
 1

A Distributed Architecture for Reasoning about
a Higher-Level Context

Waltenegus Dargie and Thomas Hamann

Abstract— This paper presents a distributed architecture for

reasoning about a higher-level context as an abstraction of a
dynamic real-world situation. Reasoning about a higher-level
context entails dealing with data acquired from sensors, which
can be inexact, incomplete, and/or uncertain. Inexact sensing
arises mostly due to the inherent limitation of sensors to capture
a real world phenomenon precisely. Incompleteness is caused by
the absence of a mechanism to capture certain real-world
aspects; and uncertainty stems from the lack of knowledge about
the reliability of the sensing sources, such as their sensing range,
accuracy, and resolution. The proposed architecture enables the
modelling of an interactive computing environment with facts
and beliefs to manipulate data from a variety of sensors with
different sensing specifications. It will be shown how the
architecture enables to reason about the whereabouts of a person
in the absence of any location sensor. Depending on the available
primitive contexts (temperature, relative humidity, sound
pressure, light intensity and time) and the reliability of the
sensors employed, the architecture enables to determine with
different degree of uncertainty, whether a person is on a corridor
or inside a room, a building, or outside a building.

Index Terms—Context, Context-Aware Computing, Primitive
Context, Higher-Level Context, Context Reasoning

I. INTRODUCTION
The traditional model of human-computer interaction – in

which a user enters a command and a computer executes the
command [1] – puts a computing task at the centre of the
user’s attention. The user needs to provide all input
information pertaining to the task a computer should
accomplish, since the latter is entirely unaware of and quite
unable to utilise background information surrounding the
subject of the interaction. As long as the computing task is the
only task which the user pays attention to, the degree of
involvement the interaction demands of the user may not be a
point of discussion. The problem comes when a user has to
divide his attention between other impending activities such as
driving, talking to other people, holding a presentation,
attending to a child, and so on, while a computing task is in
progress.

Manuscript received January 8, 2006.
W. Dargie and T. Hamann are with the Chair for Computer Networks at the

Department of Computer Science, Dresden University of Technology, Hans-
Grundig-Str. 25, 01062, Dresden, Germany. (Phone: +49-351-463-38352; fax:
+49-351-46338251; e-mail: dargie@rn.inf.tu-dresden.de; hamann@rn.inf.tu-
dresden.de).

This is even more pronounced when the user has to manage
several devices at the same time: Whereas once it has been
considered as a revolution to provide individuals with
personal computers, it is now an everyday practice to carry
with us several mobile computers and communicate with them
on the spur of the moment.

The traditional computing model must therefore evolve to
make, on the one hand, a computing task less obtrusive, and
on the other hand, human-computer interaction more intuitive.
In other words, the amount of explicit input a user has to
supply for a computing task should be reduced, and
interaction with computers should imitate human interactions.
Otherwise, the increment in the ratio of mobile devices to a
user causes additional distraction instead of helping a user in
solving a problem.

II. USE OF CONTEXT
Recently, context-aware computing has emerged promising

the use of unused implicit information which can be vital for
enabling mobile devices to establish a shared understanding
[2]. The aim is to integrate computers into the environment,
rather than taking them as distinct objects, so that they can
seamlessly gather and employ surrounding information which
enables them to provide useful services.

The need for establishing shared understanding has been
clearly expressed by Weiser as follows:

The idea […] first arose from
contemplating the place of today’s computer in
actual activities of everyday life. In particular,
anthropological studies of work life teach us
that people primarily work in a world of shared
situations and unexamined technological skills
[3].

When people attend a meeting, for example, their eyes
communicate to convey agreements or disagreements to what
is said or not said; voices are whispered to exchange
impromptu opinions; facial expressions reveal to the other
participants fatigue, boredom, or disinterest. More
importantly, speeches may not be grammatically correct or
complete. Previous as well as unfolding incidents enable the
audiences to capture what cannot be expressed verbally.
Speakers shift from one language to another and use words
with multiple meanings, and still the other participants can
follow. Likewise, implicit situational information can be vital
to enable mobile devices to be responsive to their

mailto:dargie@rn.inf.tu-dresden.de
mailto:hamann@rn.inf.tu-dresden.de
mailto:hamann@rn.inf.tu-dresden.de

 2

environment.

III. UNDERSTANDING CONTEXT
In the example of attending a meeting, it has been assumed

that the context encompassing the interactions between
participants is effortlessly recognized by all participants.
Consequently, with the knowledge of this context, many
activities unfold, some of which are certainly unpremeditated
activities but consistent with the context. Some of the
activities express the freedom (or flexibility) associated with
the recognition of the context – for example, using incomplete
or incorrect statements, or using words with multiple
meanings. Other activities reflect the participants’ adjustment
of behaviour in compliance with the context of interaction –
for example, participants whispering to exchange impromptu
ideas.

This assumption considers a context to be distinct from
activities, and that it describes features of the environment
wherein the activities take place. In reality, however, the
distinction between a context and an activity is not always
clear. This is because the scope and usefulness of a context are
limited to a particular setting, particular instances of action,
and particular parties to that action [4]. Moreover, among the
set of activities enumerated earlier, some or all of them can be
contexts to other activities which are affected by the
occurrences of these activities. A meeting by itself is an
activity triggered by the occurrence of a context which
preceded it. Therefore, building a shared understanding
requires the understanding of a context as a dynamic construct
whose relevance is determined by episodes of use, social
interaction, internal goals, and local influences [5].

IV. CONTEXT-AWARE FEATURES
Pascoe proposes three features required for a mobile device

to establish a shared situation. These are: contextual sensing,
contextual resource discovery, and context adaptation [6].
Contextual sensing refers to the ability of a system to augment
the sensing capacity of a user by capturing a relevant context,
so that when the context is detected, an associated action can
be performed by the system; contextual resource discovery
refers to the ability of a system to search and bind to resources
which can be useful for increasing the interaction bandwidth
with the user; and finally, context adaptation refers to the
adjustment in behaviour of a system in accordance with the
virtual as well as physical settings (as described by the
captured context) wherein an interaction with the user is
taking place.

To provide support for the design and implementation of
such a system, Dey proposes a framework which has a set of
features. These features are: context specification, separation
of concern and context handling, context interpretation,
transparent distributed communications, constant availability
of context acquisition, context storage, and resource discovery
[2].

Context specification refers to the process of specifying the

system’s behaviour and the context required to give rise to the
observation of the behaviour. Here Dey identifies identity,
location, activity, and time as basic context types. Separation
of concern and context handling refers to the separation of
context acquisition from context usage. Context interpretation
refers to the provision of an appropriate abstraction to a piece
of context so that it is meaningful to the system which uses
(consumes) it. Transparent distributed communication refers
to the possibility of acquiring a context in a transparent
manner, possibly, from multiple sources which are not directly
connected to the device on which a context-aware system is
running. Constant availability of context sources is required to
deliver every context which is specified by the developer at
the time the system is designed. Context storage refers to the
process of persisting contextual data for future reference.
Finally, resource discovery, refers to the ability of a context-
aware system to search and bind to context resources at
runtime.

V. REVISED FEATURES OF CONTEXT-AWARE COMPUTING
Some of the features of the framework of Dey are

prohibitive in not allowing a system to capture dynamic real-
world situations for the following reasons: (1) Specifying the
behaviour of a context-aware system at design time prohibits a
user from defining a user-specific behaviour which might not
been foreseen by the developer; (2) determining at design time
a context which causes certain behaviour to occur restricts a
context-aware system from learning a new type of context
which may equally cause the same behaviour to occur; (3)
since a context-aware behaviour and the contexts associated
with the behaviour can be unforeseen at design time,
determining specific hardware and sensors for capturing a
context may not be feasible; and (4) in a dynamic computing
environment where the state of available resources and the
resources themselves change over time, requiring a constant
availability of sources for capturing specific context types can
be unrealistic.

Subsequently, we propose a set of revised features, which
we believe will improve the ability of mobile devices to
establish in a more proactive manner a shared understanding
of a pervasive computing environment.

A. Holistic and Conceptual Abstraction
Human-human interaction, as it is purported earlier, besides

the expressiveness and the richness of the language employed,
involves perception of a complex setting encompassing the
subject of the interaction. Our brain presents the world to us
not as a collection of raw data, but wholly, conceptually, and
meaningfully [7]. Likewise, for a context-aware system to
capture and abstract dynamic real-world situations, it is not
merely enough to employ sensors and to make a piecemeal use
of contextual elements. There is no doubt that employing
sensors augments their sensing capacity thereby contributing
to their awareness of the external world; awareness, however,
is more than just sensing. Awareness means making sense of
the sensed data. Hence, a context-aware system should be able

 3

to perform various manipulations and comparisons on large
amount of raw data acquired from sensors in order to
transform them into a meaningful abstraction of the real
world.

B. Managing Uncertainties
The taxonomy of neither Pascoe nor Dey considers the fact

that context acquisition incorporates uncertainties. In reality,
however, the sensory data from which a context is extracted
can be incomplete, inexact, and, possibly, erroneous. Inexact
sensing arises due, mostly, to the inherent limitation of sensors
in precisely capturing a real world phenomenon;
incompleteness arises due to the gap between what can be
captured by employing sensors and what is needed to present
the world to computers wholly, meaningfully, and
conceptually. Erroneous sensing occurs due to physical and/or
technical malfunction of the sensor or its communication link
to the infrastructure. In other words, there are certain aspects
which cannot be captured by employing sensors. Additionally,
there is uncertainty due to the lack of knowledge about the
reliability of the sensing sources, such as their sensing range,
accuracy, and resolution. Therefore, a context-aware system
should be able to deal with and to quantify the uncertainty
associated with a context computing process.

C. Belief Revision
The model of a computing environment should be updated

to reflect the perceived change in the environment. This is
useful for appropriately manipulating sensory data with the
help of a timely knowledge of both the static and the dynamic
properties of the computing environment. In other worlds, the
facts and beliefs it has of entities to manipulate primitive
contexts should reflect the reality. This could be possible only
if the system accommodates a belief revision mechanism.
Another reason for belief revision (model updating) is the
detection of contradictory information in the model [8]. In
situations involving imprecise knowledge of entities and
relationship between them, it is possible to arrive at a
conclusion which might turn out to be incorrect as soon as
more reliable evidence becomes available.

D. Dealing with the Dynamics of Context Inputs
In a pervasive computing environment, due to the mobility

of a user in time and in space, the availability of mechanisms
for capturing interesting contexts may change significantly
[9]. Different mechanisms may appear and/or existing
mechanisms may fully or partially become unavailable,
making it difficult for a designer of a context-aware system to
list a priori the set of contextual states that may exist.

Cohen et al. [10] define a nonprocedural programming
language called iQL for context composition. The language
assists application developers to identify and bind to
heterogeneous context data sources dynamically. An iQL
programmer expresses requirements for data sources instead
of identifying specific sources; a runtime system discovers
appropriate data sources, binds to them, and rebinds when
properties of data sources change.

Similarly, Dey proposes Context Widgets to allow
application developers to specify the context types they are
interested in without the need to know how the contexts are
acquired. In both approaches, the required contexts remain the
same; only the context sources or the context detection
mechanisms may change.

Often, a real world situation can have multiple features, and
at any given time, some primitive contexts may be able to
reveal only a subset of these features. Besides, there can be
other primitive contexts which can provide an indirect
evidence of the occurrence of a context of interest (for
example, the heart rate of a patient can be determined from a
blood pressure sensor if there is no ECG available to directly
measure the heart rate [11]). Hence, a context-aware system
should allow dynamic specification of alternative primitive
contexts to achieve a set goal rather than rigidly obliging
application developers to specify input contexts at design
time.

E. Dynamic Definition of Contextual States
A given context type may have different states (values), and

only a part of these states (values) may be interesting for a
particular user at any given time. Analogues to the fact that an
object can be viewed from different perspectives, a given
context can be a subject of interest in a variety of ways.
Whether or not it is possible to capture all the desirable states
of a context type depends on the sensors employed.
Consequently, a context-aware system should be able to
dynamically determine the possible states of a higher-level
context based on the available primitive contexts.

The difference between the forth and the fifth feature

should be clear. Dealing with the dynamics of context inputs
refers to the characteristic of a context-aware system in
copping with the constantly appearing and vanishing primitive
context sources – we call this an input property. On the other
hand, dynamic definition of contextual states refers to the
capacity of a context-aware system in defining the states
(values) for a given higher-level context. The scope and
usefulness of these states are limited to a particular setting,
particular instances of action, and particular parties to that
action Thus, it is an output property.

VI. RELATED WORK
Peltenon et al. [12] classify auditory scenes into predefined

classes by employing two classification mechanisms: 1-NN
classifier and Mel-frequency cepstral coefficients with
Gaussian mixture models. The aim is to recognise a physical
environment by using audio information only. The audio
scene comprises several everyday outside and inside
environments, such as streets, restaurants, offices, homes,
cars, etc. The features to be extracted from the audio signal for
the purpose of classification are time and frequency domain
features as well as linear prediction coefficients. The
classification systems are able to classify 17 indoor and
outdoor scenes with an accuracy of 68.4% and analysis

 4

duration of 30 seconds.
The limitation of this approach is the absence of a

framework or architecture to generalise recognition of
different types of higher-level contexts. Furthermore, the
primitive contexts employed are extracted from a single
context type: audio signal; therefore, it is hard to conclude that
the scheme employs a variety of primitive context.

Korpipää et al. [13] propose a higher-level context
recognition framework. It uses a naïve Bayesian classifier,
where the child nodes of the network are atomic contexts and
the parent node is the higher-level context to be captured. The
context atoms are selected on the basis of their ability to
describe some properties of the higher-level context. Other
criteria include feasibility of measuring or recognising the
chosen context as accurately and unambiguously as possible.
Among its most important tasks, the framework manages
uncertainty of sensor readings through the use of probability
based inference and fuzzy membership.

Using the framework, a mobile device could recognise
whether it is outdoors or indoors; whether a sound is of a car,
a tap water, rock music, classical music, an elevator, a speech,
or other sound. For the first two higher-level contexts, namely
indoors and outdoors, 14 atomic contexts describing the
environment’s light, humidity, and temperature are used,
while 47 audio-based atomic context atoms are used to
describe the remaining seven higher-level contexts.

The framework provides support to quantify the uncertainty
associated with a recognition process; an additional merit of
the framework includes training the model with data to
recognise new contextual states. A conspicuous limitation of
the framework is its employment of a naïve Bayesian
classifier, which assumes the absence of causal dependencies
between the input primitive contexts. In most practical cases,
however, this assumption does not hold true. For example, the
temperature, light intensity, and relative humidity of a place
are causally dependent on time, which, too, is a primitive
context; likewise, the relative humidity of a place is causally
dependent on the temperature of a place. Subsequently, it may
not be possible to accurately reason about a complex real-
world situation by employing a naïve Bayesian classifier
alone.

VII. SUMMARY OF OUR CONTRIBUTION
The approaches above attempt to present to computers a

portion of the real world conceptually and meaningfully by
recognising a higher-level context as abstraction of or
generalised from particular instances of atomic contexts. Our
architecture builds upon the experience learned from these
approaches while filling the gaps which were left unfilled by
them. Its typical features are revised as follows:

 Capability to capture a dynamic real-world
situation;

 Capability to measure and reflect to applications
the uncertainty associated with a context;

 Capability to update and correct the belief of the

system with regards to the conditional
dependencies between a higher-level context and
the primitive contexts it abstracts;

 Capability to deal with the dynamics of input
context primitives; and,

 Capability to dynamically define contextual states.

VIII. ARCHITECTURE
This section introduces the architecture we propose. It

consists of Primitive Context Servers (PCS), Aggregators, a
Knowledge Base (KB), an Empirical Ambient Knowledge
component (EAK), and a Composer. We offer a conceptual
treatment in this section; in section IX, the implementation of
the architecture will be briefly discussed. Figure 1 shows our
architecture.

Figure 1: Architecture for higher-level context composition.

A. Primitive Context Server (PCS)
A PCS abstracts from other components, such as

Aggregators, the details and complexities of extracting data
from physical sensors. It transforms the raw sensory data into
a meaningful context atom. In some cases, multiple features
(context atoms) can be extracted from a single sensor – as an
example an audio signal from which several audio features
can be extracted; or as in the case of the DS1923 Dallas
semiconductor humidity sensor from which both a relative
humidity and a temperature value can be obtained. A primitive
reveal a particular aspect of a real-world entity.

The primitive context provided by a PCS should be
accompanied with a description of the sensing element, so that
the components which employ the context can decide how to
rate the context.

In addition to capturing and reporting atomic contexts, a
PCS performs local administrative tasks such as tracking and
monitoring the performance of the underlying sensing
element. These activities are useful not only for ensuring
smooth operations, but also for supporting quality checks.

 5

One way of reducing uncertainty associated with imperfect
sensing is setting objective metrics to evaluate the reliability
of a sensing element. The metrics can be taken into account
during data manipulations. Physical sensors are deployed with
technical specifications, which include information about
accuracy, sensing range, resolution, operation condition, and
so on. This information is useful for rating the quality of data
received from various Primitive Context Servers.

B. Aggregators
Often a piece of context is not sufficient to appropriately

model a real-world situation. The real world is far too
complex to be captured in complete detail by a single
primitive context acquired from a single sensing element.
Therefore, several aspects of entities should be included in the
modelling. Moreover, the implication of inexact sensory data
should also be taken into account.

Aggregation deals with the association, correlation, and
combination of data from single or multiple sources to achieve
a refined estimation [14]. The architecture supports two types
of aggregators: homogeneous and heterogeneous aggregators.
A homogeneous aggregator gathers and processes data from
Primitive Context Sources delivering similar primitive
contexts. This is necessary for dealing with inconsistency
emanating from inexact sensing. Inconsistency may occur due,
partly, to the fact that different sensors have different
resolutions, sensing ranges, sensitivities, etc. As an example, a
temperature aggregator aggregates temperature measurements
from multiple temperature sensors monitoring the thermal
condition of one and the same room.

A heterogeneous aggregator is similar to the aggregator
proposed by Cohen et al. [10]. It searches and binds to various
Primitive Context Servers each of which reports a different
primitive context. The aim is to achieve completeness in
modelling a real world situation.

C. Knowledge Base (KB)
A priori knowledge of entities (place, device, or person) is

useful for appropriately manipulating primitive contexts. We
distinguish between factual knowledge and knowledge based
on beliefs. Facts reflect objective reality, while beliefs may
not necessarily be true. In this subsection, we will discuss the
usefulness of factual knowledge in modelling a real world
situation.

Suppose we would like to model a lecture room.
Descriptions such as size, volume and location are useful facts
which do not change quickly. Moreover, the relation of the
room to other physical places is additional useful knowledge.
For example, a building subsumes a room; a room and a
corridor are mutually exclusive places (in that one is not
contained in the other). Given that a room and a corridor are
complementary (mutually exclusive) concepts, it is possible to
reason about a room, if all we have is only facts about a
corridor. If we know that a person is inside a building that has
only a room and a corridor, a necessary requirement to reason
about his further whereabouts is knowledge of either a room

or a corridor.
The KB thus comprises a collection of facts that constitute

the vocabulary of an application domain and a list of
assertions about individual named entities in terms of this
vocabulary. The vocabulary consists of concepts, which
denote sets of entities, and roles, which denote binary
relationships between these entities. In addition to atomic
concepts and roles, the KB allows the building of complex
descriptions of concepts and roles.

D. Empirical Ambient Knowledge Component (EAK)
The KB accommodates facts only, however incomplete.

There is little support to encode uncertain knowledge in it.
Therefore, in our architecture we introduce the EAK in order
to accommodate the inclusion of uncertain knowledge.

Empirical and heuristic knowledge of situations and
people’s perception of them is helpful to reason about
dynamic situations. However, this type of knowledge is rather
based on beliefs established on past experiences and
observations that we do not represent it as an aggregation of
facts, but as uncertain knowledge.

Suppose we want to model a lecture room by employing
data from a variety of sensors describing different properties.
The sensed data may refer to the temperature, relative
humidity, light intensity, ambient sound pressure properties,
air velocity, etc. To manipulate such data, am empirical
ambient knowledge is required. For example: ‘the temperature
of a COLD ROOM in AUTUMN is between 15 and 20°C
with a probability of 0.86’. Obviously, the empirical ambient
knowledge as well as the sensed data incorporates
uncertainties; hence cannot be taken as we would take facts.

Another example can be reasoning about people’s thermal
comfort inside a lecture room on the bases of the following
empirical knowledge:

• Human thermal and humidity perception varies
from season to season. A temperature ranging
from 20 to 23.6° C is perceived as comfortable in
winter, while in summer, the range from 22.8 to
26° C is perceived as comfortable. Likewise, a
relative humidity ranging from 30 to 60% is
perceived as comfortable in winter, while in
summer, the range from 40 to 60% is perceived as
comfortable [15].

• In winter a person is more sensitive to draught
than in summer. Hence, the acceptable air velocity
inside a room is below 0.15 m/s, while in summer
it is in the order of 0.25 m/s [16].

The beliefs above may hold true for most places, but we
may not be able to make sound conclusions by taking into
account these statements alone. For these reasons, we
represent empirical and ambient knowledge as beliefs, using
conditional probabilities (or fuzzy membership functions,
basic probability mass functions, etc).

 6

E. Composer
Even when we have reliable sensory data, we may still not

be able to capture a real world situation. This is because there
is always a gap between what sensors can provide and what
applications may need. Composition deals with a single
higher-level context as an abstraction of more numerous but
simple context atoms.

Once entities are modelled using the facts and beliefs stored
in the KB and EAK, respectively, the composer accesses these
components to retrieve useful knowledge which can serve as a
reference to manipulate sensed data.

A necessary requirement for the design of a composer is
that it should be robust to work in a highly dynamic and
pervasive computing environment, where the state of available
context sources as well as the available sources themselves
may change quite significantly. One way to meet this
challenge is to enrich the KB as well as the EAK with facts
and beliefs such that if some facts or beliefs are missing, the
composer should combine other facts and beliefs to arrive at a
reliable conclusion.

Figure 2: Belief explanation and revision

A composer has three components: the first component is

logic based reasoning component (LBR), and manipulates the
facts, relations, and assertions in the KB; the second
component is a probabilistic reasoning (PR) component which
should deal with imprecise, and possibly erroneous, data from
sensors and in the EAK. The reasoning scheme may or may
not be a probabilistic reasoning scheme, but for convenience
of expression we continue to call such. Our own
implementation is a probabilistic reasoning scheme based of
Bayesian Networks.

The third component of the composer is a decision unit.
When appropriate, it reconciles the outcomes of the LBR with
and the PR to make consistent decisions. To demonstrate this,
at times, the PR may not be able to decide because two or
more propositions have equal posterior probabilities o the
difference in posterior probabilities is not significant enough1.
Consider the scenario of reasoning about the whereabouts of a
person. Suppose the outcome of the PR indicates with equal
probabilities that the person can be either on a CORRIDOR or
inside a ROOM. We know from the KB that a CORRIDOR
and a ROOM are mutually exclusive concepts, but a
BUILDING subsumes both concepts. Hence, the decision unit
will decide that a person is inside a BUILDING, instead of

randomly selecting for either a COORIDOR or a ROOM.

1 This is a function of the tolerable error by the application or the user.

Once a composer arrives at a conclusion regarding the
situation of an entity and its relationship to other entities, it
updates the KB and the EAK. The model of a computing
environment should be updated to reflect the perceived change
in the environment.

IX. IMPLEMENTATION
In this section we will illustrate the implementation of our

architecture.
We installed various sensors and data loggers on multiple

mobile devices belonging to a user. Among these sensors we
hade: DS1971-F3 and Java powered DS1957B data loggers
for storing secured profile information such as the user’s name
and password (used to monitor which user has logged on to a
device) as well as address, billing information, and so forth;
temperature loggers with different sensing parameters
(DS1921G, DS1921Z-F5, and DS2422), a humidity and a
temperature data logger (DS1923), and a light intensity data
logger (PCE-172). The sensors have different accuracy,
sensing range, and resolution.

At any give time, a user takes with him a random selection
of the mobile devices. A Composer running on one of these
devices interacts with Primitive Context Servers and
Aggregators which are distributed across the mobile devices
taken by the user to reason about various higher-level
contexts.

A. Modelling Dynamic Situation
To setup the EAK, we model physical and virtual entities in

terms of numerous primitive contexts. Since we cannot
employ sensors to directly capture a higher-level context, the
Composer manipulates various models, and obtains
conceptual abstractions of a real world situation. Four steps
are required to model a higher-level context: (1) the
identification of a context of interest; (2) the identification of
the various aspects of the context which can be captured by
employing sensors; (3) the determination of the various states
of each of the aspects; and (4) the establishment of
relationships between the various aspects. Next, we will
illustrate the modelling steps by identifying PLACE as a
context of interest.

Step 1: We identified the following primitive contexts to
model a PLACE: temperature, relative humidity, light intensity,
sound pressure, and time. We chose these primitive contexts
because of availability of sensors for capturing them.
Moreover, each of them describes a particular physical
property of a PLACE. However, we maintain the possibility of
some of these primitive contexts may be unavailable at any
given time, and we may not be able to foresee a priori which
one of them might be unavailable. There can altogether be 15
possible combinations of available context inputs which can
describe a PLACE with various degrees of certainty.

 Step 2: We used fuzzy sets to define linguistic variables for
the primitive contexts. The linguistic variables are results of
empirical observations of various places. Our approach

 7

resembles with earlier approaches of Mäntyjärvi et al. [17]
and Korpipää et al. [13]; the essential difference is that we
established conditional dependencies between time and the
primitive contexts. By analysing the data were acquired from
various rooms, corridors, and outdoors, we model the
conditional dependencies between the primitive contexts and
the higher-level context. As a result, the fuzzy set for time has
three linguistic variables: morning, noon, and afternoon.
Likewise, we established the following linguistic variables:
For temperature: very cold, cold, lukewarm, warm, hot; for
sound pressure: noisy, loud, quiet; for relative humidity: dry,
moderate, moist; and for light intensity: dim, visible, bright,
very bright. By using fuzzy modifiers, the members of a fuzzy
set can be modified or new members can be introduced. As an
example: very noisy, more or less quite can be generated from
the fuzzy set of sound pressure.

Step 3. We employed a Bayesian Network (BN) to express
causal dependencies between a PLACE and the primitive
contexts – the nodes (random variables) of the BN represent
the higher-level context as well as the primitive contexts, and
the values of the random variables represent the linguistic
variables (correspondingly, the term sets of the linguistic
variables). Criteria for the choice of a BN were: ease of
knowledge representation, wide availability of efficient and
tractable algorithms, and robustness. Robustness refers to the
capability of the network to reconfigure itself whenever nodes
(Primitive Context Servers) arrive and depart.

X. SETTING UP A BAYESIAN COMPOSER
A Bayesian Composer is set up by specifying the type of

higher-level context to be recognised, the primitive contexts
required for the computation, and the conditional
dependencies between the various nodes of the network. A
configuration file is obtained from the EAK. However, the
particular topology of the Bayesian Composer at any given
time depends on the available primitive contexts, whereas the
network’s configuration, i.e., the various states which can be
captured depends on the reliability of the sensors available.

Figure 3 and 4 show two different topologies of the
Bayesian Composer; each configuration displays the available
primitive contexts and the corresponding adjustment in the
state of the higher-level context to be recognised. In the
figures, P stands for place, t stands for time, H stands for
relative humidity, T stands for temperature, and L stands for
light intensity. The various states of the nodes are as described
in the previous section.

Once a Bayesian Network is established, the Composer
begins to query available Primitive Context Servers; the data it
obtains from them is mapped to appropriate linguistic
variables in the EAK, and then the Composer computes
posterior probabilities to determine the likely place the
sensory data represents. A place with the highest posterior
probability is declared to be the whereabouts of the user.

TABLE 1: Decision Reliability of a Bayesian Composer

Primitive context Higher-Level Context

Temperature ({P = O, 0.6}, {P = I, 0.7}, {P = (O or I), 0.2}, {e = 0.2})

Relative Humidity ({P = O, 0.8}, {P = I, 0.6}, {P = (O or I), 0.1}, {e = 0.2})

Temperature,
Relative Humidity ({P = O, 0.9}, {P = I, 0.8}, {P = (O or I), 0.05}, e = 0.1})

Temperature,
Light Intensity

({P = O, 0.9}, {P = I, 0.8}, {P = (O or I), 0.1}, {e =
0.05})

Relative
Humidity, Light
Intensity

({P = O, 0.9}, {P = I, 0.9}, {e = 0.05})

Temperature,
Relative
Humidity,
Light Intensity

({P = O, 0.9}, {P = R, 0.7}, {P = C, 0.6, {P = (C or R),
0.25}{P = (O or I), 0.0}, {e = 0.1})

Figure 3: A Bayesian Composer with two parent nodes and two child nodes
(relative humidity and temperature)

Figure 4: A Bayesian Composer with two parent nodes and three child nodes
(relative humidity, temperature, and light intensity)

 8

XI. EXPERIMENT RESULTS
We employed the Bayesian Composer to reason about the

whereabouts of a mobile user in the absence of any location
sensor. Depending on the availability of primitive contexts,
the Bayesian Composer could discriminate between ROOM,
CORRIDOR and OUTDOORS with various levels of uncertainty.
If there were no sufficient sensors to discriminate between a
CORRIDOR and a ROOM, the Composer discriminated between
INDOORS (correspondingly BUILDING) and OUTDOORS, since a
BUILDING subsumes a ROOM and a CORRIDOR, which in turn is
subsumed by INDOORS.

At any given time, the uncertainty associated with the
outcome of the Composer depended on the diversity of the
primitive contexts available and the reliability of the sensors
delivering the primitive contexts.

The decisions of the Composer were classified as: correct,
error, and undecided. Undecided referred to the inability of
the Composer to distinguish between two or more states of a
higher-level context because they had the same posterior
probabilities, or the difference between the probabilities is not
significant enough2. Error occurred when the Composer
decided for the wrong state. 10 decisions were observed for
each place and combination of input primitive contexts listed
in table 1, which summarises the Composer’s discriminating
efficiency for time, temperature, light intensity and relative
humidity primitive contexts.

XII. CONCLUSION
We proposed several criteria for a context-aware system to

reason about dynamic real world situations on the basis of
data from physical sensors. A distributed architecture was
designed and implemented to accommodate the criteria
proposed. The architecture consists of Primitive Context
Servers, which abstract lower-level (primitive) context
acquisition; Aggregators, which improve the quality of a
primitive context, and which gather several primitive contexts
describing the various aspects of a real-world situation; a
Knowledge Base and an Empirical Ambient Knowledge
component to encode facts and beliefs about entities – while
the facts reflect objective reality, however incomplete, the
beliefs incorporate ignorance; and a Composer to reason about
a higher-level context.

We employed fuzzy sets to model beliefs, and a Bayesian
Composer to manipulate these beliefs and sensed data in order
to reason about the whereabouts of a person in the absence of
any location sensor. The composer could discriminate
between various places (INDOORS and OUTDOORS as well as
between OUTDOORS, CORRIDOR, and ROOM) with different
levels of uncertainties, depending on the variety and reliability
of the sensors available.

2 A difference in posterior probabilities below 15 percent was considered to

be insufficient to discriminate between places; this limits the total error (error
+ undecided) below 5 per cent.

REFERENCES
[1] W. Dargie, T. Loeffler, O. Droegehorn, and K. David, “Composition of

Reusable Higher-Level Contexts,” in Proceedings of 14th Wireless and
Mobile Communication Summit, IST, 2005.

[2] A. Dey, “Providing architectural support for building context-aware
applications”, Doctoral Thesis, 2000.

[3] M. Weiser, “Ubiquitous Computing,” Computer 26, 10 (Oct. 1993), 71-
72.

[4] P. Dourish, “What we talk about when we talk about context,” Personal
Ubiquitous Comp. 8, 1, Feb. 2004.

[5] S. Greenberg, “Context as a Dynamic Construct. Human-Computer
Interaction,” Volume 16, pp. 257–268 (2001).

[6] J. Pascoe, “Adding generic contextual capabilities to wearable
computers,” in the Proceedings of the 2nd International Symposium on
Wearable Computers (ISWC'98). IEEE, 1998.

[7] P. Yancey and P. Brand. “In His Image,” Sondervan Publisher, 1987.
[8] J.P. Martines and S.C. Shapiro, “A model for belief revision,” Journal of

Artificial Intelligence. Elsevier Science Publishers, 1988.
[9] W. Dargie, O. Droegehorn, and K. David. 2004. Sharing of Context

Information in Pervasive Computing. In Proc. of the 13th Mobile and
Wireless Communication Summit. IST (June 2004).

[10] N.H Cohen, A. Purakayastha, J. Turek, L. Wong, and D. Yeh, “iQueue:
A Pervasive Data Composition Framework,” in the Proceedings of The
3rd International Conference on Mobile Data Management. IEEE, 2002.

[11] W.B. Heinzelman, A.L. Murphy,H.S. Carvalho, and M.A. Peri,
“Middleware to Support Sensor Network Applications,” Journal of.
IEEE Networking, IEEE, 2003.

[12] V. Peltonen, J. Tuomi, A. Klapuri, J. Huopaniemi, and T. Sorsa,
“Computational auditory scene recognition,” in Proc. of International
conference on acoustic speech and signal processing, 2002.

[13] P. Korpipää, J. Mäntyjärvi, J. Kela, H. Kernen, and E-J. Malm,
“Managing Context Information in Mobile Devices,” Journal of
Pervasive Computing, IEEE, 2003.

[14] D. Hall and J. Llians. (Editors), “Handbook of Multisensor Data
Fusion,” CRC Press, 2001.

[15] ASHRAE Handbook: Fundamentals, Ashrea, 2005.
[16] T. Malmstrom, J. Andersson, FR. Carrié, P. Wouters, and Ch. Delmotte,

“Source Book for Energy Efficient Air Duct System in Europe,”
Airways Partners, 2002.

[17] J. Mäntyjärvi, J. Himberg, and P. Huuskonen, “Collaborative Context
Recognition for Handheld Devices,” in Proceedings of the First IEEE
international Conference on Pervasive Computing and Communications
(March 23 - 26, 2003). PERCOM. IEEE Computer Society, Washington,
DC, 161.

	Introduction
	Use of Context
	Understanding Context
	Context-Aware Features
	Revised Features of Context-Aware Computing
	Holistic and Conceptual Abstraction
	Managing Uncertainties
	Belief Revision
	Dealing with the Dynamics of Context Inputs
	Dynamic Definition of Contextual States

	Related Work
	Summary of Our Contribution
	Architecture
	Primitive Context Server (PCS)
	Aggregators
	Knowledge Base (KB)
	Empirical Ambient Knowledge Component (EAK)
	Composer

	Implementation
	Modelling Dynamic Situation

	Setting up a Bayesian Composer
	Experiment Results
	Conclusion

