
A Service Infrastructure for the Internet of Things based on XMPP

Sven Bendel, Thomas Springer, Daniel Schuster, Alexander Schill
Computer Networks Group,

Faculty of Computer Science, TU Dresden
01062 Dresden, Germany

{sven.bendel, thomas.springer}@tu-dresden.de
{daniel.schuster, alexander.schill}@tu-dresden.de

Ralf Ackermann, Michael Ameling
SAP Next Business And Technology Dresden

SAP AG
Walldorf, Germany

{ralf.ackermann, michael.ameling}@sap.com

Abstract—Following the vision of an Internet of Things (IoT)
real world objects are integrated into the Internet to provide
data as sensors and to manipulate the real world as actors.
While current IoT approaches focus on the integration of
things based on service technologies, scenarios in domains like
smart cities, automotive or crisis management require service
platforms involving real world objects, backend-systems and
mobile devices. In this paper we introduce a service platform
based on the Extensible Messaging and Presence Protocol
(XMPP) for the development and provision of services for
such pervasive infrastructures. We argue for XMPP as protocol
for unified, real-time communication and introduce the major
concepts of our platform. Based on two case studies we
demonstrate real-time capabilities of XMPP for remote robot
control and service development in the e-mobility domain.

Keywords-service infrastructure, Internet of Things, mobile
devices, XMPP

I. INTRODUCTION

Technologies for the Internet of Things (IoT) enable the
integration of real world objects into the global infrastructure
of the Internet. In this way things can participate in virtual
processes by providing real world data as sensors and
allow to control and manipulate the real world as actors.
Current approaches for IoT mainly focus on communication
protocols to integrate things with internet protocol standards
considering limited computation and memory resources as
well as restricted bandwidth and energy availability. Special
focus is set on the integration of things at service layer.
EncDPWS [1] examplifies the efforts to use optimized
message encoding for the use of SOAP as application layer
protocol for resource constrained devices. In [2] an approach
for accessing real-world objects as RESTful services in order
to provide a Web of Things is presented.

However, upcoming scenarios in the domains of smart
cities, connected cars, crisis management or health care have
a much broader scope than considered by these projects.
They require user-centric services involving real world ob-
jects, backend-systems and mobile devices to enable users
to consume real world data and interact with the physical
environment in real-time. Thus, the underlying communi-
cation infrastructure has to support efficient, pub/sub-based
data provisioning for services and mobile apps at the one

hand and a request/response-based interaction for service
consumption on the other. Moreover, it should be available
on a large set of device platforms including resource re-
stricted sensors and actors.

The Extensible Messaging and Presence Protocol
(XMPP) [3] gains more and more attention as communica-
tion protocol in the Internet of Things. It is a family of proto-
cols standardized by the IETF and well established in the In-
ternet. Protocol stacks are available for major programming
languages and device platforms including Android, iOS, Java
and JavaScript. Even more, projects like uXMPP [4] and the
mbed XMPPClient1 implement lightweight XMPP protocol
stacks which allow deployment even on tiny sensor nodes.

According to the findings in [5] and [6] major character-
istics of XMPP address the requirements of IoT scenarios
quite well. Designed as a protocol for near real-time commu-
nication it supports small message footprint and low latency
message exchange. JIDs provide a scheme for globally
unique addresses similar to e-mail addresses. Different types
of messages (called stanzas) allow bi-directional communi-
cation based on publish/subscribe as well as request/response
interactions enabling push-based data provisioning and pull-
based service access. While its decentralized client-server ar-
chitecture ensures high scalability, XEP-0174 also specifies
an extension protocol enabling serverless messaging without
any infrastructure components. Thus, XMPP-based infras-
tructures can scale from simple infrastructureless settings
to complex configurations with multiple federated XMPP
servers.

Furthermore, XMPP is highly extensible by allowing
the specification of extension protocols (XEPs). Of high
value for the domain of IoT are XEP-0045 for efficient
m:n communication based on multi-user chats, XEP-0030
specifying a protocol for service discovery and XEP-0060
defining generic publish/subscribe funtionality.

In this paper we introduce a service platform2 based
on XMPP for the development and provision of pervasive
services interconnecting real world objects, backend systems

1http://mbed.org/cookbook/XMPPClient
2http://mobsda-dev.inf.tu-dresden.de/coca

978-1-4673-5077-8/13/$31.00 ©2013 IEEE

Work in Progress session at PerCom 2013, San Diego (19 March 2013)

385

Figure 1. Architecture overview.

and mobile devices in seamless manner. We introduce the
architecture and concepts of our platform in Section II.
Based on two case studies in Section III we demonstrate
real-time capabilies of XMPP for robot control and service
development in the domain of e-mobility.

II. APPROACH

The design goals of our platform are threefold. First, the
platform should enable a simplified and cost-efficient de-
velopment and deployment of pervasive services, especially
for 3rd parties. Considering pervasive service infrastructures,
3rd parties usually consume data provided by multiple
organizations. For example, in the automotive domain, 3rd
parties usually have to integrate floating car data from
multiple car manufacturers to provide their services to any
customer independent from its car brand. This implies the
requirement of a secure, reliable and scalable data exchange,
which is the second design goal. Third, following a user
centric approach the platform should support the integration
of apps on (mobile) devices as part of pervasive services.

The architecture of our approach is shown in Fig. 1. The
heart of the proposed system is the Service Platform which
provides a runtime environment for multiple, dynamically
deployable services. Based on the Data Hub, part of the
service runtime, the platform connects the services with
various real world objects. On the one hand these are sensor
and actor devices, depicted on the left side. On the other
hand, 3rd party backends, controller devices and (mobile)
end user devices can be connected to the service runtime.
A second major building block of the service runtime is
the App Registration and Device Management component.
It handles the provisioning of apps to mobile devices as well
as user and device management.

XMPP is used for the communication in the proposed

system. As shown in Fig. 1 all entities including the services
are XMPP clients which can be identified by a JID (e.g.
alice@example.com/home) in a system wide unique manner.
Exceptions are backend systems and specific controlling
devices which might be integrated by specific adapters
provided by the Data Hub. Not shown in Fig. 1 are XMPP
servers which are usually necessary to mediate communica-
tion between XMPP clients.

Every piece of data pushed into the system by a data
source has a unique data type. These data types are registered
at the DataHub and can then be requested by services. The
DataHub receives all the data produced by data sources reg-
istered at this particular server. Prospectively the incoming
data shall be aggregated and pushed to the services being
registered for this data type via XMPP. As of now the
DataHub is not yet implemented and the services handle the
most needed functionalities themselves which means they
are directly addressed by the generators as data receivers.
This works due to the fact that services are fully functional
XMPP clients with their own JIDs.

Data sources push data based on the publish/subscribe
principle. When a data consumer (e.g. a smartphone ap-
plication) wants to be notified of new data of a specific
type it registers at it’s appropriate service for this particular
data type. The service then adds the consumer to this data
type’s list of interested clients. Same goes for services which
register for data types at the DataHub although this usually
happens only once during their setup phase. As soon as
new data with this specific type arrives at the DataHub
the data gets pushed to the service which in turn pushes
it to the data consumer. Due to the fact, that the connection
between the data generator and the DataHub as well as the
connection between the DataHub and the service and the
connection between the service and the data consumer are

386

long-lived XMPP connections, the data is transmitted nearly
instantaneously (see section III) from a generator via the
DataHub and the appropriate service to all consumers.

III. EVALUATION

To demonstrate the feasibility of our approach, we imple-
mented two show cases, namely RemoteBot and PowerAs-
sistant. Both systems share the proposed platform as means
of implementation.

A. Show Cases

RemoteBot demonstrates the real-time capabilities for
message exchange in the implemented platform. The move-
ments of a Lego NXT Robot3 can be controlled by an
Android app and/or a Nintendo Wii Remote (see left part
of Fig. 2). The devices are interconnected via a service
residing on the Service Platform. The service is responsi-
ble for storing robot configurations, matching control and
monitoring devices with particular robots as well as for
routing the data flows between control devices and robots.
Even multi-control/monitoring device setups (i.e. robot is
controlled by Wii Remote and monitored by Android device)
are supported. Using the Wii Remote, continuous control
data is pushed to the assigned robot to allow simple robot
control. Advanced robot control is possible based on the
Android app. The app is able to visualize information about
the robot movement, for instance the current speed based
on values provided by the rotation counters of the NXT
motors or movement direction based on magnetometer data.
Dependent on that data the user may now control the robot’s
motors in nearly real-time via touch screen controls.

All communication except from the communication with
the Wii Remote and the robot is done via XMPP, even during
the configuration and setup phase. Unfortunately the Wii
Remote as well as the NXT cannot be directly addressed by
XMPP, however a simple Bluetooth2XMPP converter takes
care of the ”last mile” to the Wii Remote and the NXT.
Please refer also to the demo video4.

PowerAssistant implements an e-mobility scenario. Elec-
tric car drivers can use an Android app to search for charging
station in proximity (see right part of Fig. 2). Dependent on
current car position and remaining battery load reachable
charging stations are listed or presented on a map. Part of
the charging station data are pricing information for charging
and special offers like free Wifi access during charging (as
charging can take half an hour or even more). Drivers can
easily select the most appropriate offer and book a recharge.

The scenario involves cars of various brands accessible
via the manufacturers backend systems, backend systems
of charging stations and Android devices hosting the Pow-
erAssistant app. Interaction between these components is

3http://mindstorms.lego.com/en-us/Default.aspx
4http://www.youtube.com/watch?v=cPCDRsmcSKA

mediated by the PowerAssistantService running on the Ser-
vice Platform. Transmission of floating car data is requested
by the Android app. On startup the app subscribes for car
position and battery level of a particular car at the Pow-
erAssistantService which itself subscribes to the appropriate
manufacturers backend. When receiving the battery level,
the app calculates the remaining cruising range and presents
the current value to the user. If the remaining cruising
range drops below a defined treshold, the app subscribes for
charging station information at the PowerAssistantService.
Charging stations push new and changed offers to the
service. If these stations are within cruising range, the server
forwards these offers to the Android app. Drivers can finally
book one of the available offers. The usage of XMPP as a
protocol for all communication links in this system again
allows instant delivery of data changes.

B. Implementation

We have chosen the Mobilis platform [7] as the foundation
for our implementation. The Mobilis platform is based on
XMPP and facilitates the implementation of collaborative
real-time applications for Android, Java and Javascript. The
Mobilis server written in Java allows the dynamic deploy-
ment of services which can be discovered by clients and then
exchange XMPP messages and XMPP IQs in a bidirectional
manner.

The communication between services and servers is stan-
dardized by so called Beans (high-level abstractions of
XMPP messages and IQs) which are generated from a
service API description document (similar to WSDL).

C. First performance measurements

We evaluated our first implementations based on the
PowerAssistant use case by measuring the time between data
generation and receiving by 20 data consumers (i.e. event
propagation latency). To make sure, that the clocks at data
generator and data consumers are absolutely synchronous
both were deployed on the same physical machine (a 2012
Apple MacBook Pro with 2,3 GHz quad core processor and
8 GB RAM). On the server side a Openfire XMPP server
handles communication between the MobSDA server an the
clients. Both the Openfire and the MobSDA server were
deployed on a VM with 2,4 GHz single core processor
and 2 GB RAM. The machine running the data generator
and consumers was deployed a few (approx. 10) hops away
from the server. The route includes various different network
types like WLAN, DSL (cable) and Ethernet. Regarding the
networks we think this is a rather realistic scenario, however
we did no measurements on mobile devices yet. Additionally
we just looked at a ”1 generator : 20 consumers” situation.
For all these reasons the measurements provide us with a
first estimation of a lower boundary for event propagation
latencies in our system under somewhat realistic circum-
stances.

387

Figure 2. Show cases: RemoteBot (left), PowerAssistant app (right).

0	

100	

200	

300	

400	

0	 20	 40	 60	 80	 100	

Ev
en

t	 p
ro
pa

ga
,o

n	
la
te
nc
y	
[m

s]
	

Trial	

Figure 3. Mean event propagation latency over 100 trials with one
generator and 20 consumers.

First results are quite promising. Using the 95th percentile
for each trial we measured averagely 108 ms delay between
data generation and arrival at the consumers (see Fig. 3,
1 generated data value per second with totally 100 data
values) which means nearly instant delivery. The chart also
shows fairly constant values encouraging us to continue
usage of XMPP as our main communication protocol. We
are currently setting up a larger automated test infrastructure
to be able to run more sophisticated tests to confirm our
first results as well as to find out how many generators and
consumers our current implementation supports and what
impacts mobile devices (as generators and consumers) have.

IV. CONCLUSION

In this paper, we introduced a service infrastructure for
the Internet of Things which seamlessly integrates real world
objects, backend-systems and mobile devices. The platform
relies on XMPP as communication protocol to support effi-
cient and highly scalable communication between all build-
ing blocks. The platform simplifies service development by
supporting dynamic service deployment, convenient access
to data streams from multiple external services and the
involvement of apps running on mobile devices. Although

work is still in progress, the potential of our approach is
demonstrated with two show cases. Especially, first per-
formance measurements are quite promising. Next steps
will be deep investigations of concepts for aggregation and
adaptation of data streams inside the Data Hub, extension of
concepts and implementation of mobile device integration
and management as well as performance and scalability
evaluation in large system setups.

REFERENCES

[1] G. Moritz, D. Timmermann, R. Stoll, and F. Golatowski,
“encDPWS - message encoding of soap web services,” in Per-
vasive Computing and Communications Workshops (PERCOM
Workshops), 2010 8th IEEE International Conference on, 29
2010-april 2 2010, pp. 784 –787.

[2] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, From the
Internet of Things to the Web of Things: Resource Oriented
Architecture and Best Practices. New York Dordrecht Hei-
delberg London: Springer, 2011, ch. 5, pp. 97–129.

[3] P. Saint-Andre, “Extensible messaging and presence protocol
(XMPP): Core,” IETF RFC 6120, 2011.

[4] A. Hornsby and E. Bail, “uXMPP: Lightweight implementation
for low power operating system Contiki,” in Ultra Modern
Telecommunications Workshops, 2009. ICUMT ’09. Interna-
tional Conference on, oct. 2009, pp. 1 –5.

[5] P. Saint-Andre, “XMPP: lessons learned from ten years of
XML messaging,” Communications Magazine, IEEE, vol. 47,
no. 4, pp. 92 –96, april 2009.

[6] M. Kirsche and R. Klauck, “Unify to bridge gaps: Bringing
XMPP into the internet of things,” in Pervasive Computing
and Communications Workshops (PERCOM Workshops), 2012
IEEE International Conference on, 2012, pp. 455 –458.

[7] A. Schill, D. Schuster, T. Springer, R. Lübke, and S. Bendel.
(2012) Mobilis - pervasive social computing using XMPP.
[Online]. Available: http://mobilis.inf.tu-dresden.de

388

