators.
The strength of peaCS is the coordinated, controlled and repeatable test of var-
iegated storage service combinations by instrumenting a target controller as the
subject of testing.

3.1 peaCS Architecture

Driven by the desired features, the design of peaCS mandates flexibility concern-
ing the definition of test executions, extensibility of test cases and reproducibility
of test results. The resulting test suite architecture is shown in Fig. 2. The main
application of peaCS is implemented as a shell script. It can be extended by
plugins (realised as include scripts) which perform the controller configuration
and subsequently the actual test runs. The behaviour of peaCS is driven by
both a configuration file and overriding command-line switches and interactive
commands. Test results can be compared against previously measured and deter-
mined gold standards. All output, including temporary scratch files, informative
logs, numerical results and visualisations derived from them are stored in ap-
propriately versioned locations. On the implementation level, Git, Gnuplot and
various measurement tools like Iozone are used in this workflow.

modular test

cases

log

files

peaCS

application

run

configuration

curation &

visualisation

sample data

gold standard

result

repository

local scratch

area

specific

conf.

storage service

interface(s)

storage integr./

controller

Fig. 2. Architecture of peaCS for coordinated storage integration testing

Within peaCS, variability is achieved by combining server-side parameters
such as storage service selection and configuration with client-side parameters



such as weights, redundancy and scheduling methods. Storage services and datasets
can be simulated through mass-generated local directories and files, but can also
be picked up from an existing configuration. Remote storage services can be
integrated semi-automatically by supplying a file with a list of accounts.

The variability is captured in the modular run configuration. Each step of
the test sequence can be switched on and off. Listing 1.1 conveys the structure
of the peaCS configuration file with portions of the key-value parameter pairs.

Listing 1.1. Configuration file sections of peacs.conf
[global]
mntpoint = /media/cloud
syslog = /var/log/peacs.log
[samplefiles]
[sampledirectories]
[samplewebdavs]
[redundancytest]
startbyredundancy = 1
[iozonetest]
[availabilitytest]
strategy = AllUseInParallel
[directorytest]
[plot]

The goal of peaCS is to determine the performance and the resource utili-
sation efficiency of storage integration combinations. Additionally, deterministic
functional and calculable tests are offered to build regression detection series.
These metrics will be discussed in the following three paragraphs before com-
pleting the prototype presentation with an example of a test run.

3.2 Performance Determination

In times of increasing big data requirements [5], high performance for data stor-
age, retrieval, search and general processing becomes paramount. Storage con-
trollers should not cause performance penalties through compute-intensive dis-
persion, encryption or de-duplication tasks, and yet offer these powerful mech-
anisms with high quality. In peaCS, throughput and performance are measured
through Iozone.

3.3 Efficiency Determination

Efficiency and high utilisation of minimal resources are two largely overlapping
primary goals in utility and cloud computing. This applies both to energy ef-
ficiency [2] and to hardware resource allocation scheduling [9] in addition to
efficient time utilisation through high performance. Computational resource con-
sumption, i.e. processor, main memory, disk and network adapter, is measured
through Smem, Iozone and further tools in peaCS.



3.4 Functional Testing and Calculations

Functional tests verify the capabilities of the file system interface by invoking all
possible functions on it. These functions encompass directory, file and metadata
management. As an example, maximum file name lengths and directory nest-
ing limits can be found out this way. Calculations are performed to determine
availability values for certain storage service combinations and other repeatable
per-configuration results. Higher-level calculations combine measured and calcu-
lated values. For example, peaCS can determine the efficiency of required storage
capacity per redundancy level.

3.5 Test Run Examples

Nubisave Availability/Storage Footprint - UseAllInParallel

1
2

3
4

5
6

7
8

9
10

Storages

0
10

20
30

40
50

60
70

80
90

100

Redundancy

0
20
40
60
80

100

0

20

40

60

80

100

Nubisave Availability/Storage Footprint - RoundRobin

1
2

3
4

5
6

7
8

9
10

Storages

0
10

20
30

40
50

60
70

80
90

100

Redundancy

0
20
40
60
80

100

0

20

40

60

80

100

Fig. 3. Comparison of the ratio of file availability and storage requirements, depending
on both redundancy and number of storage targets, for both parallel (left) and round-
robin (right) scheduling

peaCS allows for multi-dimensional combinatorial variations which result in
diagrams with an additional dimension for the calculated or measured target
metric, for instance, per-thread performance or RAM utilisation efficiency. The
following test results were achieved with the NubiSave cloud storage controller.

Fig. 3 gives an example of a two-dimensional variation. It has been created
by 1000 repeated availability calculation calls for each of the two main file part
distribution strategies. The results are independent of the hardware and must be
reproducible on any machine. In contrast, measured metrics differ depending on
the experimentation system and must at least be normalised before a comparison.

Fig. 4 represents a different visualisation of the availability calculation. peaCS
generates multiple table and plotting instruction files by default. This increases
the chance to spot anomalies and interesting artefacts.

Fig. 5 is an example of a measured result. For both strategies, the read
performance for a 1 MB file is determined. Given that the experiment used only
one hard disk (notebook HDD) to simulate up to 10 storage providers, it comes at



0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

A
va

ila
b

ili
ty

 in
 %

Redundancy

Nubisave Storage-Availability with Redundancy - UseAllInParallel

1 Storage
2 Storages
3 Storages
4 Storages
5 Storages
6 Storages
7 Storages
8 Storages
9 Storages

10 Storages

Fig. 4. Alternative visualisation of the parallel availability calculation results

Nubisave Read Performance - 1MB File - UseAllInParallel

Read in KB/s

12345678910

Storages

0
10

20
30

40
50

60
70

80
90

100

Redundancy

4000

6000

8000

10000

12000

14000

5000
6000
7000
8000
9000
10000
11000
12000
13000

Nubisave Read Performance - 1MB File - RoundRobin

Read in KB/s

12345678910

Storages

0
10

20
30

40
50

60
70

80
90

100

Redundancy

0
2000
4000
6000
8000

10000
12000
14000

0
2000
4000
6000
8000
10000
12000
14000

Fig. 5. Comparison of the read performance for both parallel (left) and round-robin
(right) scheduling

no surprise that the performance suffers when the file needs to be assembled from
independently read file parts (fragments) under the UseAllInParallel strategy,
compared to a single large read with nearly constant performance under the
RoundRobin strategy.

Fig. 6 contrasts the performance in Fig. 5 with the CPU utilisation for read
requests. The optimisation goal is to minimise the CPU utilisation and to max-
imise the performance. However, the optimum resides within the corner of only
one storage service with no redundancy, which is not a desired configuration for
practical use due to the lack of safety against unavailability and security against
confidentiality.

After performing the measurements, the results of peaCS can be analysed
and compared between implementations and parametrisations to derive optimi-
sation targets. Fig. 7 shows an example of a comparison between the ChironFS
replication file system and NubiSave with two strategies at 100% redundancy.
For all three configurations, a video file of 87 MB was copied 100 times to the
integration folder which replicated the file to a number of simulated cloud stor-
age folders, each of which was located on the same disk. The experiments were
conducted on a notebook with Intel Core i7 M620 CPU (4 cores) and a 320 GB



Nubisave CPU Usage - 1MB File - UseAllInParallel

cpu usage

1 2 3 4 5 6 7 8 9 10

Storages
0

10
20

30
40

50
60

70
80

90
100

Redundancy

0
10
20
30
40
50
60
70
80
90

100

%

0

20

40

60

80

100

Nubisave CPU Usage - 1MB File - RoundRobin

cpu usage

1 2 3 4 5 6 7 8 9 10

Storages
0

10
20

30
40

50
60

70
80

90
100

Redundancy

0
10
20
30
40
50
60
70
80
90

100

%

0

20

40

60

80

100

Fig. 6. Comparison of the CPU utilisation for both parallel (left) and round-robin
(right) scheduling

Hitachi SATA II disk (5400 RPM, 8 MB cache) running Debian 7.0 for AMD64.
The results clearly show an overall optimisation potential for NubiSave, which
can be attributed due to its implementation being Java while ChironFS is writ-
ten in C++, and a particular optimisation potential for the case of 5 or more
storages.

Fig. 7. Comparison between ChironFS and NubiSave n-fold replication performance
for 1 ≤ n ≤ 7

4 Related Research

Those who define analysis and comparison frameworks should not forget to anal-
yse and compare the framework itself. There are already both experimental and
simulation approaches to compare cloud services and file systems, but thus far
none to evaluate complementary client-side integration solutions with filesystem
or alternative interfaces.

CloudSim [6] uses simulation supports the modelling of distributed cloud en-
vironments and simulated experiments inside them. Although it is extensible, it
currently does not cover the integration of services on the client. C-Meter [22],



a tool developed from its Grenchmark ancestry, lets the user define artificial
workloads which are then executed in the cloud. It is not suitable for storage
service bundle integration testing due to its focus on compute clouds. Central
storage and filesystem performance comparison, on the other hand, is a well
established activity, both for native [21] and for user-space filesystems [13]. Co-
ordinated measurements of multiple file systems for distributed cloud storage
service integration are however not covered by these approaches and require the
flexible selection and configuration approach taken in peaCS. Some researchers
have proposed proof-of-retrievability (PoR) techniques for cloud storage services
[17]. These are currently not covered by peaCS but may be added as probes in
the future so that the tool will gain usefulness for security-related non-functional
properties.

Industrial practice considers cloud storage service testing and certification
a necessity3. However, as opposed to related industrial domains such as high-
performance computing with its omnipresent Linpack benchmark, there is no
standard benchmark tool available for storage services and their integration yet.
Our intention is that tools like peaCS contribute to the development of a stan-
dard way of assessing the client-side combination of cloud storage services.

5 Conclusion

The increasing availability of filesystem-based access to dedicated cloud storage
providers or mixed local and cloud storage areas calls for a systematic testing
tool. We have motivated the need for such a tool, gathered use cases through an
analysis of integration interfaces, and designed the peaCS framework accordingly.
Clearly, peaCS is work in progress and warrants large-scale experiments with
deduced comparative results. We intend to perform this work in the near future.
Its success depends on the availability of storage integration interfaces to the
research community.

Acknowledgements

This work has received funding under project number 080949277 by means of
the European Regional Development Fund (ERDF), the European Social Fund
(ESF) and the German Free State of Saxony.

References

1. Abu-Libdeh, H., Princehouse, L., Weatherspoon, H.: RACS: A Case for Cloud
Storage Diversity. In: 1st ACM Symposium on Cloud Computing (SoCC). pp.
229–240 (June 2010), Indianapolis, Indiana, USA

3 Industrial storage service testing: http://www.nasuni.com/blog/15-
testing_the_cloud_storage_providers_part_1-api



2. Beloglazov, A., Buyya, R.: Energy Efficient Resource Management in Virtualized
Cloud Data Centers. In: Proceedings of the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing (CCGrid). pp. 826–831 (May
2010), Melbourne, Australia

3. Bertolino, A., Polini, A.: SOA Test Governance: Enabling Service Integration Test-
ing across Organization and Technology Borders. In: International Conference on
Software Testing, Verification and Validation Workshops (ICSTW). pp. 277–286
(April 2009), Denver, Colorado, USA

4. Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: DEPSKY: Depend-
able and Secure Storage in a Cloud-of-Clouds. In: Proceedings of EuroSys (April
2011), Salzburg, Austria

5. Boyd, D., Crawford, K.: Six Provocations for Big Data. In: A Decade in Internet
Time: Symposium on the Dynamics of the Internet and Society (September 2011),
Oxford Internet Institute

6. Calheiros, R.N., Ranjan, R., Rose, C.A.F.D., Buyya, R.: CloudSim: A Novel Frame-
work for Modeling and Simulation of Cloud Computing Infrastructures and Ser-
vices. Tech. Rep. GRIDS-TR-2009-1, Grid Computing and Distributed Systems
Laboratory, The University of Melbourne, Australia (March 2009)

7. Canfora, G., Penta, M.D.: Testing Services and Service-Centric Systems: Chal-
lenges and Opportunities. IT Professional 8(2), 10–17 (March-April 2006)

8. Livenson, I., Laure, E.: Towards Transparent Integration of Heterogeneous Cloud
Storage Platforms. In: Proceedings of the Fourth International Workshop on Data-
Intensive Distributed Computing (DIDC). pp. 27–34 (June 2011), San Jose, Cali-
fornia, USA

9. Meng, X., Isci, C., Kephart, J., Zhang, L., Bouillet, E., Pendarakis, D.: Efficient
Resource Provisioning in Compute Clouds via VM Multiplexing. In: Proceedings of
the 7th IEEE/ACM International Conference on Autonomic Computing (ICAC).
pp. 11–20 (June 2010), Washington, DC, USA

10. Nepal, S., Friedrich, C., Henry, L., Chen, S.: A Secure Storage Service in the
Hybrid Cloud. In: Fourth IEEE/ACM International Conference on Utility and
Cloud Computing (UCC). pp. 334–335 (December 2011), Melbourne, Australia

11. Noikajana, S., Suwannasart, T.: An Improved Test Case Generation Method for
Web Service Testing fromWSDL-S and OCL with Pair-Wise Testing Technique. In:
33rd Annual IEEE International Computer Software and Applications Conference
(COMPSAC). pp. 115–123 (July 2009), Seattle, Washington, USA

12. Plank, J.S., Simmerman, S., Schuman, C.D.: Jerasure: A Library in C/C++ Facil-
itating Erasure Coding for Storage Applications. Tech. Rep. UT-CS-08-627, Uni-
versity of Tennessee, Knoxville, Tennessee, USA (August 2008)

13. Rajgarhia, A., Gehani, A.: Performance and Extension of User Space File Systems
(March 2010), Sierre, Switzerland

14. Reiff-Marganiec, S., Yu, H.Q., Tilly, M.: Service Selection Based on Non-functional
Properties. In: Service-Oriented Computing - ICSOC Workshops, Revised Se-
lected Papers. Lecture Notes in Computer Science (LNCS), vol. 4907, pp. 128–138
(September 2009), Vienna, Austria

15. Schnjakin, M., Meinel, C.: Plattform zur Bereitstellung sicherer und hochverfüg-
barer Speicherressourcen in der Cloud. In: Sicher in die digitale Welt von morgen
– 12. Dt. IT-Sicherheitskongress des BSI. SecuMedia Verlag (May 2011), Bonn,
Germany

16. Seiger, R., Groß, S., Schill, A.: SecCSIE: A Secure Cloud Storage Integrator for
Enterprises. In: 13th IEEE Conference on Commerce and Enterprise Computing,



Workshop on Clouds for Enterprises. pp. 252–255 (September 2011), Luxembourg,
Luxembourg

17. Shacham, H., Waters, B.: Compact Proofs of Retrievability. In: 14th International
Conference on the Theory and Application of Cryptology and Information Security:
Advances in Cryptology (ASIACRYPT). pp. 90–107 (February 2008), Melbourne,
Australia

18. Slamanig, D., Hanser, C.: On cloud storage and the cloud of clouds approach. In:
The 7th International Conference for Internet Technology and Secured Transac-
tions (ICITST). pp. 649–655 (December 2012), London, United Kingdom

19. Spillner, J., Müller, J., Schill, A.: Creating Optimal Cloud Storage Systems.
Future Generation Computer Systems 29(4), 1062–1072 (June 2013), DOI:
http://dx.doi.org/10.1016/j.future.2012.06.004

20. Stefanov, E., van Dijk, M., Oprea, A., Juels, A.: Iris: A Scalable Cloud File System
with Efficient Integrity Checks. In: 28th Annual Computer Security Applications
Conference (ACSAC). pp. 1–33 (December 2012), Orlando, Florida

21. Vanninen, M., Wang, J.Z.: On Benchmarking Popular File Systems. Clemson Uni-
versity Study (2009)

22. Yigitbasi, N., Iosup, A., Epema, D., Ostermann, S.: C-Meter: A Framework for
Performance Analysis of Computing Clouds. In: 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGRID). pp. 472–477 (May
2009), Shanghai, China

23. Zhang, N., Jing, J., Liu, P.: Removing the Laptop On-Road Data Disclosure Threat
in the Cloud Computing Era. In: Proceedings of the 6th International Conference
on Frontier of Computer Science and Technology (FCST) (November 2011), IEEE
Digital Library

24. Zhao, G., Rong, C., Li, J., Zhang, F., Tang, Y.: Trusted Data Sharing over Un-
trusted Cloud Storage Providers. In: IEEE Second International Conference on
Cloud Computing Technology and Science (CloudCom). pp. 97–103 (December
2010), Indianapolis, Indiana, USA

25. Zooko, Warner, B., Hopwood, D., Secor, P., Deppierraz, F., McDonald, P., Marti,
F., Tooley, M., Carstensen, K.: Tahoe-LAFS: The Least Authority File System.
Open source project (2013), http://tahoe-lafs.org/


