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Abstract—Virtual machine images and instances (VMs) in
cloud computing centres are typically designed as isolation
containers for applications, databases and networking functions.
In order to build complex distributed applications, multiple
virtual machines must be connected, orchestrated and combined
with platform and infrastructure services from the hosting
environment. There are several reasons why sometimes it is
beneficial to introduce a new layer, Cloud-in-a-VM, which acts
as a portable management interface to a cluster of VMs.
We reason about the benefits and present our Cloud-in-a-VM
implementation called Nested Cloud which allows consumers
to become light-weight cloud operators on demand and reap
multiple advantages, including fully utilised resource allocations.
The practical usefulness and the performance of the intermediate
cloud stack VM are evaluated in a marketplace scenario.

I. LIMITATIONS OF PUBLIC CLOUDS

Cloud computing is, for a reason, also called utility com-
puting: all infrastructure, software and data should be avail-
able on demand, at the right scale, and for a price which
precisely corresponds to the usage pattern [1]. In practice,
public cloud providers only offer utility computing at a first
approximation. The on-demand or ad-hoc acquisition is limited
by manual sign-up processes which involve credit cards and
personal data; the vertical scalability is coarse-grained and
the horizontal scalability subject to customised applications;
and the billing is performed in needlessly large time slots
[2]. Furthermore, the management APIs and graphical user
interfaces cannot fulfil all potential requirements on a scale
between full automation and high user-friendliness.

The intertwined nature of cloud services and corresponding
management services contributes heavily to this issue. For
multiple reasons, to be detailed later, it would be desirable
to introduce an intermediate layer under the control of the
user. As opposed to existing cross-cloud management tools
and portals [3], it would operate directly within the user’s al-
location. We envision a Cloud-in-a-VM scenario which, when
deployed in a compute cloud, enables the infrastructure service
consumer to become a light-weight provider and overcome
the mentioned operational limitations through proper provi-
sioning and management tools. The VM which contains the
intermediate cloud and which operates subordinate application

VMs would be externally indistinguishable from traditional
application VMs.

One evident practical requirement for the envisioned Cloud-
in-a-VM approach is the pass-through and thus the availability
of hardware virtualisation features on the VM level. The
virtualisation extensions of current 64-bit processors (Intel VT-
x/VMX, AMD-V/SVM, ARM AVE) have led to sophisticated
nested virtualisation support in several hypervisors (KVM 1.0+
on Linux 3.2+, VMware vSphere 5.0+ with VHV switch, Xen
4.2+ experimentally). This means that a hypervisor on the
lowest level (L0) can operate a VM (L1) with a hypervisor
which can operate an internal VM (L2) [2]. Users of cloud
computing stacks (Xen Cloud Platform, OpenStack and others)
benefit from the pass-through. The nesting is often limited
to specific combinations (e.g. KVM-on-KVM and KVM-on-
Xen), but constantly expanding, and somewhat limited in terms
of L2 performance, but constantly improving [4]. Other hyper-
visors (Microsoft Hyper-V, Oracle VirtualBox) don’t support
nesting, and hence cloud stacks and infrastructure services on
top of them (Microsoft Azure) do neither. Even when nesting-
capable hypervisors are employed by a cloud provider, nesting
may be switched off (e.g. Amazon EC2 on Xen) for technical
or business reasons. Our Cloud-in-a-VM approach assumes
that nesting is available in the hypervisor which runs the VM
instances in a public cloud. In other words, once the pass-
through limitation is overcome, all other mentioned limitations
can be overcome as well.

II. BENEFITS OF CLOUD-IN-A-VM

The recent terms Meta Cloud, Nested Cloud, Cloud of
Clouds and Intercloud all describe sharpening trends towards
higher operational control across cloud providers’ technical
and business boundaries [5], [6]. In particular, nested clouds
are known to offer benefits over a flat VM-to-provider deploy-
ment model [7]. These benefits encompass a higher degree
of utilisation, more convenient deployment of a large number
of already interconnected VMs, economic gains through re-
purposing otherwise idle and already paid-for resources, and
unified interaction with consistent provider-independent user
interfaces.



• Higher degree of utilisation. Often, VM allocations in
the public cloud are subject to coarse-grained scaling
and duration. With a Cloud-in-a-VM, these limits can not
be overcome, but the allocation can be more efficiently
utilised by re-purposing the unused slices.

• Economic gains. In combination with the higher degree
of utilisation, re-selling otherwise unused slices grants
an income which in some cases may even cumulatively
offset the initial purchasing cost. For instance, a large
VM instance can be reserved early on for a good price
and later in parts be re-sold as subordinate spot instances.

• More convenient deployment. When large numbers of
VMs need to be deployed from existing instances, it
becomes easier to just migrate (virtualise) their host
machines instead of migrating each VM on its own.

• Consistent user interfaces. Instead of having to learn and
use a different user interface for each cloud provider, a
distributed Cloud-in-a-VM offers a unified management
interface with at least a common subset of operational
controls such as restart, rescale and snapshot creation.

Nested clouds are typically designed using nested virtualisa-
tion to avail oneself of hardware acceleration. This concept is
outlined in Fig. 1 using the following example: Two physical
hosts which run two and three VMs, respectively, are subject
to being virtualised. Instead of allocating five new VMs and
their dependencies, the virtualisation is performed at the host
level, thus moving the operating system and hypervisor to
an application level on the target host which already runs a
hypervisor.

However, so far, nested clouds have only been superficially
analysed, primarily on the underlying virtualisation level [2],
[8]. No implementation of a usable nested cloud is known to
the authors, and no insight-delivering measurement results are
available. Therefore, it is our aim to introduce Nested Cloud as
a prototypical representative of a nested Cloud-in-a-VM and
evaluate it in the context of a market-driven cloud resource
service economy.
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Fig. 1. Principal system topology involving nested virtualisation

III. NESTED CLOUD, A HIGH-UTILITY CLOUD-IN-A-VM

Nested Cloud is a VM which contains a complete dynamic
cloud computing management environment. Its functions in-
clude the start and stop of service instances which run as sub
VMs as well as their (re-)configuration in terms of variable
numbers of CPU cores, CPU priorities, amount of RAM,
available disk space and network adapters. The Nested Cloud
VM is to be deployed into a cloud provider’s IaaS service
following the same procedure as for application VMs.

Fig. 2 conveys the general structure of Nested Cloud. It
contains a central node with a database, a fault-tolerant mes-
sage queue and a scheduler, surrounded by satellite workers
which act on a higher level of virtualisation. The workers
attach to the message queue and receive commands in an
event-based programming style. Launching a VM shall serve
as example command. On arrival of the command signal,
an XML definition containing the VM configuration is being
created. It contains the unique VM UUID, the human-readable
name, the resource definitions as mentioned in the previous
paragraph and a reference to the bootable image file. The
set of commands also contains the allocation of resources
scheduled at a future time, the rescaling of resources and
the retrieval of system status information. In addition, block
storage management commands are available. Their set con-
tains the allocation, resizing and removal of storage areas.
The areas are formatted with a filesystem and can be used to
store instance snapshots or auxiliary data from the applications
themselves.
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Fig. 2. The satellite worker model of Nested Cloud

The implementation of Nested Cloud makes use of the
recursively nested virtualisation (RecVirt) project1. RecVirt
generates custom Linux kernels and Kernel Virtual Machine
(KVM) setups and wraps them using Debootstrap2 and ad-
ditional Debian package lists into a minimised Linux system
structure to yield a bootable VM disk image. As extension to
RecVirt, it sets up a minimal cloud computing environment:
An NFS mountpoint to access application disk images and an-
other one to store block images which serve as complementary
data disks.

1RecVirt: http://gitorious.org/recvirt
2Debootstrap: http://wiki.debian.org/Debootstrap



The workers are implemented in Python with libvirt to
control virtual machines and the Celery task/message queue
system. All scripts to produce Nested Cloud are provided
publicly as part of the SPACE-Cloud repository3.

By design, the system does not include any off-the-shelf
cloud computing stack to keep it lean and manageable for
research. These stacks not only offer compute and block
storage services, but also a vast amount of additional func-
tionality starting from durable object storage, databases, event
processing, load balancing and automatic scaling [9]. Suitable
open source stacks are OpenNebula, OpenStack, Eucalyptus,
Nimbus, Cloud Foundry and the Xen Cloud Platform [10],
[11]. We acknowledge the need to integrate the backend
execution into such stacks in the future to attract practicioners
and commercial deployments. From a technical point of view,
most of them can be configured to run on a hypervisor like
KVM so the general observations about nested clouds remain
valid.

IV. NESTED CLOUD IN A CLOUD RESOURCE ECONOMY

Service economies are spaces in which supply and demand
of services are regulated through open marketplaces. Espe-
cially for cloud resource services, markets need to compete
with flexible options to reach a critical mass of users. A market
which offers the technical flexibility and economic advantages
of Nested Cloud along with other expected features (real-time
updates, high scalability, user friendliness) is going to raise the
bar for future service market development. Hence, we position
HVCRB, the Highly-Virtualising Cloud Resource Broker [7],
as prototype for such a market. It consists of a marketplace
frontend and one or more Nested Cloud backends located at
various distributed infrastructure operators. Along with the
market, the SPACE service platform4 runs as technological
foundation for all service management and execution aspects.
Fig. 3 gives an overview about the architecture.
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VMs are managed through a resource market

3SPACE-Cloud Repository: http://serviceplatform.org/wiki/Cloud
4SPACE Service Platform: http://serviceplatform.org/projects/space

Users access the marketplace to offer or consume services.
The workflow is depicted in Fig. 4. They can assume both
roles, consumer and/or provider, on demand. The distinguish-
ing feature here is the connection from consumer to (casual)
provider through the use of the Nested Cloud VM. In order
to perform the transition, the consumer only needs to specify
additional information which for legal or business reason need
to be known for all providers. This might be the company
name, the tax number, bank account information or the postal
mail address.
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Fig. 4. Workflow for market users who assume a provider and/or consumer
role

Fig. 5 complements the workflow by giving an overview
about the features and characteristics of the marketplace.
One can relate its two content types, compute and storage
services, and the two roles, cloud resource service provider
and consumer. Other cloud services are not considered here,
although can be trivially added through a registration of the
corresponding domain ontologies into the service registry.
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Fig. 5. Characteristics of a cloud resource market for compute and storage
services

The marketplace is realised as a Django web application
which connects to a relational database (SQlite or MySQL)
and to the service registry ConQo [12]. A screenshot of a
compute service information page from the marketplace is



shown in Fig. 6. The service, to which a contractual does
not exist yet, has presumably been selected beforehand. Along
with a price history information widget, the page lists general
about the service and its provider as well as service quality
information. Once a contract is negotiated and established, the
allocation can be configured, started, stopped and otherwise be
interacted with.

Fig. 6. Screenshot of HVCRB, a spot market for trading and controlling
cloud resources

In essence, HVCRB demonstrates the feasibility to build
marketplaces and fuel service economies with distinguished
features such as the ability for consumers to choose the Nested
Cloud VM and micro-manage all further allocations through
it.

V. NESTED CLOUD EXPERIMENTAL RESULTS

Contrary to the previous nested virtualisation overhead anal-
ysis [2], we have evaluated Nested Cloud in a real application
scenario with a web application running in an L2 VM inside
a cloud realised by a lower-level L1 Nested Cloud VM. For
reasons of preservation and reproducibility of the experiments,
both VM levels and the HVCRB spot market are integrated
into SPACEflight, an open source mini-ecosystem for service
and cloud technologies5. Fig. 7 explains the dual-stack setup
with the default software components on the left side and
custom latest kernel and KVM configurations beneath Nested
Cloud on the right side.

The experiment testbed consists of two computers as shown
in Fig. 8. The client to the left sends web application requests
and measures the response times, whereas the one to the
right runs the nested cloud. On each virtualisation level,
there is an instance of the NginX web server as reverse
proxy to a Django web application which is attached to a
MySQL database through an relational-object mapping. The
test request selects 10 rows, converts them to objects and fills

5SPACEflight: http://serviceplatform.org/wiki/SPACEflight

Fig. 7. Integration of Nested Cloud into SPACEflight by way of introducing
a dual stack

an HTML page template with them. In periods of 3 minutes
each, 64 concurrent users are simulated with random request
intervals. The response times are measured and the overhead
is calculated based on these probes.
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Fig. 8. Testbed configuration with two nodes

The hardware and software configuration of the two com-
puters has been specified as follows.

• PC 1: CPU Intel Core2 Duo P8600 (2.4 GHz, two
cores w/ 3 MB L3 cache), RAM 4 GB, Linux kernel
3.6.3, ConQo service registry, Apache2 web server with
mod_wsgi.

• PC 2: CPU Intel Core i5 M520 (2.4 GHz, two cores (four
virtual) w/ 3 MB L3 cache), RAM 4 GB, Linux kernel
3.5, NginX HTTP proxy.

• Both PCs: KVM 1.2, libvirt, MySQL 5.1.49.
The results in Fig. 9 clearly show calibration spikes in the

first 30-40 seconds which then flatten due to operating system,
web server and database caching effects. They also show the
influence of the virtualisation and (albeit nigligible) nested
cloud management overhead such as rescaling commands
which work in real-time.

In Tab. I, the key metrics are compared. It becomes apparent
that the L1 overhead over L0 is 17.07% and L2 over L1 is



Fig. 9. Measured response times across all virtualisation levels: L0 (host)
in the first, L1 (Nested Cloud) in the second and L2 (application VM) in the
third row

52.44%, which is very different from the values presented in
[2] and related nested virtualisation literature. This discrepancy
can be explained by the real-world nature of the application
which utilises all resources (processor, memory and I/O) at
once. Furthermore, non-optimised and CPU-intensive VirtIO
drivers contribute to the results [4], [13].

TABLE I
HTTP REQUEST DURATION, IN SECONDS

Nesting level Avg ø 80%-ile 90%-ile
L0 0.082 0.081 0.098
L1 0.096 0.109 0.128
L2 0.125 0.144 0.181

VI. CONCLUSION

Nested Cloud, a realisation of the Cloud-in-a-VM idea, can
be deployed as instance into public or private IaaS providers
to achieve higher control about the allocation and scheduling
of application VMs. Currently, the two main obstacles for
practical operation are the relatively high run-time overhead
for practical use cases and the simplified assumptions about

network resource sharing, e.g. through elastic IP addresses. We
encourage further work on these two aspects to increase the
chances for portable provider-independent resource markets
and Cloud-in-a-VM management solutions.
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