
Analysis of Overhead and Profitability in Nested
Cloud Environments

Josef Spillner∗, Andrey Brito†, Francisco Brasileiro†, Alexander Schill∗
∗ Faculty of Computer Science
Technische Universität Dresden

01062 Dresden, Germany
Email: {josef.spillner,alexander.schill}@tu-dresden.de

† Laboratório de Sistemas Distribuídos
Universidade Federal de Campina Grande

CEP 58429-900, Campina Grande - PB, Brazil
Email: {andrey,fubica}@dsc.ufcg.edu.br

Abstract—The on-demand provisioning of computing and stor-
age resources and the corresponding pay-as-you-go billing have
made cloud computing a popular paradigm to achieve a high
technological utility. While most use cases can adequately be
covered by the offers of existing public cloud providers, the
granularity in provisioning and pricing is not high enough for
several task execution scenarios. Nested cloud environments are
among the concepts to circumvent these problems. They let
consumers manage their allocations with a higher degree of
flexibility, including the reselling or repurposing to other sub-
consumers. In this paper, we take a critical look at the state of
the art of nesting technologies and reason about the resource
consumption overhead and the resulting economic profitability
of employing a nested cloud. The results are validated within a
cloud resource broker.

I. BACKGROUND

A. Introduction

Convenient, affordable and scalable distributed computing
through public cloud computing infrastructure providers rep-
resents one of the strongest shifts in today’s institutions and
enterprises. Building upon parallelisation, virtual machines
equipped with scalability-aware software are hosted with a
chosen infrastructure provider and automatically scaled out
horizontally on demand by launching additional instances.
This procedure has several drawbacks for the consumer in
the commercial reality, including a reliance on providers
and a consumer-side overprovisioning due to coarse-grained
resource and billing slices. The first contribution of this paper
is hence an analysis of the technical and economical losses
and the potential gains from alternative procedures with and
without overhead consideration. The second contribution is
a nested cloud architecture and its integration into a novel
fiduciary highly-virtualising resource service broker which lets
users resell surplus slices [1].

B. Infrastructure Service Characteristics and Limitations

Cloud Computing is a fuzzy term referring to new com-
puting paradigms which combine scalable grid and cluster
designs with on-demand provisioning through Everything-as-
a-Service layers for free or with pay-per-use utility billing.

The Infrastructure-as-a-Service layer (IaaS) is particularly in-
teresting because the computing, storage and communication
resources delivered through it are dependencies for almost
all other layers. The scalability of software in the cloud is
high when both horizontal (scale-out) and vertical (scale-
up) mechanisms are supported by the infrastructure services,
although in practice most providers limit their offers to scale-
out despite the higher management costs and hence omit fine-
grained reservation and control facilities. Further limits exist
which damp the advantages for various reasons, especially
for small remote calculations whose idle allocations add up
considerably over time.

The observed limitations can be divided into three di-
mensions: a temporal one, a spatial one and a structural
one. Furthermore, they can be divided into two directions: a
minimum as lower bound, and a maximum as upper bound.
Here, only the minimum is of interest, as infinite scalability
is out of scope. Temporal restrictions apply to the billing by
the hour and other fixed-minimum time intervals. In contrast,
there is no noticable fixed minimum on the billing for the
consumption of quantities of electrical energy or water. Spatial
(copial, capacitive) restrictions apply to the reservation by the
Gigabyte, the Gigahertz and other fixed-minimum amounts of
discrete resource slices. These are rather needless consumption
restrictions which could be resolved by a more fine-grained
allocation policy aligned with the needs of the resource service
consumer. In particular, vertical scalability for letting the
consumer control the exact resource allocation at any time
would contribute to a solution. Finally, structural restrictions
apply to the flat model of running a single virtual machine
on top of the Infrastructure-as-a-Service layer. This can be
contrasted with a hierarchical recursive model in which nested
subordinate virtual machines can be launched and controlled
from the layer beneath them.

The aim of this paper is the presentation of our approach to
analyse and systematically overcome the limitations through
an appropriately designed intermediate nested cloud broker
which nested leverages nested virtualisation support in IaaS.
In the next section, we first present existing works which



have a similar goal. Then, we describe solution methods with
quantitative results on virtualisation and brokering techniques
which determine the design of our approach. The fourth
section explains and discusses the achieved architectural and
practical results which include prototypes and experiments.
The text concludes with suggestions for future resource service
characteristics.

II. RELATED WORK ANALYSIS

The authors of xClouds [2] argue for hardware exposure and
mutable hypervisors to overcome shortcomings in the deploy-
ment of portable and innovative applications which maximise
the allocated resources at infrastructure service providers. The
solution preferred by xClouds is nested virtualisation, which
is found to be feasible performance-wise. However, xClouds
remains at this virtualisation level and doesn’t propose a
suitable market or broker integration. It also remains vague
about how the performance penalties contribute to general
overhead costs when running higher-level virtualisation.

On the other hand, financial broker models have already
been proposed in the cloud computing community. A broker
acting as intermediate resource coordinator and assisting the
provider with usage forecasts is expected to be financially
beneficial to the provider [3]. Since our interest is with
reducing or compensating consumer loss instead of increasing
provider income, these results are not directly applicable to our
work. Still, we argue that a broker model can also be beneficial
to the consumer if operated independently from providers.

Recent research on precise resource allocation calculated
by a mapping of the needs of the software running on this
set of resources contributes to decreased consumer-side over-
provisioning [4]. Hence, it becomes easier for infrastructure
service consumers to cut out in advance the allocation part
not needed for themselves and to reuse it for other purposes.

III. SOLUTION METHODS

Suitable techniques for higher consumer utility with min-
imal provider cooperation have been suggested based on
the subdivision of resource reservations into either serial or
parallel segments (or slices) [1]. Fig. 1 shows a sketch of
both parallel and serial slicing of a cloud resource allocation
and the expected overhead factors for both, which we will
later determine numerically. Our analysis and realisation work
concentrates on parallel sharing and hence on nested virtuali-
sation on the operating system and hypervisor levels beneath
the cloud computing stack. It encompasses four methods.

The first method is an experimental trial of nested virtualisa-
tion capabilities in current operating systems and hypervisors.
Given the recent additions, documentation on this topic is still
unreliable and many factors including hardware architecture
and software versions contribute to feasible combinations. The
second method is then for the best successful combination to
determine the overhead in time (temporal) and in resources
(spatial): CPU usage, memory consumption, disk space. The
third method is a translation of this technical overhead into an
economic one by evaluating current commercial infrastructure

Fig. 1. Conceptual parallel and serial slicing of a cloud resource allocation

service terms and conditions expressed as IaaS ontologies.
As a result, we will determine the potential gain of using
our approach from which we then derive the net gain by
substracting the necessary cost to operate a broker which
implements the approach. The fourth method, which follows
the design science methodology, is an architectural realisation
of a highly-virtualising cloud resource broker with a user-
friendly marketplace frontend and a cloud execution backend
with nested virtualisation and vertical scaling capabilities. We
report about it in the results section.

A. Virtualisation and Vertical Scaling Considerations

Nested virtualisation refers to a running host system at level
L0 with a virtual machine at L1 which itself is the host to
a virtual machine at L2. Deeper nesting levels L3...Ln lead
to recursively nested virtualisation. They are not of concern
for our resource sharing concept due to high management
complexity but we still consider them in our performance
analysis in order to find out about future use cases.

We have assembled a representative choice of hardware-
assisted and software-emulated virtualisation and container
isolation software to cross-check the nested virtualisation of
L2 on L1 with L0 being a stock 64-bit Linux system. Fig.
2 summarises our findings. The diagonal axis represents the
recursively nested virtualisation with the same software on all
levels. A success (v) or failure (x) sign without a background
colour represents untested theoretic combinations whereas
a background means that a test has been performed. The
matrix complements our own tests (source c) with previously
published results (source b [5]) and ongoing experiments of
colleagues (source a contributed via the xen.user mailing list).

Due to the good nesting support, we have chosen a KVM-
on-KVM for the experimental gathering of performance and
resource usage overhead data. According to the authors of the
KVM nesting code for Intel processors with the VMX flag,
the overhead at L2 should be around 6-8% [6]. The authors of
NestCloud, a nested virtualisation approach, come to similar
conclusions with about 5-6% of overhead for both processing
and memory usage [7].

Vertical scaling is also supported by KVM through an
attachable monitor application. The relevant mechanisms are
CPU hot-plugging and memory ballooning together with ker-
nel same-page merging to reduce the memory usage even more
when running identical executables and libraries in parallel
VMs.



Fig. 2. Nested virtualisation matrix with L2 guests running on L1 hosts

B. Nested Virtualisation Runtime Performance

The experimental setup to verify and render these findings
more precisely consists of a recursively nested operating
system, on each level running with a Kernel with activated
nested virtualisation. The operating system image is derived
from a given image by wrapping the next higher level image
into it and adding scripts to automatically run the experiments,
start the inner VM and retrieve the results from it. Fig. 3
visualises the setup. At the VM core, a three-pass benchmark
determines representative metrics for each level:

1) CPU-intensive: 100 million trigonometric formula cal-
culations of the type sin(i) + cos(j) + tan(i+ j)

2) RAM-intensive: 10 million pipe (user-space socket
pairs) open/close requests

3) SYS-intensive: 10 thousand executions of the trivial
system command /bin/true

Fig. 3. Experimental setup through a nested virtualisation stack

The three following figures visualise the performance of
nested virtualisation with the same operating system and
hypervisor, but with different processors, through all currently
possible nesting levels. The contenders are a dual-core AMD
E-450 processor (Fig. 4), a dual-core AMD Athlon II X2
processor (Fig. 5) and a quad-core Intel i7 M620 CPU (Fig.
6), all running the Linux kernel 3.2 and KVM 1.0. The

speed-up for the SYS-intensive task in L1, which invokes
privilege-changing system calls, can be explained by the
highly-optimised kernel routines for single-processor systems
as compared to the multi-processor (SMP) hardware which
needs to schedule the benchmark along with other software.
Another interesting obervation is that for all practical purposes,
Lmax = 2 for the nested VMX routines applicable to Intel
processors which cause a kernel failure when entering L3, and
Lmax = 3 for the nested SVM routines applicable to AMD
processors which cause a kernel boot hang when entering
L4. Supplementary, it should be noted that running a VM
at L3 will cause significant performance penalties for certain
kinds of software, but not for applications mostly operating in
userspace, including numerical calculations, bag-of-tasks jobs
and so forth.

Fig. 4. Nested virtualisation performance on AMD E-450

Fig. 5. Nested virtualisation performance on AMD Athlon II X2

C. Nested Virtualisation and Vertical Scaling Slicing Perfor-
mance

On the AMD Athlon II X2 machine as used in the run-
time performance benchmarks, the start of the VM takes 7.8
seconds for the boot into L1 compared to 26.9s into L2 and
167.3s into L3. The shutdown is unsurprisingly faster, with
14.2s from L3 back into L2, 4.8s back into L1 and 3.3s back
into L0.

CPU hot-plugging and memory ballooning are basically
instantaneous operations on all levels.



Fig. 6. Nested virtualisation performance on Intel Core i7

D. Economic and Service Science Considerations

The short-time allocation of resource services to cover load
peaks beyond in-house infrastructure capacities is a often-
discussed tactics with high utility [8]. In order to make
resource slicing useful in an economic context, we will suggest
a market-oriented approach of well-described and tradeable
resources offered as services through a broker.

Service value networks are a business construct which
combines service science foundations with practical service
trading aspects like service level agreements [9]. Most services
can be offered as value-added services and customisations, as
well as bundles (economically motivated compositions) and
orchestrations (technically motivated compositions). Cloud
resource services add decomposition, also referred to as
splitting or slicing, as variation category without excluding
the other ones. Hence, resource service brokers should offer
service consumers to become resellers or value-added service
providers by applying the variations including decomposition.
Table I summarises all suitable service offering variations for
cloud resource services and existing languages to express them
through formal means. It becomes obvious that generic service
description languages like for instance the Unified Service
Description Language (USDL) are suitable for composed
services, but not for decomposed ones. Specialised resource
description languages fill this gap. The Flexible Resource
Description Language (FleRD) is one such language and a
very promising one with support for resource splits called
mapping, although it is currently still in its testing phase
and oriented more towards networked resources [10]. Hence,
we will attempt to enter a compromise by relying on both
generic and specialised resource service descriptions in our
architecture.

Table II summarises the technical overhead and the resulting
economic loss when applying this to a typical offer from an
infrastructure service provider.

IV. RESULTS AND DISCUSSION

Following the experimental retrieval of findings about op-
erating system level virtualisation techniques, we verify and
realise a previously proposed cloud resource broker design
which technically hosts services through a nested cloud and

TABLE I
SERVICE VARIATION AND RESELLING MODELS

Service variation Explanation Languages
Customisation The service is enhanced

with value-added compo-
nents.

-

Bundling Several services are sold
together.

USDL

Orchestration A service takes its
functionality mainly from
other services.

USDL, BPEL

Decomposition A service is split into parts
which are sold separately.

CloudNet-FleRD

TABLE II
OVERHEAD MEASUREMENTS

Overhead per virtualisation level
L0 L1 L2

Storage 0 MB 454 MB 454 MB
Memory 0 MB 34 MB 34 MB

Processing 0% 67% 1802%
Monthly overhead cost in the cloud

S.Cost 0c 8.3-15.8c 8.3-15.8c
M.Cost 0c 0.9-1.3c 0.9-1.3c
P.Cost 0c 15.3-21.9c 410.6-590.3c

Cost ranges estimated according to Amazon EC2 availability region and
on-demand plan pricing. Storage cost is shared, others per instance. All
costs in Brazilian centavos.

economically acts as a market-in-the-middle between resource
providers and consumers [1].

A. A Market-in-the-Middle Architecture

In analogy to the recursively nested virtualisation experi-
mental setup, a base virtual machine is dedicated to enabling
the nested cloud with other VMs referred to as sub-VMs
running at a higher virtualisation level. The nested cloud
VM is to be deployed by the broker and offers control
facilities through a configurator which turn it into a light-
weight infrastructure manager. Fig. 7 visualises the nested
cloud setup. KVM is used to switch on and off the respective
sub-VMs. The KVM monitor, which is interfaced with through
the serial communication tool minicom, allows for fine-grained
vertical scalability, including dynamic memory assignments
and CPU hotplugging into the sub-VMs.

Fig. 7. Nested cloud with base virtual machine



The control facilities are supposed to be bound to a service
configuration created by a preparation dialogue. In addition
to regular service configuration options, the dialogue asks
the potential user of a virtual machine instance about the
utilisation and sharing of otherwise unused resource capacities.
The option to share serially or in parallel is orthogonal to this
kind of sharing. A third option would be to ask for manual
(user-managed) or automatic (broker-managed) control of the
sub-VMs, either startup and shutdown for the serial sharing,
or dynamic resource provisioning for the parallel sharing. An
automatic control requires reliable usage forecasting which is
not yet part of our concept.

For the higher-level networking, there are two choices:
The dynamic reservation of IP addresses, which requires this
capability at the cloud provider, or port forwarding, which is
less suitable because it requires each sub-VM to specify its
relevant ports and may lead to unpredictable port numbers
in the case of conflicts. Elastic IP address assignments are
increasingly available at commercial cloud providers which
will make this choice the preferred one for deployments in
public clouds.

B. Experimental Deployment in HVCRB

In order to verify the proposed nested cloud approach
to yield more efficient resource usage at infrastructure ser-
vice providers, we have implemented it and reproduced the
overhead measurements as refined highly-virtualising cloud
resource broker (HVCRB) [1] on top of SPACEflight, an
experimentation system for service and cloud computing [11],
on an AMD64 machine with 8 GB RAM. The system was
made bootable with a custom Linux 3.5 kernel, hence loop-
ing through the nested virtualisation capabilities to all VMs
deployed in Eucalyptus. Also, we have added the nested
cloud base VM to the demonstrator and modified the platform
services to support the sharing variation on resource services.
As a scenario service, we deployed the social network software
Noosfero as a SaaS offering inside a VM.

Fig. 9 summarises the experimental architecture and the
most important workflows therein: (1) The providers of com-
plex software offered as services and packaged as virtual
machines deploy the VM images at the broker. In SPACE, a
web-based provisioning tool then takes over the package. The
artefacts are extracted and registered at a service registry and
contract manager while the VM image itself is recognised as to
be handled by a cloud stack, which is Eucalyptus. (2) The VM
images are deployed into the cloud stack. To turn the service
broker into a HVCRB, the nested cloud VM image also needs
to be deployed there. (3) Service consumers select a resource-
dependent service through a market interface and instantiate it.
The use of the service is prepared by a negotiation of a Service
Level Agreement and a specific configuration with business
objectives, such as the number of participants in the social
network scenario service. HVCRB adds a configuration option
about the utilisation and sharing of otherwise unused resource
capacities according to possible sharing schemes [1]. The
service configuration along with the agreement negotiation is

shown in Fig. 8. (4) A configurator picks up the configuration
document and instructs the cloud stack to allocate a certain
amount of resources depending on the business objectives
for the scenario services. With HVCRB, the cloud stack
instantiates the nested cloud VM whose controller is then
instructed to launch the actual service VM. (5) Final service
consumers interact with the service VM without knowledge
about the existence of the nested cloud layer. (6) Consumers
looking for resource services to instantiate resource-dependent
services through them find them at the market. With HVCRB,
the instantiation of VMs can use the resources in the form of
sub-VMs running on the nested cloud VM.

Fig. 8. Service configuration along with the SLA negotiation in the contract
wizard provided by SPACE (screenshots)

Due to limitations of publicly offered cloud environments,
we could not yet verify the approach with such offers. The
reasons include outdated host kernels which lack nested vir-
tualisation and vertical scaling capabilities, the lack of elastic
IP assignments to connect the sub-VMs, and missing control
facilities to start up and shut down the sub-VMs from arbitrary
image files. We expect that the evolutionary adoption of newer
software versions will make a deployment at public cloud
providers feasible, although we also see how this might rise
legal issues similar to used software reselling debates in the
past.



Fig. 9. Nested cloud hosting architecture beneath a highly virtualising cloud resource broker with scenario SaaS

V. CONCLUSIONS

This paper analysed and realised a previously suggested
layered approach towards highly virtualising cloud resource
brokers for efficient allocation and utilisation of resources
procured from public cloud providers. We qualitatively and
quantitatively analysed recursively nested virtualisation as a
means to achieve especially parallel sharing. A two-level
nested cloud layer was then derived from this technology in or-
der to integrate it with existing cloud computing environments,
which we performed through a highly-virtualising broker in-
tegrated with the service platform SPACE. The results suggest
that by introducing this approach into public clouds, resources
can be allocated more efficiently and with high utility while
consumer-side overprovisioning can be compensated through
open resource service markets.

ACKNOWLEDGEMENTS

This work has received funding under project number
080949277 by means of the European Regional Development
Fund (ERDF), the European Social Fund (ESF) and the
German Free State of Saxony. It has also been funded by a
scholarship from the Brazilian National Council for Scientific
and Technological Development - CNPq (PDJ 159716/2011-
0).

REFERENCES

[1] J. Spillner, A. Brito, F. Brasileiro, and A. Schill, “A Highly-Virtualising
Cloud Resource Broker,” in 5th International IEEE/ACM Conference on
Utility and Cloud Computing (UCC), November 2012, Chicago, Illinois,
USA.

[2] D. Williams, E. Elnikety, M. Eldehiry, H. Jamjoom, H. Huang,
and H. Weatherspoon, “Unshackle the cloud!” in Proceedings of
the 3rd USENIX Conference on Hot topics in Cloud computing
(HotCloud), June 2011, Portland, Oregon, USA. [Online]. Available:
http://xcloud.cs.cornell.edu

[3] O. Rogers and D. Cliff, “A financial brokerage model for cloud comput-
ing,” Journal of Cloud Computing: Advances, Systems and Applications,
vol. 1, no. 2, April 2012.

[4] L. Wu, S. K. Garg, and R. Buyya, “SLA-based Resource Allocation for
Software as a Service Provider (SaaS) in Cloud Computing Environ-
ments,” in 11th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, May 2011, pp. 195–204, Los Angeles, California,
USA.

[5] O. Berghmans, “Nesting Virtual Machines in Virtualization Test Frame-
works,” Ph.D. dissertation, Universiteit Antwerpen, 2010.

[6] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El, A. Gor-
don, A. Liguori, O. Wasserman, and B.-A. Yassour, “The Turtles Project:
Design and Implementation of Nested Virtualization,” in Proceedings
of the 9th USENIX Conference on Operating Systems Design and
Implementation (OSDI), October 2010, pp. 423–436, Vancouver, British
Columbia, Canada.

[7] Z. Pan, Q. He, W. Jiang, Y. Chen, and Y. Dong, “NestCloud: Towards
practical nested virtualization,” in International Conference on Cloud
and Service Computing (CSC), December 2011, pp. 321–329, Hong
Kong, China.

[8] P. D. M. Jr., F. Brasileiro, R. A. Santos, D. C. M. Maia, R. Lopes,
M. W. A. de Carvalho, R. M. C. Ribeiro, N. Andrade, and M. Mowbray,
“Business-Driven Short-Term Management of a Hybrid IT Infrastruc-
ture,” Journal of Parallel and Distributed Computing, vol. 72, no. 2, pp.
106–119, February 2012.

[9] B. S. Blau, “Coordination in Service Value Networks – A Mechanism
Design Approach,” Ph.D. dissertation, Universität Karlsruhe (TH), 2009.

[10] G. Schaffrath, S. Schmid, I. Vaishnavi, A. Khan, and A. Feldmann,
“A Resource Description Language with Vagueness Support for Multi-
Provider Cloud Networks,” in International Conference on Computer
Communication Networks (ICCCN), July 2012, Munich, Germany.

[11] J. Spillner, “SPACEflight - A Versatile Live Demonstrator and
Teaching System for Advanced Service-Oriented Technologies,”
in 21st International Crimean Conference on Microwave and
Telecommunication Technology (CriMiCo/КрыМиКо), September
2011, pp. 455–456, Sevastopol, Ukraine. [Online]. Available:
http://serviceplatform.org/


