
Overcoming challenges in delivering services to social
networks in location centric scenarios

Tobias Lange
∗

SAP Research
52 Merivale St.

South Brisbane, Australia
tl@einbecker.net

Marek Kowalkiewicz
SAP Research
52 Merivale St.

South Brisbane, Australia
marek.kowalkiewicz@sap.com

Thomas Springer
Dresden University of

Technology
Nöthnitzer Str. 46

Dresden, Germany
thomas.springer@tu-

dresden.de
Tobias Raub
SAP Research
52 Merivale St.

South Brisbane, Australia
t.raub@sap.com

ABSTRACT
With the advent of ever more powerful mobile devices over
recent years, an increasing wealth of technical functionalities
has become ready for use at once. These were previously
only available in separate specialized devices with limited
functionality or non-mobile equipment. In addition, mobile
platform providers have taken a more open approach, en-
abling community-members to develop applications for their
platforms and to deliver them as readily consumable services
to the public. Both trends combined have led to a signifi-
cant increase in the number of innovative mobile applica-
tions. More recently, leveraging mobile users’ geolocation
for provision of services has become the focus of a number
of organizations active in the field. In this paper we propose
a solution that addresses some challenges when creating lo-
cation based social networks and offering relevant services
to participants in these networks. We have applied this so-
lution in a use case with an Australian based transportation
service provider.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: User
Interfaces

General Terms
Prototyping, Screen design, User-centered design

∗Tobias Lange worked on this topic during his internship at
SAP Research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM LBSN ’09, November 3, 2009. Seattle, WA, USA
Copyright 2009 ACM ISBN 978-1-60558-860-5 ...$10.00.

Keywords
location based social networks, dynamic service provision

1. INTRODUCTION
Mobile applications that provide services using geoloca-

tion information are becoming more and more popular, with
significant increase in numbers over recent years. Applica-
tions such as Google Latitude make extensive use of existing
centralized frameworks to facilitate creation of social net-
works focusing on exchange of self-location information. Ex-
isting large social networks—originally not considering their
users’ geolocation as an important factor—start to make
proper use of such assets. However, we are still waiting for
a ”classic” social network to extensively exploit geolocation.

We have looked into enabling geolocation features in a
community that has historically been forming a real-world
social network as opposed to a virtual one. The community
is formed around a large transportation services provider in
Australia. As one way of improving their brand image, the
service provider, further referred to as TSP (Transportation
Services Provider), has decided to focus on: (1) enabling
their customers to submit roadside assistance request in-
formation electronically with a focus on GPS-enabled mo-
bile devices, (2) let their customers form ad-hoc social net-
works, (3) deliver geographically relevant information (such
as petrol prices or road hazards). TSP clearly sees the need
for a solution to create a Location Based Social Network and
not only facilitate communication in this network but also
offer relevant services to such a customer base.

With the TSP, we identified a set of services to be offered
based on geolocation information. We have also identified a
set of requirements and challenges we had to address before
achieving the expected outcomes. In result, we have created
(1) a framework to distribute, store, and reuse geolocation
information, (2) a novel approach to creating cross-platform
native web-service based applications, and (3) an infrastruc-
ture to deliver customized user interfaces to web services.

In this paper we address the issue of creating multi plat-
form mobile applications for enabling location based social
networks and providing relevant services for them. We focus

92

on a wider set of technologies required to build an end-to-end
solution. The contribution of this work is in analyzing ex-
isting solutions and positioning them against requirements
expressed by service providers and social network facilita-
tors. We also introduce a solution for realizing scenarios
where location based social networks contain geographically
relevant services, and where development efforts in creating
and modifying client applications are reduced to the mini-
mum.

In Section 2 we analyze already existing frameworks for
UI generation and device independent applications. We in-
tentionally do not focus on existing social networking so-
lutions, as they are well known to the readers. In Section
3 we list most important issues raised by our commercial
partners when developing location based social network ap-
plications. This forms a basis for a depiction of a solution
we have worked on, described in Section 4. In Section 5
we analyse performance of our approach. We conclude our
work in Section 6.

2. STATE OF THE ART
Several methods exist to create device independent appli-

cations [4]. During design time, all of these use a device-
independent application description, be it in the form of a
markup language or a higher programming language. Also,
the user always faces a device specific interface—the pixels
will always be somehow drawn by the operating system’s
graphic system. However, the steps in between are hugely
different. There are solutions that compile platform inde-
pendent code to platform specific code that then has to be
compiled by the platform’s SDK. An overview of the possible
translation efforts is shown in Figure 1.

Some frameworks allow the direct compilation of the gen-
eral application description into platform specific byte code.
If this is the case, the general application description could
actually already be platform independent source code. This
model can be found with a range of multi-platform develop-
ment frameworks, the most prominent being QT and GTK.
Others take XML-based UI description languages and either
create native interfaces, e.g. using Java AWT or Swing, or
transform the XML with the help of XSL-T to, for example,
HTML, WML or XUL [5, 10], XIML [13]. An alternative
approach would be to facilitate mobile agents to generate
and transport the user interface. All of these approaches
are summarized by Mitrovic and Mena[9].

Other frameworks introduce a meta-language as the gen-
eral application description that can be translated to indi-
vidual, platform specific source code. An example of this
method is the Simplified Wrapper and Interface Genera-
tor[14].

Another model is to compile the platform independent
source code (the general application description) into plat-
form independent byte code that can be interpreted (or just-
in-time compiled) on the platform. Sun’s Java platforms
follow this model. Other examples include XAML [8].

The last option is to create a platform independent user
interface description that is interpreted on the device dur-
ing runtime. HTML, WAP, XForms [3], and the approach
introduced in this paper all follow this approach.

Other examples of similar frameworks include: UIML [12,
1, 2], AUIML [7], UsiXML [6], Yahoo! Blueprint [11]

During the assessment of the existing solutions, we con-
cluded that it is possible to create a device-independent

General App
Description

Platform
UI

General App
Description

Platform
UI

Platform
Specific

Bytecode

General App
Description

Platform
UI

Platform
Specific

Bytecode

Platform
Specific

Code

General App
Description

Platform
UI

Platform
Independent

UI descr.

General App
Description

Platform
UI

Platform
Independent

Bytecode

design time run time

1. general translation schema

2. direct compilation into bytecode

3. translation into platform specific code with succeeding compilation into bytecode

4. rendering of platform independent UI description during runtime

5. compilation into platform independent bytecode

Figure 1: Translation approaches

application through the use of a specialized user-interface
markup language that could describe both the user-interface
patterns described in the pattern repositories mentioned above
as well as those that we have discovered ourselves. While
the languages that have been established work well in their
domains, we believe they are not completely suitable for the
use case that we target: none of them could describe all of
the UI patterns [15] relevant for our application domain in
easy, non-bloated markup that was truly platform or ren-
dering independent and that could be rendered into native
controls that behave in a way that conform to the platform’s
look and feel.

3. ISSUES
While discussing with TSP and other parties potentially

interested in our solution, we have identified five important
challenges that businesses meet when deciding to deliver
some of their services via mobile channels. We only focused
on services that relied on geolocation information in their
functioning or whose relevance depended on the geographi-
cal location of a user. For instance a vehicle insurance claim
sent from a mobile device would use geolocation information
in the claim content, a roadside assistance request would be
only available in the physical area that TSP is responsible
for, and a buddy list function would require all participating
mobile applications to transmit their location.

3.1 Multiple mobile platforms
When developing a mobile application for the general mar-

ket, one has to consider multiple software platforms. Every
major manufacturer of mobile phones relies on an operating
system which is typically not compatible with those by other

93

manufacturers.
While it is possible to create web applications (appli-

cations that run in a web browser) that largely solve the
problem of multiple mobile platforms, service providers are
not always happy with such a solution. The major issue is
achieving an acceptable user experience. It is virtually im-
possible to create a web application that preserves the native
look and feel of a platform it is being accessed from. The
response times of web applications are—in many cases—also
below expected standards.

3.2 Relevance of services
Even a single service provider (such as a bank or an insur-

ance institution) offers a large number of services, often too
many for a person to sift through. That is why providers
frequently use personalized catalogues of services. It is es-
pecially important to be able to offer contextually relevant
services when the interaction involves small form factor de-
vices, such as mobile phones.

We chose to use geolocation information as a primary con-
text filter when offering services in location based social net-
working applications. As motivated by our work with the
TSP, we have identified a set of services that could be of-
fered to end users based on their geographical location and
have focused on these.

3.3 Hardware access limitations
Geographically enabled applications require access to hard-

ware devices on the phones, such as GPS chips. Web browsers
on mobile phones—with notable exceptions—in general do
not yet provide access to such hardware of the phones. In
our implementation for the TSP, we also require access to
other devices, such as a photo camera.

3.4 Task orientation vs. application orienta-
tion

From the user experience point of view, it is required that
application users are given a consistent application interface.
Specifically, currently—even if a group of services is related
to one task—every service made available on a mobile phone
is ”wrapped” in one application. For instance motorists may
need to use a number of mobile applications while driving:
an application to alert about road hazards, an application
to communicate with fellow motorists (for instance family
members in another car), and a roadside assistance service.

3.5 Dynamic provision of services
Experiences of the TSP show that it is important to be

able to dynamically modify capabilities of applications of-
fered to end users (for instance restricting ability to request
a specific type of service, instead of a generic one, in case
of emergency situations that put high load on the TSP).
It is also important to be able to deliver new services dy-
namically, even if not explicitly requested by users. Recent
examples of floods in the TSP region triggered a need to
deploy a ”flood-update” service to all mobile phones of the
motorists in the affected area.

4. OUR APPROACH
In our work, we have focused on addressing the issues

listed in the previous section, while preparing a set of ap-
plications requested by the TSP. We have built a solution

Request
User credentials

Service credentials
Context

1.Parsing of the
Request

Services

2. Filtering of
Subscribed Services
and general Services

3. Filtering of Context-
Related Services

4. Generation of UI
Markup Document

Response
User interface

Markup Document

Figure 2: The process of generating markup for a
mobile phone application based on context informa-
tion (geolocation) of the social network participant.

which incorporates a server running in a public cloud, pro-
viding services enabling social networking capabilities and
intermediating communication between client applications
and back end systems of the TSP. To address the issue de-
scribed in Section 3.1, we have developed a markup language
for describing user interfaces of the mobile applications. The
markup language is interpreted by framework applications
developed separately for each mobile operating system to
create native-look-and-feel applications. In our approach
we address UI meta levels from a very generic UI concept
description down to concrete UI implementation.

In order to address the issue from Section 3.2, the server
stores information about geographical relevance of services
(including information feeds), to offer only the geographi-
cally relevant services to the end users. Through using the
framework applications written specifically for each mobile
operating system, we can get easy access to hardware com-
ponents of the mobile phones, therefore addressing the issue
listed in Section 3.3.

We have also developed our framework applications in a
way that one application on the mobile phone could incor-
porate an arbitrary number of services in it (limited only
by software platform limitations and common sense in user
experience design). The server component can dynamically
push UI description components (using the developed markup
language, cf. Figure 2). Through this approach we have
addressed the issues listed in Sections 3.4 and 3.5. The
approach resembles Web browser application architecture,
however there are crucial differences, mostly related to na-
tive look and feel and hardware integration, as discussed
above.

5. VALIDATION
To test the performance of the implemented solution and

compare it to web applications as well as traditional native
applications, we set up a test application that was imple-

94

Approach Web Traditional Proposed

App. Startup ≈ 3.3s 1.2s 1.6s
Load into memory ≈ 1.3s 0.5s 0.5s
Request Generated — — 0.1s
Response Received ≈ 0.5s — 0.2s
Fully loaded 1.5s 0.7s 0.8s

Responsiveness good optimal optimal
Pan and Zoom small lag no lag no lag
Text pin onto map ≈ 1s no delay no delay
Text input slight lag no lag no lag
Submit to server ≈ 0.5s 0.2s 0.2s

Table 1: Performance comparison of a Web, Tradi-
tional Native Application and our approach.
Shown are the mean values of 20 test runs. The
standard deviation of each of the measured values
was small (maximum of 0.2s), and because of the
small sample size, is not shown here.

mented in all three ways. The application is a simple map
display that shows pins based on a GeoRSS feed. It also
includes a single text field where the user can enter text and
submit this text to a web server. We tested these applica-
tions on an original iPhone and an iPhone 3G, using both
Wi-Fi and the cellular technologies 3G, EDGE, and GPRS.
The performance figures provide only a rough estimate of
the performance of our solution, but we believe that they
provide a general trend that holds true throughout the ap-
plication scenarios we envisioned.

The usage of 3G/EDGE/GPRS instead of Wi-Fi increased
the response times by the web server by around 0.2s (GPRS:
0.4s), but we did not include this parameter in the table in
order to maintain simplicity. There was no noticeable dif-
ference between the speed of 3G and EDGE, and the larger
GPRS number is mainly due to the areas we could test
GPRS-only reception—which meant a general lower qual-
ity of cellular network reception, as 3G and EDGE were not
available anymore. As our markup (both for the request and
the response) is fairly lightweight, not much data needs to
be transmitted which, in our opinion, explains the similar
results using different cellular technologies.

As this comparison shows, the use of generic user interface
markup is only slightly slower when launching the applica-
tion than the traditional model, but both are starting at
least twice as fast as a web application. After launch, the
performance tests show our approach to be as fast and re-
sponsive as a traditional application—which is reasonable,
as our application is creating native controls in memory dur-
ing start-up, so it is using the same model as a traditional
application during main application runtime. Although web
applications do fairly well on an iPhone, during user tests
all participants felt the web application was slightly lagging
when compared to native applications or our approach for
most usages.

Noticeably, the computing time needed for the interface
generation did not increase much when the interface became
more complex—even an application interface with twenty
different types of views and elements within those views,
took only around 1s to be generated once the markup was
received.

6. SUMMARY AND OUTLOOK
With this work, we have proven that it is possible to use

a markup language to dynamically provide user interfaces
to web services to mobile applications running on various
platforms. We have introduced a new language (facilitating
embedded XForms markup) to transmit information about
web services, data models, instance data, and a user inter-
face layer using all of the previously mentioned to mobile
devices during runtime. With this technology, one can cre-
ate applications that take the current context of the user
into account and request the server to provide this markup
for the services that are relevant to the users in their context.
The proposed solution delivers superior user experience and
performance of native applications while being as flexible in
terms of development and deployment as web applications.
The architecture can be used in various application scenar-
ios and allows to rapidly prototype ideas in the vast area
of web-service-based mobile applications. We are currently
deploying our solution together with aforementioned TSP.

7. REFERENCES
[1] M. Abrams, C. Phanouriou, A. Batongbacal,

S. Williams, and J. Shuster. UIML: an
appliance-independent XML user interface language.
Computer Networks-the International Journal of
Computer and Telecommunications Networkin,
31(11):1695–1708, 1999.

[2] M. Ali, M. Abrams, and I. Harmonia. Simplifying
Construction of Multi-Platform User Interfaces Using
UIML. In UIML Europe 2001 Conference. Harmonia,
Inc., 2001.

[3] J. M. Boyer. XForms 1.1 W3C Candidate
Recommendation. World Wide Web Consortium,
2007.

[4] M. Cusumano and D. Yoffie. What Netscape learned
from cross-platform software development. 1999.

[5] D. Hyatt, B. Goodger, I. Hickson, and C. Waterson.
XML user interface language (XUL) 1.0. Mozilla.org,
2001.

[6] Q. Limbourg, J. Vanderdonckt, B. Michotte,
L. Bouillon, and V. Lopez-Jaquero. Usixml: A
language supporting multi-path development of user
interfaces. Lecture Notes in Computer Science,
3425:200, 2005.

[7] R. Merrick. AUIML: An XML Vocabulary for
Describing User Interfaces. Device Independent User
Interfaces in XML, 2001.

[8] Microsoft. Extensible application markup language,
2008.

[9] N. Mitrovic and E. Mena. Adaptive user interface for
mobile devices. Lecture Notes in Computer Science,
2545:29–43, 2002.

[10] Mozilla Developer Center. XUL, 2009.

[11] Y. D. Network. Yahoo! mobile, 2009.

[12] OASIS. User interface markup language.

[13] A. Puerta and J. Eisenstein. XIML: A Universal
Language for User Interfaces. White paper, 2001.

[14] SWIG. Simplified wrapper and interface generator,
2009.

[15] Welie. Patterns in Interaction Design, 2009.

95

