
Improving Task-driven Software Development
Approaches for Creating Service-based Interactive

Applications by using Annotated Web Services
Marius Feldmann, Gerald Hübsch, Thomas Springer and Alexander Schill

Technische Universität Dresden, Department of Computer Science,
Institute for Systems Architecture, Computer Networks Group

Dresden, Germany
{marius.feldmann, gerald.huebsch, thomas.springer, alexander.schill}@tu-dresden.de

Abstract—The aspect of human interaction becomes more and
more relevant for service-oriented applications. On one hand,
current development approaches support the composition of
services but neglect the creation of user interfaces. On the other
hand, task-based modeling of user interactions is well established
but poorly integrated into service-oriented development. In this
paper we propose an integrated modelling approach for the task-
driven development of interactive service-oriented applications.
Our central concept is the introduction of annotations as part of
the Web service description. These annotations cover information
relevant for the semi-automatic generation of task models and
user interfaces. We present the annotation concept as well as
concepts for the integration of the annotations into a task-driven
software development methodology.

I. INTRODUCTION

Due to the increasing complexity of applications and the
large number of user interface (UI) technologies and toolkits
that exist today, designing interactive applications is still a
challenge for application developers. A promising approach
to handle this complexity is task-driven software development
[1], [2]. The concept of task-driven software development is
to describe an application based on a task model. A task
model consists of tasks which the user (user tasks), the system
(system tasks), or the user and the system (interaction tasks)
must perform in order to achieve a particular goal. It also
captures the order in which these tasks must be performed.
In a fine-grained task model, each system task corresponds to
a single function call and each interaction task to a single
man-machine dialog. The strength of task modeling is its
technology-independence and its ability to capture user inter-
action and application logic in one model which can eventually
be transformed into executable code.

In the terminology of model-driven architecture, a task
model is a domain-specific language for describing interactive
applications. Three artifacts can be derived from a task model
through transformations: a control flow with hooks for dialogs
and function calls, an initial version of the application’s UI,
and a code skeleton of the application logic [2]. Only the
control flow can be transformed into executable code without
further modifications. The initial version of the UI lacks
layout definitions, usability optimizations and the selection of
appropriate UI controls. This information has to be added by

the developer in a cumbersome and time-intense UI refinement
process. The code skeleton is only a partial implementation
of the application logic which must be completed by writing
code for algorithms, database queries, etc. In service-oriented
applications, this application logic is implemented by service
operations. They could provide the implementation of system
tasks if task models would be extended towards support for
binding service operations to system tasks.

Task-driven software development can furthermore profit
from service annotations. Service annotations enrich service
descriptions for example written in WSDL [3] or WADL
[4] with information beyond a purely functional specification.
Approaches for generating suitable UIs for web services based
on service annotations already exist, for example WSGUI [5]
and Dynvoker [6]. They implement an inference mechanism
to generate a form-based UI from WSDL files and annotations
that contain hints to generate layout, UI controls and labels.

Since the transformation of interaction tasks into an initial
version of the UI is based on a similar inference mechanism,
service annotations could substantially increase the quality
of the initial UI and reduce the manual effort for the UI
refinement. The concept of service annotations is by far not
limited to aspects of UI generation. For example, annotations
can also be used to check the completeness of task models
based on dependencies between service operations.

In the following, we present work-in-progress that aims to
extend task-driven software development towards annotated
services based on the task model and the model transforma-
tions developed in the EMODE project [7]. We first discuss
our concepts for service annotations. Afterwards, we show
how service annotations can be exploited in task modelling
and UI generation. The paper concludes with a summary and
an outlook on future work.

II. SERVICE ANNOTATIONS

The central idea behind Web services is the reuse of
functionality. In most development methodologies for building
interactive applications upon a service infrastructure, reusabil-
ity is still reduced to the functional core encapsulated within
the services. The concept of Web service annotations aims
to include further reusable information fragments that are not



Figure 1. Dialogs related to the input and output of a login service

covered by the functional interface description and thus - when
applied to the apropriate methodology - to profit from faster
and simplyfied application development.

The mechanism for service annotations has been build
upon the approach used within the Dynvoker project. In
this approach a service annotation file contains UI related
information that is associated to operations and parameters
within the service’s functional interface description by using
XPath expressions. Due to the fact that the annotation language
used in Dynvoker (GUIDD) only offers basic UI related
information, it has been extended. In order to find apropriate
annotations, several service-based interactive applications have
been analysed to detect reusable patterns. During our investi-
gations more then 25 different reusable types of information
fragments and thus of annotations have been identified.

The annotations introduced by our approach are categorized
into UI related annotations and annotations describing pre-
and postconditions of a service operation. The UI related
annotations semselfs are classified into annotations describing
the layout and structure of the UI and annotations describing
the behavior of the UI. In general, each operation of a service
can be associated with one input dialog for collecting the input
parameters and several output dialogs which are presented
depending on the result value returned by the operation. The
UI related annotations are used to give a reusable description
of these dialogs. Due to the fact that the annotations are created
on the level of Abstract User Interfaces, these description can
be reused for developing applications for different platforms
and devices. Thus for example the layout and structure defini-
tions do not cover concrete position or size specifications but
the capability to group input fields or determine their order.

Fig. 1 shows a simple example of a login service operation.
The login service has got an input dialog to request credentials
and depending on their validity one of two possible output
dialogs is displayed. The dialog for requesting the credentials
can not be derived completely from the functional interface
description of the service operation. It can be determined
only that two input parameters for values of type String are
necessary. Annotations for data type definitions are used in
the example to specify that the first parameter should only
include characters and that the second one is of the semantic
type password. Furthermore a button with the label Login is
associated with the operation. A ordering definition that is
one of several layouting definitions is used to indicate that
this button should be displayed after the two input fields. The
return value of the service operation is annotated by return
value dependend output dialogs. Both dialogs contain a text
indicating the result of the login operation. In the case of a

failed login two buttons are indicated within the annotations.
The button with the label Retry contains a navigation definition
pointing to the login operation thus resulting in a further
invocation of the first dialog when the button is pressed. Based
on the described information within the annotations a valid UI
can be created automatically.

The annotations within the behavior definition are mainly
intended to increase the usability of the created UI. A very
often applied annotation is the ”validation annotation” that
provides a rule expressed by a regular expression or by the
Object Constraints Language (OCL). They can be used to
provide direct feedback to a user if the input does not conform
to one of these given rules. The decision to use OCL rules has
been made to also describe dependencies between parameters.
Thus it is for example possible to point out that the value of a
variable ”Date dateFlightTo” has to be smaller then a second
variable’s value ”Date dateFlightBack” - and thus the first date
input has to be before the second date. A further example
for a behavior annotation is the ”suggestion” information. It
enables to associate an input parameter of a Web service
with another service that returns a concrete proposal for an
input value. It is obvious that such a suggestion service is
only available in rare cases. Thus our research also aims to
provide guidlines for extending Web service infrastructures to
improve the development of interactive applications based on
such infrastructures.

Besides the annotations used in the example to describe UIs
for single services, annotations have been identified to define
relations between parameters or return values of different oper-
ations. The usefulness of these annotations is explained in the
next two sections that discuss how the UI related annotations
and the annotations describing pre- and postconditions of a
service operation can be used to derive a task-model and
associated UIs (semi-)automatically.

In order to attach service annotations in a simple manner to
their associated service, a specific editor for creating them is
currently under development. It offers the possibility to import
a functional interface description of a Web service and to
assign values for the various annotations to the interface de-
scription itself, to the service operations, operation parameters
and defined data types. The values can be assigned on one hand
via a simple key-value mechanism and on the other hand in a
visual mode. After parsing the functional interface description
all UI interactors (e.g. text fields) are displayed and offer the
possibility to instantiate associated annotations such as labels,
validation information (e.g. by an regular expression), default
values or MIME type information. For expressing the vocab-
ulary of the annotations, an Ecore model has been introduced.



Figure 2. A task-model derived from annotated tasks

The annotations are serialized by using the XML Metadata
Interchange (XMI) representation. The annotation file holds
a referece to the associated service interface description. The
annotation editor offers the possibility to store this file locally
or to publish it to an annotation repository where annotations
for various services are collected.

III. EXPLOITING ANNOTATIONS IN TASK MODELING

Annotated services can be integrated seamlessly into a task-
driven development approach by introducing the concept of
annotated tasks into task models. An annotated task is a
system task that is implemented by an operation of an anno-
tated service. It is created when the operation of an annotated
service is imported into a task model. After the import step,
interaction tasks are automatically added to the task model
and associated with the annotated task. They represent user
interactions that must be performed before the annotated task
can be invoked and for the presentation of the result returned
by the annotated task. The association is established through
data flows (specifying the exchange of data between tasks)
and control flows (specifying the order and the conditions for
task execution). The necessary information for the creation
of the interaction tasks and their association is contained
completely in the annotations of the service operation and
therefore requires no additional action from the developer of
the task model.

Fig. 2 provides a comprehensible example to demonstrate
how the automatic creation of interaction tasks based on
annotations increases the efficiency of modeling an interactive
application. The example shows a simple excerpt of the task
model for a flight booking application that allows the user
to search flights after successful login. The user must first
enter login information (Interaction Task Login). The login
authentication (Annotated Task Check Login) is implemented
by an operation of the User Management service. If the
authentication failed, an error message is shown (Interaction

Task Login Failed). Else, a session token is returned and a
’Welcome’ message (Interaction Task Login Success) is dis-
played. The session token is required to invoke the flight search
operation (Annotated Task Flight Search) provided by the
Flight Service. After entering the search criteria (Interaction
Task Enter Search Criteria), Flight Search returns a result list
which is displayed to the user (Interaction Task Show Result
List). With the help of the service annotations for the flight
search operation, the task model in Fig. 2 can be created with
minimal effort. The developer just needs to import the flight
search service operation into the task model. Note that the
login operation does not need to be imported manually. The
flight search operation is automatically transformed into the
annotated task Flight Search. Its annotation is parsed and the
interaction tasks associated with Flight Search (Enter Search
Criteria, Show Result List) are added automatically. Their
associations through data flows and control flows are also
added automatically.

Preconditions for annotated tasks can be utilized to simplify
and automate task modelling beyond the generation of inter-
action tasks. The fulfillment of preconditions can be evaluated
at design time to check the completeness of the task model.
If a task model is evaluated as being incomplete, it can
be completed automatically by hints in the annotations. In
our example, the flight search operation is annotated with a
precondition. The precondition specifies that a session token
is required to invoke the operation. It furthermore specifies
that the required session token is provided by the login
operation of the User Management service. Based on this
information, the task model can be completed without a
developer’s intervention by automatically importing the login
operation. The interaction tasks associated with Check Login
and their associations can be derived from the annotations,
ultimately producing the task model shown in Fig. 2.



Figure 3. Group with Union operation in a fragment of the flight booking task model

IV. GENERATING USER INTERFACES FROM TASK MODELS

Service annotations can be exploited to significantly en-
hance the initial UI which is generated by the tranforma-
tion of interaction tasks into dialogs. Without annotations,
the initial UI generated from a task model lacks suitable
layout definitions, usability optimizations and the selection of
appropriate UI controls. This is due to the fact that the task
model does not contain the necessary information. It must be
added manually by a time-intense refinment of the initial UI.
In case of annotated tasks, this information is contained in the
UI related service annotations (see sect. II). It can therefore
be automatically evaluated in the transformation process. This
reduces the need and the time for a manual refinement
of dialogs generated from interaction tasks associated with
annotations to a minimum.

Another application area for annotations in the area of
UI generation from tasks models is a better support for the
grouping of interaction tasks. In our approach, one interaction
task is transformed into one dialog by default. The default
behaviour can be overwritten by combining interaction tasks
into groups. The UI controls that are generated for all in-
teraction tasks in a group are added to one and the same
dialog, giving the developer control over the transformation
result. This simple merging approach produces dialogs that
can contain duplicates, i.e. UI controls controls with identical
functions, that have to be removed manually in the refinement
process.

A solution to avoid the manual removal of duplicates is to
apply the composition operation Union proposed in [8] for
groups of interactions tasks. The Union operation composes
two dialogs into one and avoids duplicated UI controls, given
that duplicates can be identified. In our case, duplicated UI
controls can be identified based on annotations that describe
relations between parameters of different operations. We are
therefore able to provide the Union composition operation for
groups of interaction tasks.

In the example in Fig. 3), the Union operation is added to
the group containing Login Success and Enter Search Criteria.
It guarantees that the dialog generated by the combination
of the ’Welcome’ message ’search criteria’ form is free from
duplicates. Again it shows that the annotations can reduce the
effort for manual refinement significantly.

V. CONCLUSION AND OUTLOOK

In this work-in-progress paper the combination of the con-
cept of annotated services and the task-driven development

approach has been proposed. We introduced the notion of
annotated tasks to integrate annotated services in task models
and to derive and associate interaction tasks automatically.
This approach has been evaluated by extending the EMODE
task model and transformations. Based on examples it has been
shown how service annotations can be exploited to increase the
efficiency of task modelling significantly. Furthermore, ideas
have been presented to reduce the efforts for UI refinement
steps by including hints for UI creation within the service
annotations.

In the future we will extend our approach to complete the
list of annotations usefully in the scope of our concepts. We
will also improve the integration of our concepts into the
EMODE tools. An in-depth analysis to qualify the amount
of source code generated automatically in typical service-
based interactive applications by applying the service annota-
tion concept is currently under consideration. The application
of the service annotation concept to end-user development
methodologies is currently a second parallel research focus.

REFERENCES

[1] F. Paterno, C. Mancini, and S. Meniconi, “ConcurTaskTrees: A dia-
grammatic notation for specifying task models,” in Proceedings of the
IFIP TC13 International Conference on Human-Computer Interaction,
London, UK, 1997, pp. 362–369.

[2] M. Heinrich, M. Winkler, H. Steidelmüller, M. Zabelt, A. Behring,
R. Neumerkel, and A. Strunk, “MDA applied: A task-model driven tool
chain for multimodal applications,” in Proceedings of the 6th Interna-
tional workshop on TAsk MOdels and DIAgrams (TAMODIA 2007), 2007.

[3] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web
services description language (WSDL) 1.1,” W3C, Tech. Rep., 2001.

[4] M. Hadley, “Web application description language (WADL),” Sun Mi-
crosystems, Report TR-2006-153, 2006.

[5] M. Kassoff, D. Kato, and W. Mohsin, “Creating GUIs for Web Services,”
IEEE Internet Computing, vol. 7, no. 4, pp. 66–73, September/October
2003.

[6] J. Spillner, M. Feldmann, I. Braun, T. Springer, and A. Schill, “Ad-hoc
usage of web services with dynvoker,” in ServiceWave 2008, ser. LNCS
5377, P. Mähönnen, K. Pohl, and T. Priol, Eds., NESSI. Madrid, Spanien:
Springer, 11 2008, pp. 208–219.

[7] M. Winkler, M. Heinrich, A. Behring, J. Steinmetz, and W. Dargie,
“EMODE - ein Ansatz zur werkzeugunterstützten Modellierung multi-
modaler, adaptiver Benutzerschnittstellen,” ser. Lecture Notes in Informat-
ics, K.-H. R. M. R. Rainer Koschke, Otthein Herzog, Ed. Gesellschaft
für Informatik e.V. (GI), 9 2007, beiträge der 37. Jahrestagung der
Gesellschaft für Informatik e.V. (GI).

[8] S. Lepreux, J. Vanderdonckt, and B. Michotte, “Visual design of user
interfaces by (de)composition,” in Interactive Systems. Design, Specifica-
tion, and Verification. Springer, 2007, pp. 157–170.


