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ABSTRACT
Current forum search technologies lack the ability to iden-
tify threads with near-duplicate content and to group these
threads in the search results. As a result, forum users are
overloaded with duplicated search results and prefer to cre-
ate new threads without trying to find existing ones. In
this paper we therefore identify common reasons leading to
near-duplicates and develop a new near-duplicate detection
algorithm for forum threads. The algorithm is implemented
using a large case study of a real-world forum serving more
than one million users. We compare this work with current
algorithms, similar to [4, 5], for detecting near-duplicates
on machine generated web pages. Our preliminary results
show, that we significantly outperform these algorithms and
that we are able to group forum threads with a precision of
74%.
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1. INTRODUCTION
More than 10 gigabytes of “user-generated content” is cre-

ated in the World Wide Web daily [11]. One particular
example is a web-based question-answering forum, where
users pose questions and other users provide answers. As
the number of threads in a forum often grows drastically, a
high precision search engine over forum content is necessary
to grasp the mass of forum content and to spot relevant
answers with high precision. However in practice, current
forum search engines miss the ability to identify threads
with near-duplicate content and are not able to group these
threads within search results. E.g., we examined forum con-
tent for a software developer network (SAP Developer Net-
work - SDN1) of a large software company. In this business-
to-business forum more than one million users share more
than 5000 contributions each day on approximately 60 mod-
erated sub-channels. We observed that users are often frus-
trated by the low precision of existing forum search engines.
Hence most contributions still depend on a human-generated
answer. As a result, the average waiting time before receiv-
ing an answer may range from a few minutes to even days.
In fact, in our test-snippet of 219.000 contributions we mea-
sured one day as average waiting time for a first answer (not
necessarily a correct one). Even worse, we observed that
only 27% of posted questions received a response by another
community member.

To overcome this situation, we propose a new algorithm
for grouping similar answers from existing threads in search
results. As a result, users are able to browse threads pro-
vided by the forum search engine more efficiently and may
spot existing answers faster. Furthermore, users willing to
post answers can immediately oversee, which new threads
have been answered already and can focus on unanswered
threads. Common methods to detect duplicates on web-
content are near-duplication detection approaches e.g., see [4,
5]. These methods are developed for automatically repli-
cated web pages describing the same entity (e.g., a product)
but present the entity by different agents (e.g., vendors).
However, unlike replicated web-pages, forum threads focus-
ing on a similar question often differ significantly in syntax

1http://www.sdn.sap.com



and language. In fact, in our initial experiments we could
observe that these existing metrics result in only a decent
precision of ca. 50%. Therefore we have developed a new
near-duplicate detection algorithm for forum threads. To
our best knowledge, we are not aware of any work on fo-
rum search engines to detect such near-duplicates with high
precision. Our major contributions are:

• We identify common reasons leading to near-duplicate
threads in web-forums.

• We propose a new hybrid-model for measuring the sim-
ilarity among web-forum-threads. We extend a hyper-
graph algorithm [10] to detect and group near-duplicate
threads.

• We evaluate our method on a large web-forum. Pre-
liminary results show that we detect a similar number
of near duplicates as state-of-the-art algorithms for de-
tecting near-duplicate web pages but achieve a 26%
higher precision on forum content.

In this paper we concentrate on the description of the prob-
lem and a first solution providing good precision. For pro-
duction systems efficiency in the form of processing speed,
distribution and memory usage is also important. However
we want to tackle such issues in further work.

The paper is structured as follows: In Section 2 we unravel
common reasons for near-duplicate threads in web-forums.
In Section 3 we introduce our novel grouping and fingerprint
algorithm. Section 4 presents and discusses our results and
in Section 5 we review related work. Section 6 concludes our
work.

2. REASONS FOR NEAR-DUPLICATES
Motivated by our initial experiments with an existing fo-

rum search engine we carefully analyzed different scenarios
for duplicate postings. Our main motivation was to iden-
tify common patterns during the process of thread creation
and answering, that may result in duplicates. The following
analysis builds on a user study and on interviews with expe-
rienced forum administrators and a data set from the SAP
Developer Network (SDN). For our user study we chose 50
threads between 2007 and 2008 from the “ABAP, General”
channel, that contain the word “smartform”. This term is
specific to the domain of this forum and resulted in several
duplicates from the data set. We analyzed posting struc-
ture, content, and occurrences of duplicates in these threads
manually. Our initial research and discussion with the fo-
rum administrators unraveled eight common scenarios for
duplicate content in threads:

S1 Impatient aggressive posting user.
Over time old threads are shifted to the end of the
forums overview page. To improve their questions vis-
ibility some users copy them to a new thread, that gets
again presented at the top of the overview page.

S2 Inexperienced aggressive posting user.
Users that are unable to decide which area (i.e. sub-
forum, channel) is the right place for their topic, just
post it to several or every possible place in hope to
catch the right one by chance.

S3 Impatient inexperienced posting user.
Sometimes people in need of a fast answer, are unable

to find it using the forums search function and are
too ”lazy” to study the forums structure and existing
content very deeply. So they create a new thread with
their question, even if it was answered before.

S4 Impatient submitter
If the forum engine reacts a little slowly, some users
just hit the submit button several times. Engines not
able to handle such a case get overloaded with copy
after copy of the same thread.

S5 Correcting mistakes.
Some users create new threads in a hurry or without
thinking deeply about their writing. Afterwards they
realize they made an error, like a badly chosen title.
If the forum engine does not support the feature of
editing existing threads or if a user is not aware of this
feature, he just creates a corrected copy of his question.

S6 Thread closed too early.
Some forums support the feature, that threads are
marked as answered by the creator of the thread. Such
threads are of little interest for further discussion and
get little to no traffic. Sometimes the threads creator
closes it and afterwards realizes that the wannabe an-
swer is not as helpful as he thought. If the forum
engine does not support the feature of reopening the
thread, its creator can only reopen a new one contain-
ing the same question again.

S7 “Copy and paste” user.
Some forums identify the most active users with a
ranking system, that is based on points. The more
points one acquires the better ranked he is. This leads
to users that answer duplicates by just copying existing
answers, getting more points with almost no effort.

S8 Annoyed experts.
People who are very active in a forum community and
know it inside out are experts for existing threads.
They notice duplicates and get annoyed by answering
the same questions over and over again. To shorten
their work, they create links to existing answers in-
stead of answering a question twice.

These scenarios reveal four shortcomings of existing forum
engines. We state these shortcomings as reasons and symp-
toms for the existence of duplicate content in forums and
are going to address them in our work.

R1. Low precision of forum search engine answers.
Posting users often search before posting and hope to
retrieve an immediate answer. However, current search
engines produce just a list of often incorrect matching
answers (usually based on the keywords). By build-
ing groups of duplicates these lists can be improved to
show one topic per list entry.

R2. Lack of transparency in the forum structure.
Often inexperienced users are overwhelmed by the fo-
rums size and do not know where to find or post their
question. In our case, the site incorporates about 60
channels (sub-forums), each with thousands of threads.
The more a forum grows the more confusing it gets
the more duplicates are created. Duplicate detection
breaks this vicious circle.



R3. Amount of daily created data.
In our forum approximately 5000 postings (questions
or answers) are created daily. To provide room for
new threads, existing threads are shifted to the end
of a channel. Even if they are not yet answered they
vanish from the attention of the community. Duplicate
detection can show a user existing threads for his ques-
tion before he creates a duplicate and thereby reduce
the amount of daily created data.

R4. Slow response time.
Additionally, the system may not cope with the data
load. This leads to users clicking multiple times on
the ’submit button’ or becoming annoyed of the slow
performance of the search engine. By removing or pre-
venting duplicates the load on the forum can be re-
duced and the infrastructure in the form of hardware,
software and the forum operators can concentrate on
unique content.

While this set of observations is not exhaustive, it serves as
initial thesis throughout the paper and is evaluated in Sec-
tion 4. Chowdhury et al. states in [6] “the definition
of what constitutes a duplicate is unclear”. As result of
our manual inspection of typical patterns leading to near-
duplicate threads we will use the following intuition to cap-
ture a near-duplicate thread:

Definition 1. Near-duplicate thread (human perspective)
Two threads are near-duplicates: (1) if they have the same
intention in the question post, meaning that an answer solv-
ing the first question would also help in solving the second
one (2) if their answer post provides a similar solution to the
problem (and optionally is marked as correct by the request-
ing user) or (3) if both threads are linked to each other. A
near-duplicate is incorrect if both threads discuss mainly dif-
ferent questions. For example if the discussed problems arise
under different circumstances and the answer to one prob-
lem is not helpful in solving the other one. The remaining
pairs are undecided in terms of duplicates.

This fuzzy definition captures the human intention when de-
tecting a duplicate and provides much room for interpreting
’topic’, ’problem’ and their similarity in two threads. In the
following sections we will give details on how to formalize,
capture and model relevant features from threads, how to
compare feature representations and how to group threads.

3. DETECTING NEAR-DUPLICATES
In this section we present the process for near duplicate

detection. We provide a model for forum threads and clas-
sify the features used by our duplicate detection algorithm.
Finally we present our grouping algorithm.

3.1 Overview
Figure 1 shows the grouping process for finding near-

duplicates in a community forum. The process consists of
the following steps:

Preliminary data loading. Raw data is loaded from
an external source, e.g., a database, a file or a rss data-
stream. Raw data incorporates unstructured forum content
and additional structured meta information, e.g., extracted
entities, links, information about the author, etc. These
features are classified in Section 3.2.1 and Section 3.2.2.

Step 1. Preprocessing cleanses raw content to pre-
pare it for the fingerprint generation. According to [2] we
remove stop words and eliminate punctuation, further, we
lower cased all words.

Step 2. Fingerprint generation produces a fingerprint
for each thread (cf. Section 3.2). Fingerprints are created
from text-, extracted entity-, and structure-based features.
Semantic features are entities, like product names or abbre-
viations extracted from the text. Mappings from features to
threads are stored in an inverted index structure.

Step 3. Thread grouping identifies similar threads
and combines them into a group. Each group has a finger-
print, which is the highest common denominator its mem-
bers share. New threads are inserted into a group if the
fingerprint of the group is similar to the fingerprint of the
thread. This step is discussed in detail in Section 3.3.

Step 4. Ranking and choosing group representant.
From each group we identify a thread, that represents the
entire group in the search results. Currently we take the
longest thread from each group, because we believe it con-
tains the most information. This measure has to be im-
proved in future work.

3.2 Fingerprint Generation
Figure 2 shows the model of a thread in a forum, used

in our work. Each thread includes a title and one or sev-

Figure 2: Thread model

eral contributions. Each contribution is linked to an author
and may have received award points from other users, which
found it helpful. Furthermore, each contribution links to a
textual body, which may include domain-specific entities or
links. Our grouping approach incorporates text-, entity-,
and structure-based features, shown in Figure 3. These fea-
ture types are the basic information needed for fingerprint
creation. A fingerprint is a vector of feature type sets - one
set per feature type. So a fingerprint for the structure shown
in Figure 3 is a four dimensional vector, where each dimen-
sion corresponds to exactly one of the four presented feature
types. In the following we give details on how we obtain and
model each feature.

3.2.1 Text-based Features



Figure 1: Process for identifying Near-Duplicate Threads

Figure 3: Conceptual feature model

These features capture duplicate threads based on similar
text passages, overlapping links, or overlapping extracted
entities:

Domain-independent Text Features (F type
txt ). In B2B

forums, such as in this paper, we assume that forum users
utilize a common language, such as learned from software
documentation2 or fixed phrases, e.g., learned from appli-
cation error messages. After stop word and punctuation
removal we represent the textual content of each thread as
a set of its most frequent 1-grams.

Domain-independent External Links (F type
extr link). Fre-

quently answers in threads include links to external web-
resources. Such resources are often files, blogs, home pages,
wiki entries, or company specific help pages. Similar to an-
chor text, these links are complemented with a short descrip-
tion, such as ”Introduction to Netweaver see http://...”. We
extract each link and its corresponding description.

Domain-dependent ’Semantic’ Features (F type
sem ). Of-

ten forum users refer to entities in the forum using different
semantics. E.g. some users refer to software documentation

2http://help.sap.com/content/additional/terminology
http://msdn.microsoft.com/en-us/goglobal/bb688105.aspx

as“SAP NOTE 934848” and some just use number“934848”.
To capture these entities, we use simple list- and rule-based
extractors using a framework presented in [3], to comple-
ment text-based features. Our thread collection includes
the following collection-specific-entities:

• SAP products, e.g., “Exchange Infrastructure”

• Java exceptions, e.g., “java.lang.ClassNotFoundException”

• ABAP exceptions, e.g., “CX SY ZERODIVIDE”

• Referrals to software documentation, e.g., “SAP NOTE
934848”

We argue, that these lists of domain-specific vocabulary will
be available for many B2B forums. They may be added with
little costs and will complement the fuzziness of syntactic
text-features.

3.2.2 Structure-based Features
These domain-independent features interconnect postings

and threads in a forum. For this category we distinguish
internal links and forum structure features.

Forum-internal Links (F type
int link). Instead of retyping

the answer, users frequently create a link to existing con-
tent in another thread when responding to a question. The
link is complemented with some textual comment, such as:
”Please check this link” or ”For RFC Sender problems please
refer to this thread”. We call such a posting a referral post-

ing, while the thread they refer to, we call the answering

thread. Similar to link graphs in the web, such referrals
create a graph structure over interconnecting threads in a
forum. Our intuition is that similar threads share the same
links. Thus, for each posting we capture all forum-internal
links and its corresponding descriptions.

Structural Patterns within Thread (F type
only ref). The

relation between the thread containing a referral posting and



the associated answering thread is even stronger if the first
thread is only two postings long and contains only a ques-
tion and the (often correct) referral posting. Therefore we
capture the length of each thread and its correlation to an
internal link.

Structural Patterns within Forum (F type
ch ). If two

threads belong to the same forum area (e.g. channel or
subforum), we expect a higher correlation between near-
duplicates candidates. Therefore we mark for each thread
the channel where it was posted.

3.3 Hyper-Graph-based Thread Grouping
Most duplicate detection approaches are faced with the

“hyper graph problem” [10]: Every grouping is a set of over-
lapping subsets, meaning that one subset may share objects
with other subsets. The complexity for creating such a hy-
pergraph is exponential and thus we try to reduce it based
on Manber’s work [10], breaking the problem to creating a
graph for each thread by using an additional merging step to
combine graphs. The merging step is necessary since graphs
are created on a per thread basis, thus every group gets
created once for every of its members. The merging steps
removes these double groups.

Our grouping algorithm starts from a set of normalized
thread data and a complete fingerprint for each thread (cf.
Figure 3). It iterates over all threads from this set and calls
Algorithm 1 for each one. This one thread is called seed in
the further explanations. Algorithm 1 iterates over a set of

Algorithm 1 Algorithm grouping threads to seed threads

Input: seed Seed thread, th Similarity threshold, H Set of
possible duplicates
grps ← ∅
for all h ∈ H do
// Test for non disjoint threads
if sim(h, seed) ≥ th then
// Add h to group with same fingerprint or create it
currentCont ← getThreads(grps , getFingerpr (h))
grps ← grps ∪{(getFingerpr (h), currentCont ∪{h})}
for all g ∈ grps do
intersect ← (getFingerpr (h) ∩ getFingerpr (g))
// Test if h is subset thread of g

if | intersect | = | getFingerpr (g)| then
// Add thread h to group g

currentCont ← getThreads(grps , getFingerpr (g))
g ← (getFingerpr (g), currentCont ∪{h})
// Test if h has over threshold intersection with g

else if sim(h, g) ≥ th , | intersect | < getFingerpr (g)
then
// Add content of g and h to a new group
f ← getFingerpr (g)
grps ← grps ∪(intersect , getThreads(grps , f) ∪ {h})

end if
end for

end if
end for
return merge(h, grps)

candidate threads H obtained from an inverted index struc-
ture. Each member of this set shares at least one feature
with seed . Therefore each group will share a set of features
available in the seed thread. The set of possible groups for
seed is empty at the beginning. During the run of the algo-

rithm it gets filled with tuples containing a fingerprint and a
set of all threads that share that fingerprint. So one tuple in
grps represents a group. The function sim returns the sim-
ilarity of two objects with fingerprints. Section 3.4 explains
how this is achieved. Additionally getThreads takes a set
of group tuples and a fingerprint as input and returns the
set of threads that share this fingerprint, while getFingerpr
returns the fingerprint of a group or a thread. At first, the
grouping algorithm compares each candidate thread h ∈ H

with the seed thread using the similarity threshold th. If
the similarity of the current thread h is higher than the
threshold th , h is inserted into each matching thread group.
Depending on the similarity of the current thread h with g

we distinguish two cases:

Subset Thread: If the fingerprint of the group g is a subset
of h, then h covers the whole topic of all threads within
the group and thus it is a valid member of g and is
marked as sub-thread.

Overlapping Topic: Otherwise, if h is not a subset but g

and h share a significant amount of features larger than
th, h becomes a member of group g. Furthermore, we
iterate over all remaining groups for the the current
seed thread. If the overlap threshold permits, h is
inserted into each of these groups.

Otherwise, h is considered as a disjoint thread to seed . Once
the algorithm iterated over all candidate threads in H , a new
seed thread is chosen and the algorithm is started again. The
whole algorithm terminates, if no further seed threads are
available.

3.4 Mixed Model for Fingerprint Similarity
We distinguish between two similarity methods, one for

content-based features and one for structural features, both
are shown in Table 1. The equation for text and entities is
based on function getFingerpr , which returns a set of fea-
tures of given type. The first metric in Table 1 applies for
text- and entity- based features, while the second is suitable
for structured-based ones. We use them based on Jaccard
Similarity to compare two sets containing features of the
same feature type (i.e. elements of a fingerprint). The for-
mula is not exactly the same as Jaccard Similarity to cap-
ture near-duplicates were one thread of a duplicate pair is
overloaded with additional information but nevertheless con-
tains many or all features of the other one. The equation
for structure-based features, such as links is a binary deci-
sion: Two fingerprinted objects are near duplicates if there
is a link between them, otherwise not. Equation 1 calculates
the similarity of two fingerprints based on its structure and
text-base features and allows to weight each feature type.

sim(A,B) =

Pn

i=1(wi ∗ si(A,B))
Pn

i=1(wi)
(1)

The function sim takes two fingerprints A and B and cal-
culates their similarity as a weighted sum of the similarities
for n feature types i. This sum is normalized by the sum
of all weights to get a value between 0 and 1, that denotes
the similarity of threads A and B. To remove additional
parameters in our preliminary experiments we start with an
equal weight for all feature types (i.e. wi is always 1).

3.5 Complexity



Text-, st,e(A, B) =

(

| getFingerpr(A)∩getFingerpr(B)|
| getFingerpr(B)|

| getFingerpr (B)| 6= 0

0 otherwise

Entity- based

Structure-based ss(A,B) =

(

1 | getFingerpr (A) ∩ getFingerpr (B)| ≥ 1

0 otherwise

Table 1: Feature Types and Similarity Metrics

Algorithm 1 in the worst case compares every group to
every candidate thread from H for every seed thread seed .
In this case it as an exponential complexity of O(nn), which
is not better then the naive approach of comparing every
thread to every other. However there are two conditions that
must be true for this to happen. At first the candidate set
for every seed thread has to be the whole input set, which is
true if every thread has at least one feature in common with
every other thread. Second the fingerprints of all threads
need to be different so that a new group is created for every
combination of two threads. While the second condition
might occur quite easily the first is very unlikely and depends
very much on which features-types are considered. Therefore
feature-types of features occuring very seldom (for example
links) are better for performance than ones that have many
often occuring instances (for example text). In the second
case it might happen that one word that is very common to
the forum slows performance quite drastically, while in the
first case the whole algorithm runs nearly linearly, because
the size of the candidate set is close to zero.

3.6 Example

Figure 4: Group Creation for Single Seed Thread

Consider a thread b that gets grouped with a threshold
of th = 0.5 to an arbitrary seed thread seed as shown in
Figure 4. The fingerprint of seed contains six features f1−f6

and it already forms a group g1 with a thread a. The thread
b having a fingerprint of f1, f9, f3, f4, f5, f8 has a similarity
of 0.66 to seed and since this is greater than the threshold
it is added to a new group g2. The fingerprint of this new
group equals the similarity of seed and b.

Afterwards b’s fingerprint is compared to all remaining
groups which happens to be only g1. Since the similarity
between b’s and g1’s fingerprint is equal to the threshold th
b is added to a new group g3 together with a. This new
group’s fingerprint gets all features common between b and
g1, which are f1, f4 and f5. The final grouping as result of
the algorithm is shown in Figure 5.

Figure 5: Final Grouping Seed Thread

4. EXPERIMENTAL RESULTS
In this section we describe our data set, define our eval-

uation methodology, our experiments and evaluate different
settings for grouping operations.

4.1 Data Set and Methodology
Our experiments are based on a sample of 54570 threads

(219.000 postings) collected from the SDN forum and ob-
tained between 2007 and 2008. From this set we chose 2587
threads (ca. 5%), that were created in the timeframe of one
week, as Gold-Standard. Among these threads 437 only fea-
tured a question, while 2150 at least provided a question
and some response (cf. Figure 6).

As it is not possible to determine all near-duplicate pairs
for several thousands of threads by hand, we cannot deter-
mine the recall of the different algorithms. Instead we com-
pared the algorithms based on (1) precision and (2) the num-
ber of duplicate threads each method was able to identify.
Metric (1) required human evaluation: At first we ran our
process several times on the Gold Standard data set, vary-
ing the values for the parameters: feature type and similarity



Figure 6: Postings per Thread in the evaluation
dataset

threshold thereby. Each of these experiments generated a set
of duplicate groups. The sets were evaluated by an expert,
who labeled grouped threads as correct or incorrect members
of their group. For simplicity we marked both, undecided
and incorrect members as incorrect. Correct near-duplicates
were chosen using Algorithm 1 from Section 2. In addition
we calculated metric (2) for every experiment by summing
up the size of all groups created by that experiment. With
the precisions and the numbers of found duplicates for every
experiment we are able to compare them to each other.

4.2 Evaluation
In the following subsections we explain each of our seven

experiments in detail and compare our metrics for near-
duplicate threads for all of them. Table 2 provides an overview
of the results. We start with experiments on exact matching
threads (Baseline) and continue to investigate which text-
based features (Text-75 and Text-80) and which structure
based features (External Link) contribute to a high preci-
sion and recall. Finally, we conduct experiments using all
features (ALL) on threads with different length (Thread-1
and Thread-2).

4.2.1 Baseline: Exact Matches
For our first experiment we measured threads with exact

matching postings. A thread is considered an exact dupli-
cate if both candidate threads have exactly the same initial
posting. Using the baseline on the test data set we identified
18 groups containing 2 threads with exact initial postings.
In total our baseline algorithm identified 36 near duplicates,
which is about 1.4% of the data set. By a closer observa-
tion we found out that 18 of these duplicates were created
by the same user. Only one of the 19 groups contained two
duplicates posted by different users, possibly due to multi
accounting or account sharing.

4.2.2 Text-Only
To compare our improvements to existing near-duplicate

detection approaches we conducted two experiments using
text-only features. We focused on question postings in this
experiment. We expected similar results to algorithms, such

as [4] or [10], for detecting machine generated duplicates.
We conducted an experiment with a similarity threshold th
of 0.8 and 0.75 minimal similarity. These experiments are
called ”Text-80” and ”Text-75”. We observed that precision
is decreased significantly from 58% for Text-80 to 48% for
Text-75. This is due to long questions that are matched very
bad using only text as feature type. For the high threshold
experiment most grouped threads contain short questions,
with a small increase in longer questions for the lower thresh-
old. Text-based similarity approaches do not result in a suf-
ficient precision. Most errors where created, because of the
limited amount of text, especially in threads with only one
posting. E.g., we observed an initial posting, which only con-
tained four words: ”What is a smartform?”. Several threads
with more postings matched this informational question, but
very few actually had the same intention, namely to locate a
wiki-page or a thread explaining the term ”smartform”. An-
other major source for mistakes were ”copy and paste users”.
These users often re-used old postings just changing a few
words to make up for a new question. Here, text similarity
identifies the template text and matches it against all other
occurrences of the template.

4.2.3 External-Links
For the second experiment our intention was to investigate

the assumption that equal questions are solved by referring
to the same external resources. We used a threshold that
identified two threads as near-duplicates if they share at
least two common links. As result of this experiment 1.4%
of the threads from the test data set where grouped as near
duplicates, while the precision was as low as 20%. Main
reason for such a low precision was the frequent usage of hub-
links, such as ”https://forums.sdn.sap.com” referring to the
entry page of the forum portal. Therefore, when applying
link-based similarity, we suggest to restrict links to authority
pages only. Such pages do not contain links to other web
resources but contain the required information directly.

4.2.4 Text-based and Structure-based
Finally we conducted three experiments using all features

together: Since most groups were focused on small threads
we examined two subsets from the results of this experi-
ment. The first experiment was called ”Thread-1”. It con-
tains groups of threads with only one posting. Such groups
cover threads with only the question posting, which have
little value for the searcher. Next, we examined groups con-
taining only threads with two postings ”Thread-2”. Such
threads often include a question and an obvious answer or a
link to an answer. These threads are frequent in the data set
and of high value for the answer-seeking user. In our last ex-
periment ”All”, we examined all threads independent of the
length. For both experiments - ”Thread-1” and ”Thread-2” -
we could observe a precision of 80%. However, we could only
find 10 (”Thread-1”) and 5 (”Thread-2”) groups. The ”All”
experiment found 126 groups with a precision of 74, 33%.
Most errors in this category where similar to the ones ob-
served during the text experiments. However the addition
of semantic and forum structure significantly lowered these
issues. This conclusion is also true for the two sub experi-
ments.

4.3 Lessons Learned
We summarize our observation as follows:



Experiment Generated groups Near duplicate threads Precision Group size
2 3 - 5 5+

Baseline 18 36 100% 18 0 0
External link 5 10 20% 5 0 0
Text-75 139 272 48,82% 96 29 14
Text-80 88 186 57,80% 76 9 3
All 126 194 74,33% 118 8 0
Thread-1 10 19 80% 10 0 0
Thread-2 5 10 80% 5 0 0

Table 2: Summary of Experiments

Figure 7: Postings per Thread in groups created by
“ALL”

• Existing matching strategies are not sufficient.
Our experiments clearly show, that simple metrics,
such as exact or text-only matches are insufficient and
do only produce decent results.

• Mixed approach increases precision drastically.
Adding information about the link structure within a
forum or between threads of the same channel and of
extracted entities increases precision while the amount
of found groups nearly remains at the same level.

• Algorithm is especially fitting for short threads.
Figure 6 shows the distribution of threads with differ-
ent postings lengths in our data set. Short threads
are more common: The average length of a thread
is between 4 and 5 postings; however most common
are threads with a length of two, three and one post-
ing. Our text- and structure-based metrics work es-
pecially well for identifying near-duplicates on these
shorter threads (see Figure 7). We assume, that these
threads have a clear intention in the question, while
longer threads are often disturbed by contributions not
directly fitting the topic of the thread.

• Few near-duplicates, very few exact duplicates.
Overall, 194 near-duplicate threads were spotted in
our sample of 2587 threads using the all-algorithm.
The number of exact duplicates is very low, in total
36 threads have an exact duplicate. A possible rea-
son is due to the procedure to create content: ”Tra-

ditional” web pages, e.g., in shopping portals or news
related web pages, are ”created and replicated” using
different CSS styles and HTML templates, while forum
content is created by human beings and incorporates
a much higher variety of different expressions for the
same question or answer.

• High thresholds produce fewer results with bet-
ter precision. As expected increasing the threshold
parameter also increases the precision of found dupli-
cates, but also decreases the count of found duplicates.

5. RELATED WORK
Our work is related to fingerprint creation and text ab-

straction algorithms, work about comparing fingerprints and
work about web-based clustering techniques. In this section
we compare our approach against these approaches.

Fingerprint generation. This area covers approaches
for creation fingerprints. E.g., [5, 14, 8] create fingerprints
independent of the extracted features. Other approaches are
sensitive to the chosen feature types, which are more similar
to our work. Broder [4] concentrates on text-based features
of a document. He creates multiple fingerprints from ex-
tracted shingles, which are lists of tokens from a document.
In his work tokens might be letters, words, or sentences.
To create the final fingerprints, a random subset from all
shingles of a document is selected and a hash function is ap-
plied. Manber [10] and Theobald et al. [12] propose methods
to choose shingles based on anchor words, like important do-
main specific words or stop words. We extend these ideas on
other specific feature types, such as extracted entities and
forum links. The I-Match algorithm proposed by Chowd-
hury et al. in [6] also uses document text to create finger-
prints. They inspect the collection of words from every doc-
ument and apply different filtering techniques based on the
inverted document frequency value of each document. Using
these filtered bags of words they create a hash fingerprint for
each document and insert these fingerprints to a hash map.
All documents with equal hash values are considered near-
duplicates. A contribution in a forum however usually con-
tains very few content. Therefore we don’t select a subset of
features based on TF/IDF [6] or shingle metrics [10, 12, 4],
but rather use all features available3. Since forum content
is unstructured and since we base our approach not just on
text similarity, we incorporate information extraction tech-
niques as well. For our extraction approach we used a rule
based extraction system similar to the AVATAR proposed
by [13]. Forum content can range in its quality from very
low to very high. The authors of [1] present an approach

3After stop word removal of course.



for identifying high quality content based on various metrics
but don’t incorporate grouping techniques.

Measuring similarity. The second question is how to
compare generated fingerprints. In [5, 14] and [8] k-Bit fin-
gerprints are compared using the Hamming Distance: If the
fingerprints of two documents differ in at most f -Bit posi-
tions they are considered to be similar. Manber [10], Broder
[4] and Chowdhury [6] use an approach based on set sim-
ilarity, which is similar to our approach. They count the
number of common elements and weight this intersection by
the sum of available elements from both fingerprints. This
is essentially the notion of the Jaccard distance.

Clustering techniques. Since it is not sufficient to know
the similarity of two documents but necessary to group mul-
tiple documents together, all duplicate detection approaches
are faced with the “hyper graph problem” [10]: Every group
is a set of sets where one subset may share objects with
other subsets. Some approaches [4] decide to simplify the
problem and propose that a duplicate can only occur in one
group. Our solution, based on Manbers work [10], breaks
the problem to creating a graph for each thread and using
an additional merging step to combine these graphs.

Duplicate query type. We can detect duplicates in
document sets either on-line or off-line. Manber proposes
solutions for both approaches in [10] and the authors of [15]
created a hybrid solution based on query logs of a large
search engine. The current implementation of our approach
is only able to do off-line grouping. The algorithm however
should be fast enough to do on-line queries, if only search
results are grouped and some preliminary steps that are cur-
rently calculated on each run are pre-computed.

Performance Improvements. Another group of re-
lated work focuses on existing algorithms trying to improve
performance issues. E.g., Henzinger in [9] proposes a solu-
tion to combine [4] and [5] to achieve better precision and
remove some of the drawbacks of both algorithms. Work
from the area of cluster creation improves performance of
clusters based on cluster ensemble collections. Fern and
Lin in [7] present a method to create clusters by merg-
ing pre-selected subsets of clusters from a cluster collection.
Our solution is similar, since we create multiple graphs, one
for each feature type and keep only relations that have a
high combined threshold from all graphs. In contrast to
our approach these existing techniques identify mostly near-
duplicates that share the same ancestor document. Thus,
they are able to identify if one document is a changed version
of another one. That is in most cases not true for threads;
rather in threads two users create a new thread for the same
question independently.

6. CONCLUSION AND FURTHER WORK
To the best of our knowledge, no other work has tack-

led and solved the problem of identifying near-duplicates in
web-forums so far. In this work we have shown that iden-
tifying near-duplicates in web-based forums is possible. In
an intensive user study, we could identify technical factors,
such as the low search engine precision, but also human
factors, such as aggressive or lazy users, as major reasons
for the existence of duplicate postings. For spotting near-
duplicate threads we used a fingerprint matching approach.
We developed a feature model incorporating text-based fea-
tures, features based on extracted entities for products, and
structure-based features and developed methods to compute

and compare fingerprints derived from these features. Our
preliminary experiments on several thousand threads of a
real-world forum has shown that only a combination of all
feature categories results in a sufficient high precision. In
our future work we foresee four directions:

• Larger Evaluation Data Set: To understand bet-
ter, how to detect duplicate forum postings we will run
our experiments on a larger ”Gold Standard”. Fur-
thermore we will evaluate our algorithm on different
question and answering forums. E.g., we like to prove
our findings for B2B forums in other forum types, e.g.
B2C forums such as reviews for consumer products or
C2C forums, such as Yahoo! Answers.

• Trainable Parameter Model: To weight similarity
features, we use a linear interpolation approach. To
avoid manual weight tuning, we like to investigate how
to obtain correct weights from the forum data itself.
E.g, some forums encourage users to mark threads as
answered. It might be useful, to train a parameter
model based on a corpus on answered threads and test
the model on threads which have been potentially an-
swered but are still unmarked.

• Richer Feature Set to select ”Best” Thread in
a Group: Our current heuristic to select the ”best”
thread within a near-duplicate group bases solely in
the length of the threads. While we found this sim-
ple metric already useful, we will explore richer fea-
ture models. E.g., morphological information, and in-
formation about grammar correctness might help to
determine the quality of a thread in a near-duplicate
group. Another direction will incorporate existing in-
formation about thread authors and their performance
in the past. E.g., one might prefer to show threads,
which have been written by users which often provide
answers, or users which often write questions which
have received responses from many other users.

• Improved efficency: The current version of our du-
plicate detection and grouping algorithm has a very
high complexity and runs quite slow on large datasets.
In future work we will concentrate on improving this
behaviour. This can be achieved for example by dis-
tributing our algorithm on a cluster of computers, try-
ing to improve the candidate selection phase and focus
research on duplicate detection measures that might be
more efficient than jaccard similarity.
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