
Towards Flexible Data Sharing in Multi-Device
Mobility Scenarios
Josef Spillner, Sven Bendel, Alexander Schill

Faculty of Computer Science
Technische Universität Dresden

01062 Dresden, Germany
Email: {josef.spillner,sven.bendel,alexander.schill}@tu-dresden.de

Abstract—For most people, computers have evolved from large
stationary machines into a multitude of interconnected personal
and mobile devices which can be and are used at any convenient
time. Likewise, the handling of data has evolved from the
traditional input-processing-output chain into more sophisticated
flows which involve splitting, joining, duplication, migration and
sharing. Users of multiple mobile devices hence require new
techniques for being able to migrate and share data across device
boundaries depending on the context. We present a desktop-
level data communication technique for personal, social and
collaborative mobile environments and discuss its implementation
into existing devices and platforms.

I. MOTIVATION

Data sharing is an essential activity in personal computing.
Data can be shared between applications on one device,
between applications on multiple devices of one user, or even
between applications on the devices of multiple users. Access
to web applications and web services allows for even more
sharing schemes. Sharing between local applications happens
in memory by using a clipboard as copy/paste mediator with
one active selection and multiple buffers, or by passing file
references, for instance for temporary files created by down-
loads which are then picked up by the responsible application.
Sharing between local and remote applications, as well as just
between remote applications, is made possible by networked
services which run on one of the devices or centrally in the
network. Likewise, sharing between devices needs access to
such a service, unless physical media is used to transfer the
files.

Data sharing is distinguishable from file sharing and from
application sharing. File sharing refers to replication of files
for later use, whereas data sharing implies an instant use of
the data for some purpose with or without a serialization
to files. Application or document sharing assumes multiple
users working on one synchronized document which is opened
and potentially collaboratively edited by multiple networked
applications in parallel. The notion of data in this paper is
referring to both document contents and buffer contents. Fig.
1 visualizes the scope of data sharing.

The data handling in current personal environments such
as desktops and mobile phone interfaces is insufficient and
difficult for most real-time collaborative scenarios involving
many devices and services. While files can be downloaded,

App I

App II

App 
III App 

IVU
SE

R
 A

U
SER

 B

Data Source
Service

Network/Cloud

Fig. 1. Overview about the scope of data sharing with multiple devices,
applications and services accessed over a network

then copied to another device and finally opened there man-
ually, it would be desirable to be able to chain these actions
automatically. An example for this requirement is a download
of an electronic book on an Internet-connected mobile phone.
The book should not reside on the phone, but rather open
instantly on an eBook reader which has a better display,
although it lacks Internet connectivity.

A second difficulty exists due to devices, especially mobile
ones, being in a volatile state of being switched on, online and
reachable. Most actions assume a direct connectivity whereas
in practice they fail when the connectivity is not present.
Manual sharing processes typically involve removable media
(for nearby users) and online sharing services (for both nearby
and distant users). This convenience should be kept as much as
possible, while the inconveniences, including a manual sign-up
at a potentially untrusted online service, should be minimized.

A third difficulty is that social and trust relations are not
taken into account. Neither are device capabilities. Hence,
each cross-device action requires manual thinking about the
risks and benefits of passing over the handling of a file to a
particular device. Sometimes, a much more high-level process
would be desirable. An example for this is ’share this photo
album with all of my friends’. When a friend is reachable on



two devices, the most suitable one should receive the album.
If a friend is not reachable at all, a web service should store
the album for later retrieval instead.

A fourth difficulty results from the temporary nature of
many data sharing situations. Often, a file is passed for
glancing over it, or a picture is shown to somebody to provoke
a quick comment. Currently, the receiving user is obligated to
garbage-collect shared data because sharing mechanisms don’t
support timestamps or flags indicating temporal aspects. In
social network research, timestamps have been suggested as a
(rather ineffective) access control measure, whereas for data
sharing they can serve as a useful hint for data decay.

In order to overcome these four difficulties, we propose
OpenShare, a powerful delay-tolerant and decentral data shar-
ing scheme which works across device-bound and online
applications by taking the specific data, device and service
properties into account. We claim and show that OpenShare
can be implemented with today’s tools, and we aim at demon-
strating its usefulness through user testing in actual data
sharing scenarios. In the next section, the current handling
of data in various popular environments is described more
precisely. A summary and rating of relevant findings from
research on more flexible data sharing complements this anal-
ysis. Then, we present our intended concept for data handling
between devices and services. We include a formalization of
data sharing environments, an architecture description and a
prototype discussion as first results of our work. Finally, the
text is concluded with a future work plan which describes the
evaluation.

II. EXISTING DATA HANDLING AND SHARING

In this background section, we explain media types, look
at existing media type handling in desktops, followed by an
anlysis of research on data sharing schemes and a summary
of actual sharing systems.

MIME (Multipart Internet Message Extension) has his-
torically been introduced to enable rich e-mail content be-
yond plain text. Over time, the handling of media types
initially specified with MIME has become a core concept
of desktop environments on PCs and mobile devices. The
MIME media type registry of IANA, the Internet Assigned
Numbers Authority, currently lists 1401 types in the type
classes application (1014), audio (140), example (1), image
(47), message (22), model (17), multipart (16), text (69) and
video (75) (http://www.iana.org/assignments/media-types).

The file mime.types, introduced with the Netscape
browsers, its mime-support database variant (789
entries) and the shared-mime-info package
(http://freedesktop.org/wiki/Specifications/shared-mime-info-
spec, 939 entries in 17 classes) are typical representations
of MIME types for desktop applications. These media type
databases map media types to file name patterns, content
excerpts (so-called magic detection), aliases, preferred
icons for their visualization and human-readable descriptions.
A number of desktops and applications make use of
shared-mime-info, including the open source desktop

environments KDE, GNOME and XFCE, by complementing
it with a database of installed applications and their data
handling capabilities (so-called mailcap). File managers
and web browsers are the dominant media type-dependent
applications. They offer type-dependent context menus to let
the user perform actions with chosen files, for instance ’open
with (application)...’, ’send to (device, user)...’, generic local
actions including ’compress’/’uncompress’, ’encrypt’, ’sign’,
’show preview’, ’submit to web’ or ’sync with the cloud’, and
type-specific ones such as ’mount (ISO)’ or ’extract pages
(from PDF)’.

On other desktops, similar databases and actions are used.
Apple Mac OS X offers the Launch Service which reads
application and service .plist files and manages a central
file associations database. Microsoft Windows uses registry
entries which map to media types. On Google Android, there
is a MIME media type database for web-related libraries
and type-dependent intents which work like actions. The
JavaBeans Activation Framework is intended to be used for
encapsulating data access, data type determination and type-
dependent operations in Java environments. Beyond desktops,
media types are used in HTTP servers to specify the type of
transmitted content.

In none of these desktops, type-dependent actions consider
sharing workflows, device states and capabilities or trust
relations.

Several researchers have proposed advanced data sharing
schemes particularly for mobile devices. However, none of
them ties into existing and widely used desktop and application
concepts. XMIDDLE, a middleware to share and collabora-
tively edit XML documents with other users and reconcile
them with global versions, has been one of the first support
systems [1]. Chucking, a sharing technique to project screen
contents from a mobile device onto a public display [2], comes
closer to the intended use cases. However, Chucking inherently
assumes a real-time interaction whereas our goal is to support
passing data to devices which are currently switched off, or
in private to users who are currently unavailable. Gradual
Engagement [3] delivers a suitable design pattern but is not
concerned with integration.

The synchronization of files depending on device capa-
bilities has also been identified early on as a challenging
topic [4]. Capability descriptions of services, in particular
Software-as-a-Service (SaaS), exist in various formats, for
example as instances of the Universal Service Description
Language (USDL) or the Web Service Modelling Language
(WSML). However, there isn’t any suitable proposal yet on
how to model application capabilities beyond media type
handling. On the other hand, the capabilities of devices can
be expressed with W3C’s Composite Capability/Preference
Profiles (CC/PP), Comprehensive Structured Context Profiles
(CSCP) and further serialized models [5].

There are already some deployed alternatives for the sharing
of files and other data. We will briefly analyze e-mail systems,
cloud storage offerings and specific sharing services, and
reason about why these systems are not adequate sharing



backbones.
Sharing over the network is often performed using e-mail

out of convenience. The global distributed e-mail system has
been tested, is in wide use and works reliable with client im-
plementations for all end user platforms. E-mail also integrates
nicely with web services to import and deliver data. Neverthe-
less, the e-mail system has not been designed for automated
data sharing, and this shows in a number of undesired effects.
Firstly, sharing tasks mix up with regular communication.
This leads to tedious search or filter maintenance. Secondly,
complex workflows need to be decomposed manually into
individual message exchanges. Thirdly, devices cannot be
distinguished by their capabilities. Fourthly, practical anti-
spam measures cause unnecessary delays, malfunctions and a
low quality of experience. These measures are often combined
with inflexible quotas and strict capacity restrictions imposed
by the hub providers.

Dropbox [6] being a popular representative for cloud storage
at first sight allows seamless synchronization of files between
different devices and platforms. They also provide an API
for integration into other web services. But there are some
major drawbacks when using Dropbox. Firstly, there is no way
to decide on what to do with sent files on the destination
device. Secondly, syncing must be manually initiated on
the destination side because Dropbox does not automatically
detect changes in the main repository on mobile devices unless
per-application polling is used. This results in the need to wait
for the device to sync which limits the perception of seamless
sharing and increases power consumption. Thirdly, syncing
objects other than files (such as pure text in buffers) is not
possible. Fourthly, there is no selective sync to only certain
devices. Folder sharing to other users is possible, while single
file sharing is not. Fifthly, the user has to move a file into a
special folder in the file system. To preserve precious online
storage users also tend to remove the file after they are done
with it.

Pushbullet [7] is a web service to push semantically distin-
guishable data such as notes, addresses, lists and files from a
web browser, using a browser extension or a plain web fron-
tend, to paired Android devices. It avoids interaction with the
destination device and makes objects easy to find due to their
appearance in the notification bar. However, it is limited to
just Android platforms, excludes social structures to generate
destination candidate groups, is not integrated into desktop
environments and again requires a manual decomposition of
workflows. Furthermore, it is a closed commercial application
which makes it impossible to extend.

Hence, any of these deployed systems and technologies are
insufficient for our goals. None of them supports workflows,
web services and applications as sharing destinations, as well
as advanced content-based sharing and interaction by recog-
nizing the appropriate content types and device capabilities.
Most require manual interaction with the destination device.
Synchronizing cloud storage services in particular face major
obstacles which can only be solved by smarter client-side
sharing facilities.

III. CONCEPT FOR CROSS-DEVICE DATA HANDLING

We propose OpenShare, a feature-rich scheme to share data
between two or more applications, devices or users. OpenShare
is characterized by its delay-tolerant (queued) operation, by
its usability in decentralized environments, and by its strong
reliance on well-described data objects and device properties.
Compared to existing mobile computing environments, it
offers:
• Unified sharing. Objects resulting from buffers or files

shall be handled equally to keep the learning curve short.
• Chained actions. Users can combine actions which are

otherwise manually performed on each device. For in-
stance, a composite action ’open on largest screen’ selects
the device with the largest screen, then copies the data to
it and finally processes it with the default application.

• Device descriptions. Each device is thoroughly de-
scribed in a machine-readable way. In particular, its
non-functional properties such as trust, ownership and
capabilities are considered. While device descriptions
exist, they are so far not used for data sharing tasks, and
need to be extended to capture sharing-specific properties.

• Application descriptions. These are intersected with de-
vice descriptions and matched against the media types
of relevance in a sharing task. Thus far, no application
description specification exists. In addition, native and
web applications and web services should all be consid-
ered first-class citizens and treated equally in terms of
user experience by using a more abstract definition of
applications.

• Asynchronous actions. Users copy buffered data or a file
to a device which is currently offline. As soon as the
device reconnects to the network, it will receive the data.

• Storage service integration. Data which is queued is
stored with high quality and security over a selection
of appropriate services. In order to achieve the desired
quality, dispersion and encryption techniques are applied.

• Access to the OpenShare functions as a service through
a fault-tolerant proxy in the network, or through local
publish-subscribe desktop services, e.g. D-Bus, COM or
Distributed Notifications on the aforementioned desktops.

• Middleware support for asynchronous queue operations
either between a centrally located storage service and
the target devices, or in a peer-to-peer network in which
each device operates a queue. We intend to use existing
distributed social network protocols such as XMPP for
this feature. Inter-application sharing, alias intelligent
copy and paste between applications on the same device,
will not need to access the central OpenShare services,
and clients in the same subnet can perform peer-to-peer
sharing without using a globally accessible OpenShare
service.

The enclosing workflow of sharing activities is outlined in
Fig. 2. The individual tasks can be conditionally executed.
Most OpenShare features are well represented within the
workflow, for instance the initial choice of whether an action



Choose data

START

Dest. or 
action?

Dest.

Device list is filtered 
based on data type 

and device 
capabilities

Specific 
action?

Yes

Choose action from 
list filtered by 

device capabilities 
and data type

No, data is handled 
by default 
application

END

Action

Own 
device?

Yes

No

Choose terms of 
sharing

Data is handled
based on sharing

terms

optional
mandatory/

default

No, data is handled by
best fitting device

Specific 
device?

Refine device list with
 advanced filters

Choose action from 
list filtered by data 
type and available 

devices

Yes

 Choose device from 
list filtered by 

action and device 
capabilities

Refine device list with
advanced filters

Own 
device?

No
Yes

Fig. 2. Sharing workflow from a user’s perspective based on fixed actions or destinations

or a destination is fixed.
Application and device capabilities are intersected to yield

all possible and finally, through a ranking mechanism, the best
possible combinations. This reduces the effort for the user to
find the right device and application for the shared object.
An intelligent sharing destination filter which works similar
to the client-server matchmaking found in service-oriented
brokers will be used to create this intersection. One challenge
is that the filter will perform a three-way matchmaking not yet
found in these brokers. It adds complexity by introducing three
hard entity levels (user requirements, devices, applications)
alongside soft destination selection via more filters – biggest
display, closest mobile device and similar ones. The filters also
need to derive not explicitly described attributes such as cost
and performance differences when using a service instead of a
local device as a target. This complexity poses problems on the
design of the user interface and the algorithmic performance
which we attempt to solve in the future, while this paper
focuses on the coarse-grained sharing workflows.

IV. FORMAL REPRESENTATION AND ARCHITECTURE

The realization of the OpenShare concept follows a formal
software design technique. Initially, we suggest a suitable
abstract and formal representation of the scenarios and goals
we have in mind. Then, we derive a software architecture and
explain its prototypical implementation.

A. Representation of cross-device sharing scenarios

We regard a set of users U |u1...un with mobile devices
M |m1...mn and online services S|s1...sn. All devices and
some of the services offer personalized accounts MU and
SU . All devices and accounts offer computational resources

(storage, communication and computation) with different lim-
itations. On each device and service endpoint, there are
applications AM/AS |a1...1n which operate on documents D
with a certain document type TD. All operations O are bound
to the document type as OT and take arguments which may
include M , S and U . We do not consider device, application
and data ownership in this model but acknowledge the need
to secure all sharing transactions through appropriate means,
including a permission management for sharing to devices of
other users as well as web applications and services.

A user who wants to open a PDF file on a first device
so that it displays on the second is modeled as follows:
mu11 : OT :=PDF (D) = display(mu12, a2). A more complex
workflow is the download of a video file from a public
web application with subsequent time-limited sharing of an
embedded key frame to another user: mu11 : OT :=V ideo(D) =
download(S) ∧OT :=Picture(D

′) = store(mu21, duration).

B. OpenShare architecture
The architecture of the envisioned data sharing framework

– Fig. 3 – consists of document and buffer operation han-
dlers, access to a sharing middleware on each device and a
device database to keep track of available devices and their
capabilities. The database is populated by a device discovery
tool but can be manually extended and corrected by a user
in a one-time effort. We also assume an application database
on each device. As outlined before, such databases already
exist but need to be enhanced with specific capability attributes
and extended to local web applications which are growing in
popularity. The OpenShare middleware itself may be located
centrally or distributed across all devices. One requirement is
that it is permanently available from all devices which take
part in a sharing task.



Browser

Mobilis Service Platform

OpenShare Service

Local 
OpenShare 

Service

User & Device 
Management

DB

Web app

Web app

Web app

HTTP

Native app

Native app Intent, IPC, Service 
API, D-Bus...

Web service

Web service

Web service

HTTP/XMPP

Mobilis 
Service

XMPP

XMPP

D
EV

IC
E

IN
TER

N
ET

DB

Mobilis

OpenShare

Third party apps/services

GUI

Fig. 3. OpenShare architecture with a central service and database accessible by all devices and decentral local services per device

C. Device database and discovery realisation

We have prototypically implemented OpenShare using a
combination of existing prototypes and glue files for desktop
integration.

A prerequisite for finding the right device is a mobile
device database for which the use of a device discovery tool
is essential. Several such tools exist which combine device
searches over heterogeneous protocols, including Bluetooth,
DNS-SD and WiFi. Webinos [8] and FlexiSource [9] are
freely available for mobile device discovery. Further tools exist
as implementations of Mobile Ad-hoc Networks (MANETs),
for instance Ambient Talk [10], which cover more network
functions including decentralized routing under changing envi-
ronment conditions and device configurations. For OpenShare,
we consider FlexiSource due to its support for device-bound
capability and ownership descriptions. It is a device discovery
framework written in Python with actual discovery plugins
implemented in arbitrary programming languages. Each plu-
gin scans for devices. Once found, it retrieves information
about the computational resources and additionally, if possible,
device-bound description files which express capabilities and
ownership.

Fig. 4. Screenshot of the KDE desktop and file manager integration of
OpenShare

All descriptions are then merged into one database per Flex-
iSource instance. For OpenShare, each active (sending) device
hence either runs its own FlexiSource instance or accesses a
central database in the network. The XML database contents
are transformed into desktop-specific data handling extensions.
For KDE, a file manager service menu and a clipboard action
menu are created. Through them, an openshare-client is
called with the target application, user or device as argument.
Fig. 4 is a screenshot from the KDE file manager Dolphin
whose context menus have been populated with actions from
discovered devices.

D. Workflow realisation

Combining the convenient session and publish/subscribe
characteristics with transfer capabilities for files and arbitrary
data, the XMPP protocol suite in combination with occasional
HTTP and local IPC calls delivers the lower-level connectivity
layer of OpenShare. On top of XMPP, the Mobilis Platform
[11] offers rich functionality for social and collaborative
scenarios involving multiple users and devices. All devices
can be dynamically maintained using FlexiSource. Through
Fig. 3, the use of Mobilis for the central OpenShare service
becomes obvious. Fig. 5 shows the previous workflow from
the system perspective with more details on communication
choices.

A first version of the OpenShare service has been imple-
mented. The combination of this service, the Mobilis platform,
the FlexiSource framework and the extensibility of contem-
porary desktops make more flexible data sharing possible.
Apart from the features of OpenShare, we expect a practically
usable prototype with several strong non-functional properties
to promote its adoption. To promote its adoption, we will



START

User selects sharing 
data and destination 
(either specific or via 

filter or via action)

Dest. app 
type?

Send data to dest. app 
via OS specific 

mechanisms (i.e. 
Intent, IPC, Service 

API, D-Bus etc.)

Locally installed
application

Send data to Webapp 
via local HTTP

Webapp running
in browser

Send data to Web 
Service via HTTP/

XMPP

Web Service

Send data to remote 
OpenShare Service via 

XMPP

Remotely installed
app

Dest. app
type?

Locally installed
application

Webapp running in
browser

Origin app 
type?

Send data to local 
OpenShare Service via 

OS specific mechanisms 
(i.e. Intent, IPC, Service 

API, D-Bus etc.)

Native application

Send data to local 
OpenShare Service via 

HTTP

Webapp running
in browser

END

Fig. 5. System perspective: Internal view on the sharing workflow which involves local protocols along with HTTP and XMPP

work on multi-platform support as well as on developer and
community traction through libraries especially for web and
desktop applications.

V. CONCLUSION

OpenShare has been designed as powerful and flexible
instant data sharing framework which overcomes many lim-
itations of existing approaches already deployed in practice
and proposed by previous research. In this paper, we have
motivated the raison d’être for OpenShare. It combines local
media-type actions with service-oriented matchmaking based
on weighted non-functional property matching and both peer-
to-peer and client-server interactions between devices and ser-
vices. We have further formalized sharing activities, presented
a sharing framework architecture and discussed initial imple-
mentation parts which cover certain phases of the timeline of
sharing activities. This work uses and extends existing proto-
types for device discovery and messaging between devices to
demonstrate a proof of concept. It is ongoing with regards to
the integration into native desktops and working environments.
We plan to conclude the implementation and perform scenario
tests with smaller groups of users as follow-up work.

ACKNOWLEDGEMENTS

This work has received funding under project number
080949277 by means of the European Regional Development
Fund (ERDF), the European Social Fund (ESF) and the
German Free State of Saxony.

REFERENCES

[1] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich, “XMIDDLE:
A Data-Sharing Middleware for Mobile Computing,” Wireless Personal
Communications, vol. 21, no. 1, pp. 77–103, April 2002.

[2] N. Hassan, M. M. Rahman, P. Irani, and P. Graham, “Chucking: A
One-Handed Document Sharing Technique,” in Proceedings of the 12th
IFIP TC 13 International Conference on Human-Computer Interaction:
Part II (INTERACT), September 2009, pp. 264–278, Cape Town, South
Africa.

[3] N. Marquardt, T. Ballendat, S. Boring, S. Greenberg, and K. Hinckley,
“Gradual engagement: facilitating information exchange between digital
devices as a function of proximity,” in Proceedings of the 2012 ACM
International Conference on Interactive Tabletops and Surfaces (ITS),
November 2012, pp. 31–40, Cambridge, Massachusetts, USA.

[4] A. Sinitsyn, “A Synchronization Framework for Personal Mobile
Servers,” in Proceedings of the Second IEEE Annual Conference on
Pervasive Computing and Communications (PerCom) Workshops, March
2004, pp. 208–212, Orlando, Florida, USA.

[5] R. Reichle, M. Wagner, M. U. Khan, K. Geihs, J. Lorenzo, M. Valla,
C. Fra, N. Paspallis, and G. A. Papadopoulos, “A Comprehensive
Context Modeling Framework for Pervasive Computing Systems,” in
Proceedings of the 8th IFIP WG 6.1 International Conference on
Distributed Applications and Interoperable Systems (DAIS), June 2008,
pp. 281–295, Oslo, Norway.

[6] Dropbox Inc. (2013) Dropbox. [Online]. Available:
https://www.dropbox.com/

[7] PushBullet Inc. (2013) PushBullet - Easily push to your Android
devices. [Online]. Available: https://www.pushbullet.com/

[8] G. Gionis, H. Desruelle, D. Blomme, J. Lyle, S. Faily, and L. Bassbouss,
“»Do we know each other or is it just our Devices?«: A Federated
Context Model for Describing Social Activity Across Devices,” in
W3C/PrimeLife Federated Social Web Europe Conference (FSW), June
2011, Berlin, Germany.

[9] J. Spillner, J. Schad, and S. Zepezauer, “Personal and Federated Cloud
Management Cockpit,” PIK - Praxis der Informationsverarbeitung und
Kommunikation, vol. 36, no. 1, p. 44, February 2013, dOI: 10.1515/pik-
2012-0149.

[10] T. Van Cutsem, “AmbientTalk: modern actors for modern networks,” in
Proceedings of the compilation of the co-located workshops on DSM’11,
TMC’11, AGERE!’11, AOOPES’11, NEAT’11, & VMIL’11, ser.
SPLASH ’11 Workshops. New York, NY, USA: ACM, 2011, pp. 227–
230. [Online]. Available: http://doi.acm.org/10.1145/2095050.2095085

[11] D. Schuster, R. Lübke, S. Bendel, T. Springer, and A. Schill, “Mobilis -
Comprehensive Developer Support for Building Pervasive Social Com-
puting Applications,” in Networked Systems Conference (NetSys/KiVS) -
Communication Software Award Demo, March 2013, Stuttgart, Germany
(Demo).


