
Ontofly: Ontology Engineering Using the Web
David Urbansky

University of Technology Dresden
Dresden, Germany

david.urbansky@tu-dresden.de

Robert Willner
University of Technology Dresden

Dresden, Germany
robert.willner@gmail.com

Alexander Schill
University of Technology Dresden

Dresden, Germany
alexander.schill@tu-dresden.de

Abstract—Ontology engineering is the task of creating and
refining a knowledge model for one or multiple domains. This
process is difficult and a great deal of time is required to refine
the ontology. In this paper, we present a system that semi-
automatically aids the user in creating an ontology using a
standard web browser. Our system helps to create ontologies
whose target domain can be found on the web and which will
be used for extracting knowledge to populate the ontology later
on.

I. INTRODUCTION

In recent years, industry and academia have developed tools,
systems, and technologies that aim for semantic representation
of data. Many tasks, such as knowledge modeling, ontology
population, ontology matching, and ontology engineering, play
major roles in the movement towards semantic data. The
semantic web initiative [1] started the trend almost a decade
ago for the unstructured web data, resulting in a continuously
growing web of data.

In this paper we focus on browser-based ontology engi-
neering with suggestion functionality to ease the engineering
process. Our major research questions are as follows:

1) In which ways can we assist an ontology engineer with
creating a domain ontology?

2) How can we suggest potentially useful information
(properties, concepts, instances, synonyms) to the on-
tology engineer in order to minimize his/her cognitive
work?

3) What vocabulary extensions are necessary to equip the
ontology with enough information to be used in an
ontology-based web information extraction system?

Our hypothesis is that a domain expert can create a domain
ontology, which should be used for ontology-based extraction,
far quicker and more effectively (more relevant concepts,
properties, synonyms, etc.) if the ontology can be created close
to the real web data instead of using an ontology editor that is
not connected to the corpus where the later extraction should
happen.

Our major contributions in this paper are as follows:

1) We describe the design of an ontology editor that works
on real web data to guide the engineering process.

2) We explain a technique that automatically suggests po-
tential property candidates for the ontology.

3) We show a vocabulary extension to better specify the
range of properties that are added to the ontology. This
extension is especially important when the ontology is
used in an ontology-based web information extraction
system such as WebKnox [8] afterwards.

In the next section we will describe a use case that led to the
requirements and design of our system, which are explained
later.

II. USE CASE

In our use case, we want to create a knowledge base
with factual information about mobile phones. We know that
this information can be found on the web and we want an
ontology-based web information extraction system to extract
it automatically. In order to guide the extraction system, we
need to supply an ontology that is structured and named very
similarly to the representations on the web. A domain expert
now creates such an ontology using a state-of-the-art ontology
editor such as Protege [5]. The expert might now visit mobile
phone producer websites to understand which properties and
facts are associated with the concept mobile phone. He or
she will now find that, among others, mobile phones have an
“internal memory”, a “display size”, and a “talk time”. These
properties are now added to the concept using the ontology
editor. The expert now faces several problems:

1) The domain expert has to switch between the source
of information (the website) and the ontology editor.
This reoccurring process is time consuming and error
prone since the expert has to copy the property names
manually.

2) The expert finds a table with facts about a mobile
phone. All properties in the table are of interest to the
ontology so the expert has to manually transfer them into
the ontology editor and check whether some properties
are synonyms of existing ones. Furthermore, relevant
property names might be buried in the text of the web
page and are difficult for a human editor to discover.

3) The expert finds additional information about the prop-
erty ranges. For example, after researching a couple
of mobile phones he or she might conclude that the
“internal memory” property has values between 32K and
32GB. This range restriction would greatly help the sub-
sequent extraction process, but the domain expert needs
to express this knowledge manually in the ontology.



In the following sections we explain how our web ontology
editor tool solves these problems and eases the process of
creating an ontology.

III. ONTOFLY

Our ontology editor can create ontologies as you “fly”
through the web and is therefore called Ontofly. In this section
we will explain the architecture of our system, discuss its
capabilities, and describe vocabulary extensions that we made
to better suit the final ontology for subsequent extraction
processes.

A. Architecture

Figure 1 shows the schematic architecture of Ontofly. The
system is a client server application. The server part is realized
as a web service that uses the Representational State Transfer
(REST) architecture as described in [3]. The application on
the client is realized in HTML and JavaScript. The client
application consists of two frames, the Ontofly management
frame on the top and an i-frame where the ontology engineer
can navigate to any arbitrary page. This design allows our
application to work in every modern web browser. The client
server communication is done by Asynchronous JavaScript
And XML (AJAX), that is, whenever the user loads or adds an
item to the ontology, the data is transfered from/to the server
and ontology changes are done on the server side. We use Jena
[2] to read and write the ontology and mirror all ontology
changes in a relational database which is then used by the
extraction system WebKnox [8] for the subsequent extraction
process.

Fig. 1. Architecture of the Ontofly system.

B. Fact Candidate Suggestion
Ontofly allows the engineer to manually add, change, and

delete items from the ontology. These items can be concepts
(e.g. “mobile phone”), properties (e.g. “memory”) and prop-
erty values (e.g. “160 MB” for the attribute “memory”). Figure
2 shows an example input mask that appears after the user
highlighted the property “Memory” in the fact table about a
mobile phone. Here we have added the term as a property
for the concept mobile phone and have set the data type to
“numeric” and the range type to “minmax”. We will explain
the range type in Section III-C.

Fig. 2. Adding a property to the ontology.

After the ontology contains several properties for a given
concept the Server will use WebKnox to suggest properties
and values that are then highlighted by the client application.
This process should make it easier for the ontology engineer to
find more relevant terms and values for the ontology. Figure 3
shows how Ontofly suggests the property “release date” for the
mobile phone with a possible value of “2007”. Terms that are
suggestions have a red frame, while property suggestions and
possible values are highlighted in cyan and tan respectively.

Fig. 3. Ontofly suggest facts that might be useful for the ontology.

C. Range Type
Our target ontology is intended to be used as input for a web

information extraction process. We therefore want to provide
information that helps guide this process. Ontofly introduces
a few new vocabulary terms to specify the range of values for
a property. These terms use the WebKnox namespace “wx:”.

1) The hasRange property has a property as rdfs:domain
and a blank node of rdfs:range. One property can have
several “hasRange” properties.



2) The rangeType is the type of range we want to specify.
We distinguish between “minmax” and “possible”. The
term “minmax” means that we know the numeric range
of values for the property, the term “possible” means
that we know all possible values that the property can
have.

3) The properties rangeMin, rangeMax, and rangePossi-
ble specify the values in the range of the property. If the
rangeType is “minmax”, we specify the minimum and
maximum values with “rangeMin” and “rangeMax” re-
spectively. If the rangeType is “possible”, we enumerate
all possible values using “rangePossible”.

Figure 4 shows an example graph for the property “mem-
ory”. We see that the property can belong to several domains
(“phone” and “camera”) that we declare using “rdfs:domain”.
We use “rdfs:range” to specify that the values are integer val-
ues and make it an OWL “datatypeProperty” using “rdfs:type”.
We now declare one range for the “memory” property using
“wx:hasRange” and connect it with a blank node (“rn1”).
We use “rdfs:domain” again to declare that the blank node
specifies the range type for the memory property that belongs
to the phone concept since the memory property also belongs
to the camera concept but might have different ranges in
that concept. Finally, we use “wx:rangeType”, “wx:rangeMin”,
and “rangeMax” to declare that the memory property for
mobile phones always has a minimum value of 0.5 MB and
a maximum value of 32,000 MB. The extraction process can
now use this information and discard all extractions that do
not fall into the defined range.

Fig. 4. Modeling range types using blank nodes.

D. Related Work

To the best of our knowledge there is no ontology editor that
combines semi-automatic ontology creation from web pages
with the goal to use that ontology for information extraction.

Semantic Turkey [6] is the only ontology editor we found
that directly works on web content (as a Firefox extension1).
It focuses on managing personal information and replacing the
“Favorites” that are usually used in browsers. While our tool
focuses more on the schema or T-Box, the Semantic Turkey
is used to store plenty of individual information in the A-Box
of the ontology.

1https://addons.mozilla.org/en-US/firefox/addon/8880

OntoGen [4] is a semi-automatic ontology editor. The editor
features (un)supervised methods for concept, relation, and
name suggestion. Unsupervised learning methods automati-
cally compile sub-concept lists by k-means clustering and
latent semantic indexing, the supervised learning techniques
identify relevant documents by a given user query and an
active learning loop. Another similarity with our system is that
OntoGen is data-driven, that is, the suggestion functionality
uses the underlying document corpus that the engineer browses
to create the ontology. Our system differs in that we use the
web as the underlying corpus and our suggestion functionality
focuses on properties for a concept rather than concepts
themselves.

Protege [5] is a very popular open source Java-based ontol-
ogy editor from Stanford University. It supports many features
such as ontology engineering, exporting, and reasoning. How-
ever, there is no suggestion functionality to help the ontology
creator nor the possibility to work on real web data. The editor
is very generic and therefore offers solutions for many use
cases, but does not fulfill our requirements as described in the
use case. There is also a web version2 of Protege which brings
part of the functionality to the web without changing the scope
of the application.

IV. EVALUATION

In this section we will compare Ontofly to the ontology
editor Protege. We evaluate the tools in regard to the use
case that we described in Section II, which required that
the knowledge about concepts and properties be taken from
the web. The domain for which the users had to create the
ontology was limited to communication devices in order to
have a better comparison across the users. The task consists
of three subtasks with increasing difficulty:

1) The user has to create an ontology and save it in
RDF/XML serialization.

2) The user has to add one concept, one subconcept, and
one concept synonym to the ontology.

3) The user has to find and add three properties to one
concept.

We divided the group of eight users into two commensurate
groups, one that received a short introduction in how to use
both tools, and one without any prior knowledge in ontology
editing. For each subtask, we measured the NASA Task Load
Index (TLX) [7] and the time that was needed to perform the
task.

Figure 5 shows the results of the comparison between
the two ontology editors. As we expected, we can see that
the group that was given a short introduction to the tools
performed better on average (lower TLX and shorter time).
Only in subtask 3 for the editor Protege did we observe almost
no difference between the two groups. The figure clearly
shows that using Ontofly led to a lower TLX on average in
all three subtasks compared to Protege, which shows users
were less frustrated and mentally stressed. These results are

2http://webprotege.stanford.edu



Fig. 5. TLX and time comparison for three subtasks in Ontofly and Protege. Shorter is better for time and TLX.

very likely also an outcome of the reduced time users had
to spend for each subtask. The figure shows that users could
solve each subtask faster using Ontofly. On average users spent
approximately 47% less time with Ontofly and had a 20%
lower TLX than when using Protege.

The comparison only shows that Ontofly is better suited
for the use case we described. Protege is, however, a much
more feature rich tool, which makes it more difficult to use
than Ontofly. We evaluated only the editing process that was
possible using both tools. Ontofly introduces, however, the
feature of specifying property ranges, which would have to be
done manually using other tools. This feature makes Ontofly
a good choice for creating ontologies that can be used by
ontology-driven extraction systems.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented a new kind of ontology
editor that focuses on creating ontologies that can be used
as input for ontology-based information extraction systems.
The editor is data-driven and uses the web as an underlying
corpus to suggest properties and instance data, which yields
a richer ontology than a non-data driven approach. Our last
contribution was the vocabulary extension to better express
ranges of values for properties using “rangeMin”, “rangeMax”,
and “rangePossible” properties. In our ongoing research we
want to look into more properties that help the extraction
system to find valuable instance data. One of those properties
might be “dynamic”, which expresses whether a property

might have changing values over time such as the “population”
property for the concept “country”. Furthermore, we need to
evaluate the system in a user study and compare it to state-of-
the-art ontology editors that can also be used for our scenario.

REFERENCES

[1] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web.
Scientific American, 284(5):28–37, 2001.

[2] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy
Seaborne, and Kevin Wilkinson. Jena: implementing the semantic web
recommendations. In Proceedings of the 13th international World Wide
Web conference on Alternate track papers & posters, pages 74–83. ACM,
2004.

[3] Roy T. Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, Irvine, 2000.

[4] Blaz Fortuna, Marko Grobelnik, and Dunja Mladenic. Ontogen: Semi-
automatic ontology editor. Human Interface and the Management of
Information. Interacting in Information Environments, pages 309–318,
2007.

[5] John H. Gennari, Mark A. Musen, Ray W. Fergerson, William E. Grosso,
Monica Crubézy, Henrik Eriksson, Natalya F. Noy, and Samson W.
Tu. The evolution of Protégé: an environment for knowledge-based
systems development. International Journal of Human-Computer Studies,
58(1):89–123, 2003.

[6] Donato Griesi, Maria Pazienza, and Armando Stellato. Semantic turkey:
A semantic bookmarking tool (system description). The Semantic Web:
Research and Applications, pages 779–788, 2007.

[7] Sandra G. Hart and Lowell E. Staveland. Development of NASA-TLX
(Task Load Index): Results of empirical and theoretical research. Human
mental workload, 1:139–183, 1988.

[8] David Urbansky, Marius Feldmann, James A. Thom, and Alexander
Schill. Entity Extraction from the Web withWebKnox. In Proceedings of
the Sixth Atlantic Web Intelligence Conference, 2009.


