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Abstract—The reliability of a wireless sensor network is often
associated with its capacity to maintain an end-to-end connection
in the presence of unreliable links or node failure []. It is also
associated with the level of partitioning the network suffers
when some nodes fail or exhaust their batteries. Despite being
a critical feature, often it is not clear how it can be expressed
in quantifiable terms. We assert that Katz’s Status Index can be
used as an adequate measure of reliability. Originally proposed
for sociometric analysis, it assigns a value of significance to each
node in a network. Some of the underlying assumptions made
and the intermediate steps taken to construct the Status Index are
not applicable for our case, but we shall demonstrate that their
effect on the final result is marginal.

Index Terms—Reliability, status index, multi-hop communica-
tion, wireless sensor networks

I. INTRODUCTION

Reliability is a critical aspect of wireless networks, even
though expressing it in measurable or quantitative terms is
not straightforward [1], [2]. In general purpose networks,
reliability is often associated with fault-tolerance and node
failure and defined in terms of these properties [3]. But when
considering networks consisting of resource-limited sensor
nodes, other inherent aspects play equally important roles in
affecting reliability. For example, in wireless sensor networks,
communication between any two neighbour nodes may not
be successful for various reasons: The wireless link may be
unreliable, the receiver may be sleeping to save energy, or the
channel may be busy [4]. On the other hand, a transmitter may
not differ communication arbitrarily lest its buffer becomes full
and it is forced to overwrite packets. The effect of all these
aspects on the operation of the network can be considerable,
having both short and long-term impacts, depending on the
position and role of the nodes and the criticality of the sensing
assignment.

In graph theory, the degree of nodes is often equated with
their relevance in the network [5], [6] and rightly so. Consider,
for example, Figure 1 where nodes 2 and 6 are of degree
one and four, respectively. If we consider their information
dissemination capacity in the presence of uncertain links and
node failure, node 2 and 6 are markedly different: Node 6
can reach its peers using 4 single hop, 7 two-hop, and 9
three-hop alternative routes whereas node 2 can reach its
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Fig. 1: A wireless network with uncertain or unreliable links.

peers using 1 single-hop, 4 two-hop, 6 three-hop and 6 four-
hop routes. If taken individually, however, the node degree
may not adequately express the contribution of nodes to the
overall reliability of the network. For example, despite their
considerable difference in node degree, the impacts of the
independent failure of node 2 and node 6 on the network
appear to be comparable. The same can be said of node
3, whose independent failure affects only itself and node
2. It is, therefore, apparent, that an expression of reliability
should take different aspects into consideration. In the context
of social networks, additional parameters such as closeness,
betweenness, ties, and link importance (weight) [7], [5], [8]
are taken into account to quantify the relevance (or centrality)
of nodes, however, with the assumption that these parameters
are readily available. In most wireless sensor networks, such
assumptions cannot be made.

We assert that Katz’s Status Index [9] can be applied to
measure the contribution of nodes to the overall reliability of a
wireless sensor network. Originally proposed for sociometric
analysis (to rank the status of people in a social circle), it
assigns a value of significance to each node in the network.
Some of the underlying assumptions made and the interme-
diate steps taken to construct the Status Index are invalid for
our case, but we shall demonstrate that their effect on the
final result is marginal. The remaining part of this paper is
organised as follows: In Section II, we introduce Katz’s Status
Index and highlight the underlying assumptions. In Section III,
we provide the mathematical justification to use the Status
Index as a measure of network reliability. In Section IV, we
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provide quantitative evaluation of different topologies. Finally,
in Section V, we provide concluding remarks.

II. KATZ’S STATUS INDEX

According to Katz, the normalised number of direct as well
as all possible indirect links people establish with their peers
in a social network expresses their relative significance in the
network and, therefore, should be taken as a measure of their
social standing or status. The following implicit assumptions
are made to compute the Status Index:
• Direct links are predominantly asymmetric.
• The channels are statistically independent.
• All multi-hop routes of the same order or length are

equally valid.
• There can be infinite number of multi-hop routes.

When considering typical wireless sensor networks, some of
these assumptions do not necessarily hold. For instance, most
wireless links are symmetrical for short-distance communica-
tions. This does not mean, of course, asymmetric links do not
exist. We shall, however, put aside Katz’s assumptions for the
time being and follow his argument. Accordingly, one can use
a square matrix to express the number of direct (single-hop)
links persons (nodes) can establish with their neighbours1. For
the network depicted in Figure 1, the links between the nodes
can be represented as follows:

C =


0 0 1 0 0 1
0 0 1 0 0 0
1 1 0 1 1 1
0 0 1 0 0 1
0 0 1 0 0 1
1 0 1 1 1 0

 (1)

cij = 1 if there is a direct link between node i and j, otherwise
cij = 0. The values of cii in C as well as in all its higher
powers are set to zero or are simply ignored. Squaring C
results in the number of two-hop links the nodes establish
with their peers:

C2 =


0 1 1 2 2 1
1 0 0 1 1 1
1 0 0 1 1 3
2 1 1 0 2 1
2 1 1 2 0 1
1 1 3 1 1 0

 (2)

An interesting aspect of Equation 2 is that it is computationally
tractable even for a large network, since c2ij =

∑
k cikckj and

each multiplication operation yields either 0 or 1. Likewise, C3

produces the number of three-hop links each node establishes
with its peers. But here we encounter a problem. Katz regards
as valid all multi-hop links resulting from the higher powers of
C whereas this is not the case for us. For example, according
to Equation 2, there are 5 three-hop routes connecting node 2
and 3. This can be achieved, however, if we consider as valid

1The rows and the columns of the matrix refer, respectively, to the
source and destination nodes. The order does not matter when the network is
symmetric.
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Fig. 2: An invalid three-hop route.

routes that can go back and forth through node 3 (Figure 2),
which does not make sense.

C3 =


0 1 8 2 2 7
1 0 5 1 1 3
8 5 0 8 8 8
2 1 8 0 2 7
2 1 8 2 0 7
7 3 8 7 7 0

 (3)

With a slight modification, we can still make use of Equation 3
to determine the exact number of three-hop links a node
establishes with its peers in Fig. 1:

n3
ij =

{
c3ij − (di + dj − 1) , if (di + dj − 2) > 3

c3ij , otherwise
(4)

where n3
ij is the number of three-hop routes which can be

established between node i and j and di and dj are the node
degree of nodes i and j, respectively. The expression becomes
more complex for determining the number of valid hops in the
higher powers of C. The sum of the j-th column of C yields
the number of single hop links node j establishes with its
peers. Similarly, the sum of the j-th column of C2 yields the
number of two-hop links node j establishes with its peers, and
so on.

III. MEASURE OF RELIABILITY

Reliability becomes an issue when the success of establish-
ing a wireless link becomes uncertain. Suppose the probability
of establishing a link between any two neighbour nodes is p.
For a network of an appreciable size, the total number of links
(direct as well as indirect) a node can successfully establish
with its peers can be expressed as:

T ≈
∞∑
k=1

(pC)
k
= (I− pC)

−1 − I (5)

The summation term in Equation 5 is a geometric series. The
reason why we say “approximated” is that some of the links
are invalid in the higher powers of C, as we already pointed
out in the previous section. The error arising in Equation 5
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is minimised, however, on account of p. We do not need to
worry about reliability when p is large, because shorter routes
(such as single-hop or two-hop routes) will guarantee reliable
communication. In case p is small, we need longer routes. But
Ck encodes inaccurate number of alternative routes for large
k. At the same time, however, pk approaches zero, thereby
minimising the error introduced in Ck.

Consequently, despite starting off with different premises, it
seems that we have arrived at the same result as Katz did. The
column sums of T, depicted as a column vector t, indicate how
strongly connected the nodes are. Hence, t can be regarded
as a measure of the contribution of the nodes to the overall
reliability of the network. We can obtain t by multiplying
Equation 5 with a row vector of unit elements:

tᵀ = uᵀ
[
(I− pC)

−1 − I
]

(6)

Multiplying both sides of the above equation by (I− pC)
yields [9]:

tᵀ (I− pC) = uᵀ − uᵀ (I− pC) = puᵀC (7)

From which we have:

t =

(
1

p
I−Cᵀ

)−1
s (8)

where s = uᵀC is a column vector resulting from summing
the columns of C. In other words, s encodes the number of
single-hop links a node establishes with its peers. Equation 7
is not normalised to the potential number of available routes.
The normalisation term is proposed by Katz himself, which is
given as:

m =

∞∑
k=1

pk (n− 1)
k ∼= (n− 1)!pn−1e1/p (9)

where n is the total number of nodes in the network. Conse-
quently, the contribution of each node to the reliability of the
network can be expressed as:

r =
1

m
t (10)

Katz’s approach breaks in case 1/p is not greater than the
largest characteristic root of C. This can be verified from
Equation 8. In most wireless sensor networks the probability
of establishing a link between any two neighbour nodes is
independent of the topology of the network. Hence, we modify
Katz’s Status Index by directly normalising the number of
sing-hop links a node establishes with its neighbours by
(n− 1):

H =
C

(n− 1)
(11)

Notice that for a fully meshed network, the normalisation
yields 1 for the sum of each column of H. Similarly:

Hk =
Ck

(n− 1)
k

(12)

Thus, the normalised number of single as well as multi-hop
links the nodes establish with their peer can be expressed as:

T ≈
∞∑
k=1

(pH)
k
= pH (I− pH)

−1 (13)

1 2 3 4 5 6

P = 0.2
K 0.221 0.116 0.402 0.221 0.221 0.354

R 0.096 0.049 0.221 0.096 0.096 0.180

P = 0.7 R 0.570 0.296 1.114 0.570 0.570 0.955

TABLE I: The Reliability Index for the network of Figure 1. K:
The original Status Index. R: The modified Reliability Index.

Fig. 3: A moderately large-scale wireless sensor network.

Finally, the modified version of the contribution of each node
to the reliability of the network is expressed as:

r = uᵀT (14)

A legitimate question to ask (and answer) at this point is:
does the approach scale? In terms of computational complex-
ity, as can be judged from Equation 13, the approach scales.
In terms of properly measuring the rank of nodes despite the
complexity of the network’s topology, referring once again to
Equation 13, the approach yields an outcome as long as H has
an inverse, which is the case for wireless sensor networks.

IV. NUMERICAL EVALUATION

The normalised – normalised to (n − 1) – column sum of
C for the network of Fig. 1 results in a column vector:

sᵀ = [0.4 0.2 1.0 0.4 0.4 0.8] (15)

The Reliability Index we computed for the same network using
the original Status Index and its modified form are given in
Table I. For p = 0.2, both approaches yield comparable results
and ranked the nodes in the same fashion. For p > 0.2, the
original Status Index breaks, but its modified version does not.

Figure 3 displays a moderately large wireless sensor net-
work wherein nodes are deployed in a polar coordinate system.
In order to maintain the connectivity of the network, additional
nodes are added in the third tier – assuming that the node
in the middle is the base station – of the network. In this
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Node’s 
Position

Node 
ID

Node
Degree

R‐
Index

Base Station 1 8 0.198

First tier 2, 3, 4, 5, 6, 7, 8, 9 4 0.098

Second tier 10, 11, 12, 13, 14, 15, 16, 17 4 0.095

Third tier 18, 20, 22, 24, 26, 28, 30, 32 3 0.070

Connecting 
Nodes

19, 21, 23, 25, 27, 29, 31, 33 2 0.047

TABLE II: The Reliability Index for the network of Figure 3.
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Identification of the most reliable route based on the R‐Index of its nodesFig. 4: Determining the most reliable route in a flat-topology
network.

topology, the nodes in the first and the second tiers are of
degree four whereas some nodes in the third tier are of degree
three and some of degree two. Since the predominant traffic
flow is towards the base station, the nodes located near the
base station are more relevant than those which are farther
away. Our Reliability Index captures this aspect accurately, as
can be seen in Table II.

Likewise, Figure 4 displays a flat-topology network consist-
ing of 19 nodes. Suppose node 13 wishes to send packets to the
base station (node 1) using the shortest and the most reliable
path possible. We have identified three different routes which
have the same hop distance from the base station. The nodes
in question and their reliability indices (assuming p = 0.6)
are given in Table III. In order to identify the most reliable
route, we can describe the reliability of a route in different
ways. One of them is expressing it in terms of the average
Reliability Index of the route. In this respect, the first route (the
one on top) is the most reliable, as can be seen from Table III.
Another option is expressing it in terms of the nodes having
the minimum Reliability Index (RI) in the routes, because these
nodes can be weak links. This metric can be expressed as:

Best Route = max (min (RI)) (16)

This metric compares the minimum indices of the routes and
declares the route having the maximum value as a winner. In
this respect, the second route (the one in the middle) is the
most reliable route.

V. CONCLUSION

In this paper we investigated the usefulness of Katz’s Status
Index in ranking the contribution of nodes to the overall

Routes Relay Nodes with RI
Average 
Route 
RI

Total
Route 
RI

min( RI))

R1 12 (0.143), 8 (0.147 ), 4 (0.184), 3 (0.151) 0.156 0.625 0.143

R2 10 (0.149 ), 7 (0.154), 5 (0.155), 3 (0.151) 0.152 0.609 0.149

R3 10 (0.149 ), 9 (0.151), 6 (0.152), 2 (0.113) 0.141 0.565 0.113

max(min( RI))  = max(0.143, 0.149, 0.113) = 0.149 : R2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.075 0.113 0.151 0.184  0.155   0.152  0.154  0.147 0.151   0.149 0.077  0.143  0.076  0.038  0.038  0.038 0.038   0.039 0.039

TABLE III: Routes qualifying metrics expressed in terms of
the Reliability Index.

reliability of a wireless sensor network. Even though some of
the assumptions originally made by Katz are not valid for our
case, their impact on the final result, as we demonstrated, is
marginal. One of these assumptions is the dependency of p on
the overall topology of the network (i.e., the adjacency matrix).
We relaxed this assumption by modifying the normalisation
factor.

The different types of flat as well as hierarchical networks
we considered clearly demonstrate the applicability of the
approach to a wide range of networks. One of the drawbacks
of the proposed approach is that the nodes’ physical location
does not have any bearing on their status. In most practical
wireless sensor networks, however, there is typically a single
node (the base station) to which sensed data is transmitted.
The base station occasionally sends commands or queries
but the predominant traffic flow is from the child nodes to
the base station. Since nodes cooperate with one another to
support in-network processing and multi-hop communication,
the computational and communication burden of those nodes
which are placed near the base station is heavier than the
burden of those which are farther away. The drawback can
be observed in Figure 4 where node 4 is ranked better than
nodes 2 and node 3 whereas, in reality, the contribution of
these two nodes to the reliability of the overall network is
more significant than that of node 4. The expression power
of our Reliability Index will improve if it encodes this aspect.
This will be the focus of our future research.
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