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Abstract— This paper presents a distributed architecture for 

reasoning about a higher-level context as an abstraction of a 
dynamic real-world situation. Reasoning about a higher-level 
context entails dealing with data acquired from sensors, which 
can be inexact, incomplete, and/or uncertain. Inexact sensing 
arises mostly due to the inherent limitation of sensors to capture 
a real world phenomenon precisely. Incompleteness is caused by 
the absence of a mechanism to capture certain real-world 
aspects; and uncertainty stems from the lack of knowledge about 
the reliability of the sensing sources, such as their sensing range, 
accuracy, and resolution. The proposed architecture enables the 
modelling of an interactive computing environment with facts 
and beliefs to manipulate data from a variety of sensors with 
different sensing specifications. It will be shown how the 
architecture enables to reason about the whereabouts of a person 
in the absence of any location sensor. Depending on the available 
primitive contexts (temperature, relative humidity, sound 
pressure, light intensity and time) and the reliability of the 
sensors employed, the architecture enables to determine with 
different degree of uncertainty, whether a person is on a corridor 
or inside a room, a building, or outside a building.  
 

Index Terms—Context, Context-Aware Computing, Primitive 
Context, Higher-Level Context, Context Reasoning  
 

I. INTRODUCTION 
The traditional model of human-computer interaction – in 

which a user enters a command and a computer executes the 
command [1] – puts a computing task at the centre of the 
user’s attention. The user needs to provide all input 
information pertaining to the task a computer should 
accomplish, since the latter is entirely unaware of and quite 
unable to utilise background information surrounding the 
subject of the interaction. As long as the computing task is the 
only task which the user pays attention to, the degree of 
involvement the interaction demands of the user may not be a 
point of discussion. The problem comes when a user has to 
divide his attention between other impending activities such as 
driving, talking to other people, holding a presentation, 
attending to a child, and so on, while a computing task is in 
progress.  
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This is even more pronounced when the user has to manage 
several devices at the same time: Whereas once it has been 
considered as a revolution to provide individuals with 
personal computers, it is now an everyday practice to carry 
with us several mobile computers and communicate with them 
on the spur of the moment. 

The traditional computing model must therefore evolve to 
make, on the one hand, a computing task less obtrusive, and 
on the other hand, human-computer interaction more intuitive. 
In other words, the amount of explicit input a user has to 
supply for a computing task should be reduced, and 
interaction with computers should imitate human interactions. 
Otherwise, the increment in the ratio of mobile devices to a 
user causes additional distraction instead of helping a user in 
solving a problem. 

II. USE OF CONTEXT 
Recently, context-aware computing has emerged promising 

the use of unused implicit information which can be vital for 
enabling mobile devices to establish a shared understanding 
[2]. The aim is to integrate computers into the environment, 
rather than taking them as distinct objects, so that they can 
seamlessly gather and employ surrounding information which 
enables them to provide useful services.  

The need for establishing shared understanding has been 
clearly expressed by Weiser as follows: 

The idea […] first arose from 
contemplating the place of today’s computer in 
actual activities of everyday life. In particular, 
anthropological studies of work life teach us 
that people primarily work in a world of shared 
situations and unexamined technological skills 
[3]. 

When people attend a meeting, for example, their eyes 
communicate to convey agreements or disagreements to what 
is said or not said; voices are whispered to exchange 
impromptu opinions; facial expressions reveal to the other 
participants fatigue, boredom, or disinterest. More 
importantly, speeches may not be grammatically correct or 
complete. Previous as well as unfolding incidents enable the 
audiences to capture what cannot be expressed verbally. 
Speakers shift from one language to another and use words 
with multiple meanings, and still the other participants can 
follow. Likewise, implicit situational information can be vital 
to enable mobile devices to be responsive to their 
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environment. 

III. UNDERSTANDING CONTEXT 
In the example of attending a meeting, it has been assumed 

that the context encompassing the interactions between 
participants is effortlessly recognized by all participants. 
Consequently, with the knowledge of this context, many 
activities unfold, some of which are certainly unpremeditated 
activities but consistent with the context. Some of the 
activities express the freedom (or flexibility) associated with 
the recognition of the context – for example, using incomplete 
or incorrect statements, or using words with multiple 
meanings. Other activities reflect the participants’ adjustment 
of behaviour in compliance with the context of interaction – 
for example, participants whispering to exchange impromptu 
ideas.   

This assumption considers a context to be distinct from 
activities, and that it describes features of the environment 
wherein the activities take place. In reality, however, the 
distinction between a context and an activity is not always 
clear. This is because the scope and usefulness of a context are 
limited to a particular setting, particular instances of action, 
and particular parties to that action [4]. Moreover, among the 
set of activities enumerated earlier, some or all of them can be 
contexts to other activities which are affected by the 
occurrences of these activities. A meeting by itself is an 
activity triggered by the occurrence of a context which 
preceded it. Therefore, building a shared understanding 
requires the understanding of a context as a dynamic construct 
whose relevance is determined by episodes of use, social 
interaction, internal goals, and local influences [5].    

IV. CONTEXT-AWARE FEATURES 
Pascoe proposes three features required for a mobile device 

to establish a shared situation. These are: contextual sensing, 
contextual resource discovery, and context adaptation [6]. 
Contextual sensing refers to the ability of a system to augment 
the sensing capacity of a user by capturing a relevant context, 
so that when the context is detected, an associated action can 
be performed by the system; contextual resource discovery 
refers to the ability of a system to search and bind to resources 
which can be useful for increasing the interaction bandwidth  
with the user; and finally, context adaptation refers to the 
adjustment in behaviour of a system in accordance with the 
virtual as well as physical settings (as described by the 
captured context) wherein an interaction with the user is 
taking place.  

To provide support for the design and implementation of 
such a system, Dey proposes a framework which has a set of 
features. These features are: context specification, separation 
of concern and context handling, context interpretation, 
transparent distributed communications, constant availability 
of context acquisition, context storage, and resource discovery 
[2].  

Context specification refers to the process of specifying the 

system’s behaviour and the context required to give rise to the 
observation of the behaviour. Here Dey identifies identity, 
location, activity, and time as basic context types. Separation 
of concern and context handling refers to the separation of 
context acquisition from context usage. Context interpretation 
refers to the provision of an appropriate abstraction to a piece 
of context so that it is meaningful to the system which uses 
(consumes) it. Transparent distributed communication refers 
to the possibility of acquiring a context in a transparent 
manner, possibly, from multiple sources which are not directly 
connected to the device on which a context-aware system is 
running. Constant availability of context sources is required to 
deliver every context which is specified by the developer at 
the time the system is designed. Context storage refers to the 
process of persisting contextual data for future reference. 
Finally, resource discovery, refers to the ability of a context-
aware system to search and bind to context resources at 
runtime.    

V. REVISED FEATURES OF CONTEXT-AWARE COMPUTING 
Some of the features of the framework of Dey are 

prohibitive in not allowing a system to capture dynamic real-
world situations for the following reasons: (1) Specifying the 
behaviour of a context-aware system at design time prohibits a 
user from defining a user-specific behaviour which might not 
been foreseen by the developer; (2) determining at design time 
a context which causes certain behaviour to occur restricts a 
context-aware system from learning a new type of context 
which may equally cause the same behaviour to occur; (3) 
since a context-aware behaviour and the contexts associated 
with the behaviour can be unforeseen at design time, 
determining specific hardware and sensors for capturing a 
context may not be feasible; and (4) in a dynamic computing 
environment where the state of available resources and the 
resources themselves change over time, requiring a constant 
availability of sources for capturing specific context types can 
be unrealistic.  

Subsequently, we propose a set of revised features, which 
we believe will improve the ability of mobile devices to 
establish in a more proactive manner a shared understanding 
of a pervasive computing environment. 

A. Holistic and Conceptual Abstraction 
Human-human interaction, as it is purported earlier, besides 

the expressiveness and the richness of the language employed, 
involves perception of a complex setting encompassing the 
subject of the interaction. Our brain presents the world to us 
not as a collection of raw data, but wholly, conceptually, and 
meaningfully [7]. Likewise, for a context-aware system to 
capture and abstract dynamic real-world situations, it is not 
merely enough to employ sensors and to make a piecemeal use 
of contextual elements. There is no doubt that employing 
sensors augments their sensing capacity thereby contributing 
to their awareness of the external world; awareness, however, 
is more than just sensing. Awareness means making sense of 
the sensed data. Hence, a context-aware system should be able 
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to perform various manipulations and comparisons on large 
amount of raw data acquired from sensors in order to 
transform them into a meaningful abstraction of the real 
world.  

B. Managing Uncertainties 
The taxonomy of neither Pascoe nor Dey considers the fact 

that context acquisition incorporates uncertainties. In reality, 
however, the sensory data from which a context is extracted 
can be incomplete, inexact, and, possibly, erroneous. Inexact 
sensing arises due, mostly, to the inherent limitation of sensors 
in precisely capturing a real world phenomenon; 
incompleteness arises due to the gap between what can be 
captured by employing sensors and what is needed to present 
the world to computers wholly, meaningfully, and 
conceptually. Erroneous sensing occurs due to physical and/or 
technical malfunction of the sensor or its communication link 
to the infrastructure. In other words, there are certain aspects 
which cannot be captured by employing sensors. Additionally, 
there is uncertainty due to the lack of knowledge about the 
reliability of the sensing sources, such as their sensing range, 
accuracy, and resolution. Therefore, a context-aware system 
should be able to deal with and to quantify the uncertainty 
associated with a context computing process. 

C. Belief Revision 
The model of a computing environment should be updated 

to reflect the perceived change in the environment. This is 
useful for appropriately manipulating sensory data with the 
help of a timely knowledge of both the static and the dynamic 
properties of the computing environment. In other worlds, the 
facts and beliefs it has of entities to manipulate primitive 
contexts should reflect the reality. This could be possible only 
if the system accommodates a belief revision mechanism. 
Another reason for belief revision (model updating) is the 
detection of contradictory information in the model [8]. In 
situations involving imprecise knowledge of entities and 
relationship between them, it is possible to arrive at a 
conclusion which might turn out to be incorrect as soon as 
more reliable evidence becomes available.  

D. Dealing with the Dynamics of Context Inputs 
In a pervasive computing environment, due to the mobility 

of a user in time and in space, the availability of mechanisms 
for capturing interesting contexts may change significantly 
[9]. Different mechanisms may appear and/or existing 
mechanisms may fully or partially become unavailable, 
making it difficult for a designer of a context-aware system to 
list a priori the set of contextual states that may exist.  

Cohen et al. [10]  define a nonprocedural programming 
language called iQL for context composition. The language 
assists application developers to identify and bind to 
heterogeneous context data sources dynamically. An iQL 
programmer expresses requirements for data sources instead 
of identifying specific sources; a runtime system discovers 
appropriate data sources, binds to them, and rebinds when 
properties of data sources change.  

Similarly, Dey proposes Context Widgets to allow 
application developers to specify the context types they are 
interested in without the need to know how the contexts are 
acquired. In both approaches, the required contexts remain the 
same; only the context sources or the context detection 
mechanisms may change.  

Often, a real world situation can have multiple features, and 
at any given time, some primitive contexts may be able to 
reveal only a subset of these features. Besides, there can be 
other primitive contexts which can provide an indirect 
evidence of the occurrence of a context of interest (for 
example, the heart rate of a patient can be determined from a 
blood pressure sensor if there is no ECG available to directly 
measure the heart rate [11]). Hence, a context-aware system 
should allow dynamic specification of alternative primitive 
contexts to achieve a set goal rather than rigidly obliging 
application developers to specify input contexts at design 
time. 

E. Dynamic Definition of Contextual States 
A given context type may have different states (values), and 

only a part of these states (values) may be interesting for a 
particular user at any given time. Analogues to the fact that an 
object can be viewed from different perspectives, a given 
context can be a subject of interest in a variety of ways. 
Whether or not it is possible to capture all the desirable states 
of a context type depends on the sensors employed.  
Consequently, a context-aware system should be able to 
dynamically determine the possible states of a higher-level 
context based on the available primitive contexts. 

 
The difference between the forth and the fifth feature 

should be clear. Dealing with the dynamics of context inputs 
refers to the characteristic of a context-aware system in 
copping with the constantly appearing and vanishing primitive 
context sources – we call this an input property. On the other 
hand, dynamic definition of contextual states refers to the 
capacity of a context-aware system in defining the states 
(values) for a given higher-level context. The scope and 
usefulness of these states are limited to a particular setting, 
particular instances of action, and particular parties to that 
action Thus, it is an output property. 

VI. RELATED WORK 
Peltenon et al. [12] classify auditory scenes into predefined 

classes by employing two classification mechanisms: 1-NN 
classifier and Mel-frequency cepstral coefficients with 
Gaussian mixture models. The aim is to recognise a physical 
environment by using audio information only. The audio 
scene comprises several everyday outside and inside 
environments, such as streets, restaurants, offices, homes, 
cars, etc. The features to be extracted from the audio signal for 
the purpose of classification are time and frequency domain 
features as well as linear prediction coefficients. The 
classification systems are able to classify 17 indoor and 
outdoor scenes with an accuracy of 68.4% and analysis 
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duration of 30 seconds.  
The limitation of this approach is the absence of a 

framework or architecture to generalise recognition of 
different types of higher-level contexts. Furthermore, the 
primitive contexts employed are extracted from a single 
context type: audio signal; therefore, it is hard to conclude that 
the scheme employs a variety of primitive context.   

Korpipää et al. [13]  propose a higher-level context 
recognition framework. It uses a naïve Bayesian classifier, 
where the child nodes of the network are atomic contexts and 
the parent node is the higher-level context to be captured. The 
context atoms are selected on the basis of their ability to 
describe some properties of the higher-level context. Other 
criteria include feasibility of measuring or recognising the 
chosen context as accurately and unambiguously as possible. 
Among its most important tasks, the framework manages 
uncertainty of sensor readings through the use of probability 
based inference and fuzzy membership.  

Using the framework, a mobile device could recognise 
whether it is outdoors or indoors; whether a sound is of a car, 
a tap water, rock music, classical music, an elevator, a speech, 
or other sound. For the first two higher-level contexts, namely 
indoors and outdoors, 14 atomic contexts describing the 
environment’s light, humidity, and temperature are used, 
while 47 audio-based atomic context atoms are used to 
describe the remaining seven higher-level contexts. 

The framework provides support to quantify the uncertainty 
associated with a recognition process; an additional merit of 
the framework includes training the model with data to 
recognise new contextual states. A conspicuous limitation of 
the framework is its employment of a naïve Bayesian 
classifier, which assumes the absence of causal dependencies 
between the input primitive contexts. In most practical cases, 
however, this assumption does not hold true. For example, the 
temperature, light intensity, and relative humidity of a place 
are causally dependent on time, which, too, is a primitive 
context; likewise, the relative humidity of a place is causally 
dependent on the temperature of a place. Subsequently, it may 
not be possible to accurately reason about a complex real-
world situation by employing a naïve Bayesian classifier 
alone. 

VII. SUMMARY OF OUR CONTRIBUTION 
The approaches above attempt to present to computers a 

portion of the real world conceptually and meaningfully by 
recognising a higher-level context as abstraction of or 
generalised from particular instances of atomic contexts. Our 
architecture builds upon the experience learned from these 
approaches while filling the gaps which were left unfilled by 
them. Its typical features are revised as follows: 

 Capability to capture a dynamic real-world 
situation; 

 Capability to measure and reflect to applications 
the uncertainty associated with a context;  

 Capability to update and correct the belief of the 

system with regards to the conditional 
dependencies between a higher-level context and 
the primitive contexts it abstracts; 

 Capability to deal with the dynamics of input 
context primitives; and, 

 Capability to dynamically define contextual states.  

VIII. ARCHITECTURE 
This section introduces the architecture we propose. It 

consists of Primitive Context Servers (PCS), Aggregators, a 
Knowledge Base (KB), an Empirical Ambient Knowledge 
component (EAK), and a Composer. We offer a conceptual 
treatment in this section; in section IX, the implementation of 
the architecture will be briefly discussed. Figure 1 shows our 
architecture. 

 

 
 
Figure 1: Architecture for higher-level context composition. 

 

A. Primitive Context Server (PCS) 
A PCS abstracts from other components, such as 

Aggregators, the details and complexities of extracting data 
from physical sensors. It transforms the raw sensory data into 
a meaningful context atom. In some cases, multiple features 
(context atoms) can be extracted from a single sensor – as an 
example an audio signal from which several audio features 
can be extracted; or as in the case of the DS1923 Dallas 
semiconductor humidity sensor from which both a relative 
humidity and a temperature value can be obtained. A primitive 
reveal a particular aspect of a real-world entity.  

The primitive context provided by a PCS should be 
accompanied with a description of the sensing element, so that 
the components which employ the context can decide how to 
rate the context. 

In addition to capturing and reporting atomic contexts, a 
PCS performs local administrative tasks such as tracking and 
monitoring the performance of the underlying sensing 
element. These activities are useful not only for ensuring 
smooth operations, but also for supporting quality checks. 
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One way of reducing uncertainty associated with imperfect 
sensing is setting objective metrics to evaluate the reliability 
of a sensing element. The metrics can be taken into account 
during data manipulations. Physical sensors are deployed with 
technical specifications, which include information about 
accuracy, sensing range, resolution, operation condition, and 
so on. This information is useful for rating the quality of data 
received from various Primitive Context Servers.  

B. Aggregators 
Often a piece of context is not sufficient to appropriately 

model a real-world situation. The real world is far too 
complex to be captured in complete detail by a single 
primitive context acquired from a single sensing element. 
Therefore, several aspects of entities should be included in the 
modelling. Moreover, the implication of inexact sensory data 
should also be taken into account.  

Aggregation deals with the association, correlation, and 
combination of data from single or multiple sources to achieve 
a refined estimation [14]. The architecture supports two types 
of aggregators: homogeneous and heterogeneous aggregators. 
A homogeneous aggregator gathers and processes data from 
Primitive Context Sources delivering similar primitive 
contexts. This is necessary for dealing with inconsistency 
emanating from inexact sensing. Inconsistency may occur due, 
partly, to the fact that different sensors have different 
resolutions, sensing ranges, sensitivities, etc. As an example, a 
temperature aggregator aggregates temperature measurements 
from multiple temperature sensors monitoring the thermal 
condition of one and the same room.  

A heterogeneous aggregator is similar to the aggregator 
proposed by Cohen et al. [10]. It searches and binds to various 
Primitive Context Servers each of which reports a different 
primitive context. The aim is to achieve completeness in 
modelling a real world situation. 

C. Knowledge Base (KB) 
A priori knowledge of entities (place, device, or person) is 

useful for appropriately manipulating primitive contexts. We 
distinguish between factual knowledge and knowledge based 
on beliefs. Facts reflect objective reality, while beliefs may 
not necessarily be true. In this subsection, we will discuss the 
usefulness of factual knowledge in modelling a real world 
situation.  

Suppose we would like to model a lecture room. 
Descriptions such as size, volume and location are useful facts 
which do not change quickly. Moreover, the relation of the 
room to other physical places is additional useful knowledge. 
For example, a building subsumes a room; a room and a 
corridor are mutually exclusive places (in that one is not 
contained in the other). Given that a room and a corridor are 
complementary (mutually exclusive) concepts, it is possible to 
reason about a room, if all we have is only facts about a 
corridor. If we know that a person is inside a building that has 
only a room and a corridor, a necessary requirement to reason 
about his further whereabouts is knowledge of either a room 

or a corridor. 
The KB thus comprises a collection of facts that constitute 

the vocabulary of an application domain and a list of 
assertions about individual named entities in terms of this 
vocabulary. The vocabulary consists of concepts, which 
denote sets of entities, and roles, which denote binary 
relationships between these entities. In addition to atomic 
concepts and roles, the KB allows the building of complex 
descriptions of concepts and roles. 

D. Empirical Ambient Knowledge Component (EAK) 
The KB accommodates facts only, however incomplete. 

There is little support to encode uncertain knowledge in it. 
Therefore, in our architecture we introduce the EAK in order 
to accommodate the inclusion of uncertain knowledge.  

Empirical and heuristic knowledge of situations and 
people’s perception of them is helpful to reason about 
dynamic situations. However, this type of knowledge is rather 
based on beliefs established on past experiences and 
observations that we do not represent it as an aggregation of 
facts, but as uncertain knowledge. 

Suppose we want to model a lecture room by employing 
data from a variety of sensors describing different properties. 
The sensed data may refer to the temperature, relative 
humidity, light intensity, ambient sound pressure properties, 
air velocity, etc. To manipulate such data, am empirical 
ambient knowledge is required. For example: ‘the temperature 
of a COLD ROOM in AUTUMN is between 15 and 20°C 
with a probability of 0.86’. Obviously, the empirical ambient 
knowledge as well as the sensed data incorporates 
uncertainties; hence cannot be taken as we would take facts.  

Another example can be reasoning about people’s thermal 
comfort inside a lecture room on the bases of the following 
empirical knowledge: 

• Human thermal and humidity perception varies 
from season to season. A temperature ranging 
from 20 to 23.6° C is perceived as comfortable in 
winter, while in summer, the range from 22.8 to 
26° C is perceived as comfortable. Likewise, a 
relative humidity ranging from 30 to 60% is 
perceived as comfortable in winter, while in 
summer, the range from 40 to 60% is perceived as 
comfortable [15]. 

• In winter a person is more sensitive to draught 
than in summer. Hence, the acceptable air velocity 
inside a room is below 0.15 m/s, while in summer 
it is in the order of 0.25 m/s [16]. 

The beliefs above may hold true for most places, but we 
may not be able to make sound conclusions by taking into 
account these statements alone. For these reasons, we 
represent empirical and ambient knowledge as beliefs, using 
conditional probabilities (or fuzzy membership functions, 
basic probability mass functions, etc).  
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E. Composer 
Even when we have reliable sensory data, we may still not 

be able to capture a real world situation. This is because there 
is always a gap between what sensors can provide and what 
applications may need. Composition deals with a single 
higher-level context as an abstraction of more numerous but 
simple context atoms.  

Once entities are modelled using the facts and beliefs stored 
in the KB and EAK, respectively, the composer accesses these 
components to retrieve useful knowledge which can serve as a 
reference to manipulate sensed data.  

A necessary requirement for the design of a composer is 
that it should be robust to work in a highly dynamic and 
pervasive computing environment, where the state of available 
context sources as well as the available sources themselves 
may change quite significantly. One way to meet this 
challenge is to enrich the KB as well as the EAK with facts 
and beliefs such that if some facts or beliefs are missing, the 
composer should combine other facts and beliefs to arrive at a 
reliable conclusion.  

 

 
 
Figure 2:  Belief explanation and revision 

 
A composer has three components: the first component is 

logic based reasoning component (LBR), and manipulates the 
facts, relations, and assertions in the KB; the second 
component is a probabilistic reasoning (PR) component which 
should deal with imprecise, and possibly erroneous, data from 
sensors and in the EAK. The reasoning scheme may or may 
not be a probabilistic reasoning scheme, but for convenience 
of expression we continue to call such. Our own 
implementation is a probabilistic reasoning scheme based of 
Bayesian Networks. 

The third component of the composer is a decision unit. 
When appropriate, it reconciles the outcomes of the LBR with 
and the PR to make consistent decisions. To demonstrate this, 
at times, the PR may not be able to decide because two or 
more propositions have equal posterior probabilities o the 
difference in posterior probabilities is not significant enough1. 
Consider the scenario of reasoning about the whereabouts of a 
person. Suppose the outcome of the PR indicates with equal 
probabilities that the person can be either on a CORRIDOR or 
inside a ROOM. We know from the KB that a CORRIDOR 
and a ROOM are mutually exclusive concepts, but a 
BUILDING subsumes both concepts. Hence, the decision unit 
will decide that a person is inside a BUILDING, instead of 

randomly selecting for either a COORIDOR or a ROOM. 

 
1 This is a function of the tolerable error by the application or the user. 

Once a composer arrives at a conclusion regarding the 
situation of an entity and its relationship to other entities, it 
updates the KB and the EAK. The model of a computing 
environment should be updated to reflect the perceived change 
in the environment.  

IX. IMPLEMENTATION 
In this section we will illustrate the implementation of our 

architecture.  
We installed various sensors and data loggers on multiple 

mobile devices belonging to a user. Among these sensors we 
hade: DS1971-F3 and Java powered DS1957B data loggers 
for storing secured profile information such as the user’s name 
and password (used to monitor which user has logged on to a 
device) as well as address, billing information, and so forth; 
temperature loggers with different sensing parameters 
(DS1921G, DS1921Z-F5, and DS2422), a humidity and a 
temperature data logger (DS1923), and a light intensity data 
logger (PCE-172). The sensors have different accuracy, 
sensing range, and resolution.   

At any give time, a user takes with him a random selection 
of the mobile devices. A Composer running on one of these 
devices interacts with Primitive Context Servers and 
Aggregators which are distributed across the mobile devices 
taken by the user to reason about various higher-level 
contexts.  

A. Modelling Dynamic Situation 
To setup the EAK, we model physical and virtual entities in 

terms of numerous primitive contexts. Since we cannot 
employ sensors to directly capture a higher-level context, the 
Composer manipulates various models, and obtains 
conceptual abstractions of a real world situation. Four steps 
are required to model a higher-level context: (1) the 
identification of a context of interest; (2) the identification of 
the various aspects of the context which can be captured by 
employing sensors; (3) the determination of the various states 
of each of the aspects; and (4) the establishment of 
relationships between the various aspects. Next, we will 
illustrate the modelling steps by identifying PLACE as a 
context of interest. 

Step 1: We identified the following primitive contexts to 
model a PLACE: temperature, relative humidity, light intensity, 
sound pressure, and time. We chose these primitive contexts 
because of availability of sensors for capturing them. 
Moreover, each of them describes a particular physical 
property of a PLACE. However, we maintain the possibility of 
some of these primitive contexts may be unavailable at any 
given time, and we may not be able to foresee a priori which 
one of them might be unavailable. There can altogether be 15 
possible combinations of available context inputs which can 
describe a PLACE with various degrees of certainty. 

 Step 2: We used fuzzy sets to define linguistic variables for 
the primitive contexts. The linguistic variables are results of 
empirical observations of various places. Our approach 
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resembles with earlier approaches of Mäntyjärvi et al. [17] 
and Korpipää et al. [13]; the essential difference is that we 
established conditional dependencies between time and the 
primitive contexts. By analysing the data were acquired from 
various rooms, corridors, and outdoors, we model the 
conditional dependencies between the primitive contexts and 
the higher-level context. As a result, the fuzzy set for time has 
three linguistic variables: morning, noon, and afternoon. 
Likewise, we established the following linguistic variables: 
For temperature: very cold, cold, lukewarm, warm, hot; for 
sound pressure: noisy, loud, quiet; for relative humidity: dry, 
moderate, moist; and for light intensity: dim, visible, bright, 
very bright. By using fuzzy modifiers, the members of a fuzzy 
set can be modified or new members can be introduced. As an 
example: very noisy, more or less quite can be generated from 
the fuzzy set of sound pressure.   

Step 3. We employed a Bayesian Network (BN) to express 
causal dependencies between a PLACE and the primitive 
contexts – the nodes (random variables) of the BN represent 
the higher-level context as well as the primitive contexts, and 
the values of the random variables represent the linguistic 
variables (correspondingly, the term sets of the linguistic 
variables). Criteria for the choice of a BN were: ease of 
knowledge representation, wide availability of efficient and 
tractable algorithms, and robustness. Robustness refers to the 
capability of the network to reconfigure itself whenever nodes 
(Primitive Context Servers) arrive and depart.  

X. SETTING UP A BAYESIAN COMPOSER 
A Bayesian Composer is set up by specifying the type of 

higher-level context to be recognised, the primitive contexts 
required for the computation, and the conditional 
dependencies between the various nodes of the network. A 
configuration file is obtained from the EAK. However, the 
particular topology of the Bayesian Composer at any given 
time depends on the available primitive contexts, whereas the 
network’s configuration, i.e., the various states which can be 
captured depends on the reliability of the sensors available. 

Figure 3 and 4 show two different topologies of the 
Bayesian Composer; each configuration displays the available 
primitive contexts and the corresponding adjustment in the 
state of the higher-level context to be recognised. In the 
figures, P stands for place, t stands for time, H stands for 
relative humidity, T stands for temperature, and L stands for 
light intensity. The various states of the nodes are as described 
in the previous section. 

Once a Bayesian Network is established, the Composer 
begins to query available Primitive Context Servers; the data it 
obtains from them is mapped to appropriate linguistic 
variables in the EAK, and then the Composer computes 
posterior probabilities to determine the likely place the 
sensory data represents. A place with the highest posterior 
probability is declared to be the whereabouts of the user. 

 
 

TABLE 1: Decision Reliability of a Bayesian Composer 

Primitive context Higher-Level Context 

Temperature ({P = O, 0.6}, {P = I, 0.7}, {P = (O or I), 0.2}, {e = 0.2}) 

Relative Humidity ({P = O, 0.8}, {P = I, 0.6}, {P = (O or I), 0.1}, {e = 0.2}) 

Temperature,    
Relative Humidity ({P = O, 0.9}, {P = I, 0.8}, {P = (O or I), 0.05}, e = 0.1}) 

Temperature,       
Light Intensity 

({P = O, 0.9}, {P = I, 0.8}, {P = (O or I), 0.1}, {e = 
0.05}) 

Relative 
Humidity, Light 
Intensity 

({P = O, 0.9}, {P = I, 0.9}, {e = 0.05}) 

Temperature,          
Relative 
Humidity,             
Light Intensity 

({P = O, 0.9}, {P = R, 0.7}, {P = C, 0.6, {P = (C or R), 
0.25}{P = (O or I), 0.0}, {e = 0.1}) 

 

 
Figure 3: A Bayesian Composer with two parent nodes and two child nodes 
(relative humidity and temperature) 

 
  

 
Figure 4: A Bayesian Composer with two parent nodes and three child nodes 
(relative humidity, temperature, and light intensity) 
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XI. EXPERIMENT RESULTS 
We employed the Bayesian Composer to reason about the 

whereabouts of a mobile user in the absence of any location 
sensor. Depending on the availability of primitive contexts, 
the Bayesian Composer could discriminate between ROOM, 
CORRIDOR and OUTDOORS with various levels of uncertainty. 
If there were no sufficient sensors to discriminate between a 
CORRIDOR and a ROOM, the Composer discriminated between 
INDOORS (correspondingly BUILDING) and OUTDOORS, since a 
BUILDING subsumes a ROOM and a CORRIDOR, which in turn is 
subsumed by INDOORS.  

At any given time, the uncertainty associated with the 
outcome of the Composer depended on the diversity of the 
primitive contexts available and the reliability of the sensors 
delivering the primitive contexts. 

The decisions of the Composer were classified as: correct, 
error, and undecided. Undecided referred to the inability of 
the Composer to distinguish between two or more states of a 
higher-level context because they had the same posterior 
probabilities, or the difference between the probabilities is not 
significant enough2. Error occurred when the Composer 
decided for the wrong state. 10 decisions were observed for 
each place and combination of input primitive contexts listed 
in table 1, which summarises the Composer’s discriminating 
efficiency for time, temperature, light intensity and relative 
humidity primitive contexts. 

XII. CONCLUSION 
We proposed several criteria for a context-aware system to 

reason about dynamic real world situations on the basis of 
data from physical sensors. A distributed architecture was 
designed and implemented to accommodate the criteria 
proposed. The architecture consists of Primitive Context 
Servers, which abstract lower-level (primitive) context 
acquisition; Aggregators, which improve the quality of a 
primitive context, and which gather several primitive contexts 
describing the various aspects of a real-world situation; a 
Knowledge Base and an Empirical Ambient Knowledge 
component to encode facts and beliefs about entities – while 
the facts reflect objective reality, however incomplete, the 
beliefs incorporate ignorance; and a Composer to reason about 
a higher-level context. 

We employed fuzzy sets to model beliefs, and a Bayesian 
Composer to manipulate these beliefs and sensed data in order 
to reason about the whereabouts of a person in the absence of 
any location sensor. The composer could discriminate 
between various places (INDOORS and OUTDOORS as well as 
between OUTDOORS, CORRIDOR, and ROOM) with different 
levels of uncertainties, depending on the variety and reliability 
of the sensors available.  

 
2 A difference in posterior probabilities below 15 percent was considered to 

be insufficient to discriminate between places; this limits the total error (error 
+ undecided) below 5 per cent.   

REFERENCES 
[1] W. Dargie, T. Loeffler, O. Droegehorn, and K. David, “Composition of 

Reusable Higher-Level Contexts,” in Proceedings of 14th Wireless and 
Mobile Communication Summit, IST, 2005. 

[2] A. Dey, “Providing architectural support for building context-aware 
applications”, Doctoral Thesis, 2000.  

[3] M. Weiser, “Ubiquitous Computing,” Computer 26, 10 (Oct. 1993), 71-
72.  

[4] P. Dourish, “What we talk about when we talk about context,” Personal 
Ubiquitous Comp. 8, 1, Feb. 2004.  

[5] S. Greenberg, “Context as a Dynamic Construct. Human-Computer 
Interaction,” Volume 16, pp. 257–268 (2001). 

[6] J. Pascoe, “Adding generic contextual capabilities to wearable 
computers,” in the Proceedings of the 2nd International Symposium on 
Wearable Computers (ISWC'98). IEEE, 1998. 

[7] P. Yancey and P. Brand. “In His Image,” Sondervan Publisher, 1987. 
[8] J.P. Martines and S.C. Shapiro, “A model for belief revision,” Journal of 

Artificial Intelligence. Elsevier Science Publishers, 1988. 
[9] W. Dargie, O. Droegehorn, and K. David. 2004. Sharing of Context 

Information in Pervasive Computing. In Proc. of the 13th Mobile and 
Wireless Communication Summit. IST (June 2004).  

[10] N.H Cohen, A. Purakayastha, J. Turek, L. Wong, and D. Yeh, “iQueue: 
A Pervasive Data Composition Framework,” in the Proceedings of The 
3rd International Conference on Mobile Data Management. IEEE, 2002.      

[11] W.B. Heinzelman, A.L. Murphy,H.S. Carvalho, and M.A. Peri, 
“Middleware to Support Sensor Network Applications,” Journal of. 
IEEE Networking, IEEE, 2003.   

[12] V. Peltonen, J. Tuomi, A. Klapuri, J. Huopaniemi, and T. Sorsa, 
“Computational auditory scene recognition,” in Proc. of International 
conference on acoustic speech and signal processing, 2002.  

[13] P. Korpipää, J. Mäntyjärvi, J. Kela, H. Kernen, and E-J. Malm, 
“Managing Context Information in Mobile Devices,” Journal of 
Pervasive Computing, IEEE, 2003.     

[14] D. Hall and J. Llians. (Editors), “Handbook of Multisensor Data 
Fusion,” CRC Press, 2001. 

[15] ASHRAE Handbook: Fundamentals, Ashrea, 2005. 
[16] T. Malmstrom, J. Andersson, FR. Carrié, P. Wouters, and Ch. Delmotte, 

“Source Book for Energy Efficient Air Duct System in Europe,” 
Airways Partners, 2002. 

[17] J. Mäntyjärvi, J. Himberg, and P. Huuskonen, “Collaborative Context 
Recognition for Handheld Devices,” in Proceedings of the First IEEE 
international Conference on Pervasive Computing and Communications 
(March 23 - 26, 2003). PERCOM. IEEE Computer Society, Washington, 
DC, 161.                  


	Introduction
	Use of Context
	Understanding Context
	Context-Aware Features
	Revised Features of Context-Aware Computing
	Holistic and Conceptual Abstraction
	Managing Uncertainties
	Belief Revision
	Dealing with the Dynamics of Context Inputs
	Dynamic Definition of Contextual States

	Related Work
	Summary of Our Contribution
	Architecture
	Primitive Context Server (PCS)
	Aggregators
	Knowledge Base (KB)
	Empirical Ambient Knowledge Component (EAK)
	Composer

	Implementation
	Modelling Dynamic Situation

	Setting up a Bayesian Composer
	Experiment Results
	Conclusion

