
Service Adaptivity through Cross-Domain Reconfiguration
of Non-Functional Properties

Josef Spillner
Technische Universität

Dresden
Chair for Computer Networks

01062 Dresden, Germany
josef.spillner@tu-

dresden.de

Iris Braun
Technische Universität

Dresden
Chair for Computer Networks

01062 Dresden, Germany
iris.braun@tu-dresden.de

Alexander Schill
Technische Universität

Dresden
Chair for Computer Networks

01062 Dresden, Germany
alexander.schill@tu-

dresden.de

ABSTRACT
Adaptive service execution platforms optimise the consump-
tion of resources by allocating and prioritising resource ac-
cess according to the requirements of installed services. Ser-
vice descriptions help in understanding what those require-
ments are, and contracts are used to estimate and constrain
the impact of the requirements. However, service develop-
ers rarely specify the constraints in terms of resource use,
and the platforms don’t have sufficient information about
service-specific domain properties. We introduce a recon-
figuration mechanism which combines both views based on
a cross-domain type system and show the feasibility of its
inclusion into a mainstream service execution platform.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Statistical computing;
H.3.5 [Online Information Services]: Web-based ser-
vices—adaptive web services

General Terms
Experimentation, Performance

Keywords
Adaptivity, reconfiguration, web services, middleware,
service-oriented architectures

1. PROBLEM STATEMENT
Service developers think in terms of the domain a ser-

vice belongs to. The design and configurability of a flight
booking service usually involves variable internal and ex-
ternal properties such as P(number of flights for display).
An image processing service may involve P(resolution) and
P(compression) properties. Such a design matches the users’

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MAI 2009, June 12, Lisbon, Portugal
Copyright 2009 ACM 978-1-60558-489-8/09/06 ...$10.00.

expectations regarding domain-specific flexibility and is pop-
ular with developers through domain-specific languages. On
the contrary, only generic properties like QoS are understood
by execution platforms in the context of contract-bound
adaptive service execution. The challenge which providers
of such platforms face is keeping the guaranteed properties,
avoiding both up-front costs (purchase of extra hardware)
and resulting costs (financial obligations due to broken con-
tracts). A number of adaptation strategies allow flexible
service, system, network and contract changes when con-
tracts run into the risk of being violated. Reconfiguration
is one such strategy which targets the variability of services.
Its goal is to modify the values of generic, technical proper-
ties such as P(memory consumption) so that eventually all
active service usage contracts can be fulfilled.

This paper introduces a reconfiguration mechanism for
services which accounts for domain-specific properties in ad-
dition to generic ones. An overview on the existing ap-
proaches will be given in the next section. The concept
of cross-domain reconfiguration will then be introduced and
explained with examples, tested in a a simulation framework
and evaluated by an integration into a Servlet container.

2. OVERVIEW ON EXISTING RECONFIG-
URATION APPROACHES

The adaptation of service execution to constraints im-
posed by the environment and by contracts is a prominent
topic in web service research. Strategies include finding bet-
ter services in compositions, adding resources dynamically,
renegotiating contracts and reconfiguring service parame-
ters. Reconfiguration is a well-established adaptation mech-
anism on the operating system, middleware and application
levels. Most of the approaches regarding dynamic recon-
figuration of services found in literature can be classified
according to figure 1 which has been derived by extension
from an earlier scheme of reconfiguration of components and
component containers [5]. In addition, the approaches can
be differentiated by the need for cooperation (cooperative
and mandatory reconfiguration).

When services expose non-functional properties (NFPs)
for external access, reconfiguration can be performed with-
out the need for cooperation from the service. In [2], an
adaptive grid scheduling mechanism based on historic mon-
itoring information and application-provided hints is intro-
duced. This makes the system adapt to the application,
which is appropriate for grids, but not as much for situations

Figure 1: Reconfiguration mechanism points in time
and associated effects

where the middleware itself cannot scale. Transparent com-
ponent reconfiguration, including structural changes, has
been proposed for J2EE components [5]. This approach
affects only new invocations, while old invocations either
keep their previous configuration or need to terminate at a
synchronisation barrier prior to the reconfiguration effect.
Functional reconfiguration at invocation time has been pro-
posed for object request brokers [3]. While this is an im-
provement and enables SLAs to govern the mechanisms, the
proposal also omits the data transmission variability during
the invocation which is increasingly important for long-term
connections and streaming web services.

In contrast, reconfiguration concepts in other areas such
as operating systems are more sophisticated. Modular ker-
nels use functional reconfiguration to adapt to newer hard-
ware and features such as file systems. Furthermore, modern
code swapping mechanisms like the Linux kexec() interface
even allow for an online structural reconfiguration by replac-
ing kernel code structures with newer versions without the
need to reboot [6]. The advantage of uninterrupted opera-
tion is directly perceived by users. In addition, the Linux
kernel offers an interface /dev/mem_notify for subscriptions
to memory pressure signals to reduce the usual risk of ran-
dom applications being terminated when the system runs
out of memory. Using the interface, the kernel will coordi-
nate memory usage reduction cooperatively by sending no-
tifications to subscribed applications, although without any
context information. Applications have to guess the amount
of memory they are supposed to release. Therefore, it is usu-
ally only applied to discarding redundant data like caches.

On the middleware implementation level, most service
containers are limited to initial configuration and do not
offer interfaces for reconfiguration at or after invocation
and instantiation time. This means that individual, SLA-
governed reconfiguration remains an opaque service-level
concern instead of handling it transparently in the middle-
ware. Even modern service-oriented executable processes
cannot be configured dynamically per se. Extensions exist
to rectify this situation and bring variability into declarative
formats [4].

We thus argue that three advancements to web service
reconfiguration are needed to increase the impact of adap-
tive service execution. First, a concept for a transparently
enforced cross-domain reconfiguration of services is needed.
Second, any mechanism should account for post-invocation
instance modification in addition to pre-invocation persis-
tent service modification. Third, service execution contain-
ers need to offer reconfiguration interfaces.

3. CONCEPT OF CROSS-DOMAIN RE-
CONFIGURATION ADAPTIVITY

Translating between the NFP terminologies of service de-
velopers, users and system administrators requires an un-
ambiguous, extensible and expressive language as well as
flexible management interfaces in the service container ar-
chitecture with monitoring and reconfiguration capabilities.

We assume the existence of three sources of information:
one being a specification of domain-specific NFPs of each
service, the second one being a specification of resources
available to the container and execution platform, and the
connecting one being cross-domain mapping rules between
those other two. No assumption is made about the origin
of the specifications. Design-time modelling and monitoring
data aggregation can help with the creation of sufficiently
precise information. Domain-specific properties can occur
as exposed internal service variables, external configuration
settings or induced by message contents. The mappings need
to be generated upfront or be derived from test results based
on how much which service configuration or message prop-
erty affects which resource consumption. At the end of the
paper an initial methodology for deriving mappings from
test results will be shown. The concept is depicted in figure
2.

Figure 2: Concept of NFP mapping for cross-domain
reconfiguration

In order to reconfigure applications efficiently, two in-
terfaces need to be available at the service container: one
for reading the current domain-specific configuration values,
and one for writing the updated values.

Conventionally, service NFP names of the system-level
resource domain can be read from the service description.
They can be stored as entries in an OSGi manifest, as a
context section in a Servlet descriptor, as an instance of
QoSBase ontology concepts in a WSML file or as an appinfo

XML node in a WSDL file. The NFP values can be read
from the same locations when formal service and compo-
nent specifications like CQML+ are used, but can also be
derived from monitoring data at runtime.

Reading domain-specific variables is typically more depen-
dent on the implementation. For example, Java annotations,
Servlet context and initialisation parameters and OSGi bun-
dle variables can be read from declarative sources. Writing
domain-specific variables is however not possible for OSGi
manifest header values and Servlet initialisation parameters.
We will present a solution for this shortcoming in the imple-
mentation section.

The mapping between system NFPs and domain-specific
NFPs should happen outside of the scope of the service im-

plementation. The reason is that the service itself will not
have any knowledge of the contract for the service instance
in question which may prioritise certain configuration set-
tings. For example, assume that a contract for an image
processing service specifies a maximum response time of 10s
and high-quality results. If for some reasons the response
time cannot be guaranteed anymore, the service could de-
grade the quality. However, if the compensation fee for vio-
lating this property is higher than the one for delaying the
operation, no such reconfiguration should happen.

4. EXAMPLES FOR CROSS-DOMAIN
ADAPTIVITY

The implications of external cross-domain mappings shall
be explained with two examples. Beside the image process-
ing application, a streaming example will be given to demon-
strate the need for post-invocation time reconfiguration.

4.1 Pre-invocation Reconfiguration on a Ser-
vice Level

Figure 3: Image file size depending on resolution
and JPEG quality level

Figure 3 shows the resource consumption of a picture al-
bum service which stores pictures as converted JPEG files.1

While the file size does not grow quadratically with the reso-
lution per dimension as it would with uncompressed images,
the chosen quality level has a tremendous effect in the high
quality range. Therefore, service providers would have to
take this resource consumption into account for the mod-
elling of tariffs. Eventually, the choice of tariffs is a business
decision, but resource consumption prediction helps finding
suitable offers. A typical scenario is an offer consisting of
two tariffs:

tariff "standard" {
quality = 60%;
resolution = 300px;
price = {invocation = 20ct;}

}
tariff "premium" {

quality = 0..100%;
resolution = 1..500 px;
price = {invocation = 2ct + $quality *10ct +

$resolution *0.1ct}
}

An adaptive service environment requires to honour con-
tractually guaranteed properties while at the same time pro-
viding as much flexibility as possible for changes to the ser-
vice and the environment itself. In the case of the picture
1Conversion used libjpeg version 6b14 on the image file
Wartburg_1898.jpg from commons.wikimedia.org, 1st re-
vision.

album service, the tariffs do not indicate any potential for
adaptivity. It depends on whether the contract contains
clauses about degrading guarantees and compensation fees.
A typical contract looks as follows:

contract {
provider = "p-identification";
consumer = "c-identification";
tariff = "standard";
level = 97%;
compensation = 20 EUR;

}

In this case, up to 3 percent of the invocations may result
in violations of individual property guarantees without in-
validating the contract as a whole. Only when this level is
exceeded, the provider has to pay a compensation fee.

Such flexibility in contracts can be used to drive adap-
tivity. In the case of shrinking free hard disk space over
time, the addition of storage capacity may take too long to
avoid loss of image data, hence scaling down images saves
disk space. The result is an optimisation problem of finding
the right quality parameters to accomplish a predicted ca-
pacity allocation slowdown. The decisions range from using
a constantly poor image quality, as defined by both reso-
lution and JPEG quality, to a graceful degradation which
will not save as much but will also not show the same nega-
tive effects. Considering the more dramatic impact of JPEG
quality in figure 3, the optimisation problem is simplified to
leave the resolution intact and focus on JPEG quality se-
lection policies versus remaining disk space. In figure 4, a
range of possible policies is shown. The range is defined
by a sigmoid-like function with upper and lower boundaries
degrα and degrβ as follows:

degrstep = val ∗
(sin(π2 + π

(degrβ−degrα) ∗(step−degrα))+1)

2
(step : 0..steps)

Figure 4: Comparison of degradation policies de-
pending on parameter degrα and degrβ

However, none of these policies is related to actual re-
source consumption. To inject the influence of the remaining
hard disk space, the formula needs to be altered along the
resource and contract constraints. The remaining resource
availability shall be known as totalres and the consumption
of this resource in step step as resstep(degrstep).

degrstep := resstep(degrstep) ∗ degrβ − degrα < totalres
Assuming a remaining disk space of 80kB and 200 already

stored pictures, therefore allowing up to 6 degraded pictures,
the degradation works as follows.

Therefore, instead of the 4 undegraded pictures which
would fit into the space, the flexibility to select between

Table 1: Resource-bound degradation example
degrα Remaining

size/bytes per
picture

Maximum de-
graded JPEG
quality

step + 0 13653 43%
step + 1 10792 30%
step + 2 6826 15%
step + 3 5069 9%

4 and 9 pictures has been achieved. Naturally, a quality
level of 9% will immediately be judged as degraded, whereas
according to our tests 30% is still an acceptable value com-
pared to an original of 60%. Therefore, the contract limita-
tion on per-invocation quality is counter-productive. An al-
ternative are per-timeslot quality guarantees, specifying that
97% of the year the guaranteed quality levels will be kept.
Depending on the occurrence of burst usage patterns, this
can be seen as a subjectively better or worse deal for either
side, given that during 11 days per year invocations are not
guaranteed to succeed. Another alternative are perceived-
quality guarantees, specifying that the average perceived
JPEG quality needs to be above 59%. This way, up to 57
images with a quality of 30% could be stored without vio-
lating the contract. Figure 5 shows the difference compared
to the resource-independent degradation policies.

The essence of the example is that flexible resource-aware
quality-degrading reconfiguration needs contracts which al-
low adaptivity for the benefit of both service provider and
consumer. This benefit is often a domain-specific metric
which requires adaptive systems to honour cross-domain
adaptation.

Figure 5: Comparison of resource-aware degrada-
tion policies

4.2 Post-invocation Reconfiguration in
Streaming Services

Streaming web services are characterised by offering long-
lasting message exchanges which are often consisting of in-
finitely repetitive data structures. If reconfiguration is re-
stricted to affect only new connections and is not able to
adapt existing streams, the overall adaptivity of a system
will be severely limited. Going back to the example al-
bum service, the adaptive delivery of a series of images
can help saving bandwidth in addition to disk space. Both
quality-preserving and quality-degrading reconfiguration of
non-functional stream properties exist. An example for
a preserving reconfiguration is the immediate natural lan-

guage change during a transmission.

Figure 6: Quality-degrading reconfiguration mecha-
nism applied to web service streams

The streaming-related quality-degrading changes, on the
other hand, can be used to prevent system overload by min-
imising traffic and will almost always affect a user negatively,
as shown in figure 6. Examples include omission of details
within data structure blocks (b), decreasing frequency of
repetitive data structures transmission (c) and restriction of
the total duration of the transmission (d), e.g. for iterative
calculations. Given that today’s systems can easily handle
tens of thousands of sleeping threads and connections, the
combination of these parameter changes opens the whole
spectrum of reconfiguring the bandwidth resource consump-
tion. Hence, the goal must be to reduce the transmission
volume represented by the area in the figure as much as is re-
quired to keep the system running and as much as is possible
without violating active contracts. The details of this opti-
misation problem are out of scope for this paper; the more
interesting aspect is how cross-domain property reconfigu-
ration can help achieving the reduction of bandwidth use.
Essentially, the information needed by the reconfiguration
component is in which direction and by how much service
parameters must be changed.

5. IMPLEMENTATION AND EXPERI-
MENTAL RESULTS

We have implemented the presented concepts and scenar-
ios in a simulation framework, an extension of a Servlet con-
tainer and a mapping creation tool.

5.1 Simulation Framework
The central component for cross-domain reconfiguration

is called NFPcalc. It is a modular simulation framework
consisting of a core written in Ruby and several plugins.
The tool reads both NFP specification files and mapping
rule files. The NFPs are supposed to express a name, a
unit, a domain expressed in XML Schema and a property
value. The mapping rules each consist of a service-domain
property, a resource property and a directed dependency to
specify an aligned or converse resource growth effect when
reconfiguring the service-domain property.

Two precision-increasing plugins are available to NFPcalc:
A unit converter and an XML Schema inference module.
The unit converter facilitates a change of physical or cur-
rency units within the same domain - for example, a per-
formance property might be expressed in messages per sec-
ond or messages per minute. Any transformation between

the units shall be transparent to the calculation. The XML
Schema inference makes it possible to use complex and re-
stricted simple databases in the component specification.
For example, a colour depth property of an imaging ser-
vice would usually be an enumeration of 8, 16 or 24 bits,
and any reduction or augmentation of the value would have
to honour the enumeration over the base domain. In addi-
tion to the calculation plugins, two simulation plugins are
available: A plot generator and a random system property
consumption simulator.

A sample service has been created which processes im-
ages. Its functionality is composed of individual operations
for scaling images, changing their colour depth and saving
them in different formats. All operations are influenced by
a number of variable NFPs specific to the service domain,
including the resulting colour depth and the use of a fast
dithering algorithm.

In Listing 1, a precise type definition is shown in XML
Schema notation. The definition is used to define service-
specific properties in Listing 2.

Listing 1: Type definition for a service domain
<xsd:simpleType name="ColourDepthEnum">

<xsd:restriction base="xsd:unsignedByte">
<xsd:enumeration value="8"/>
<xsd:enumeration value="16"/>
<xsd:enumeration value="24"/>
<xsd:enumeration value="32"/>

</xsd:restriction >
</xsd:simpleType >

Listing 2: Strongly-typed NFPs from a service do-
main
param {

name = "colour -depth";
value = "24";
unit = "bits per pixel";
domain = "ColourDepthEnum";

}
param {

name = "fast -dither";
value = "true";
domain = "xsd:boolean";

}

Finally, Listing 3 shows how the configuration of the
service-specific properties influences system properties. The
mapping takes into account a partial ordering of the domain-
specific NFPs.

Listing 3: Cross-domain NFP mappings
param -mapping {

name = "bandwidth -usage";
depends = "colour -depth";
direction = "same";

}
param -mapping {

name = "processing -speed";
depends = "fast -dither";
direction = "converse";

}

The experiment consisted of evaluating the adaptation be-
haviour when the available memory became scarce. Due to
the mapping information, the reconfiguration handler modi-
fied the service parameters to produce lower-quality images.

Once this change became effective, a lot of previously occu-
pied memory was freed. This in turn led to a reverse effect
of increasing the picture quality again so the available re-
sources could be used efficiently to the benefit of the service
consumers. Over time, a repeating reciprocation effect could
be seen as is displayed as an oscillating graph in figure 7.

Figure 7: Reciprocation effect between adapted
domain-specific picture quality and available system
memory

This has obviously not been a desired result, given that
a permanent reconfiguration activity defeats implicit re-
quirements including system stability and energy efficiency.
Therefore, we have designed a reconfiguration stabilisation
routine (RSR) based on a two-point hysteresis. Optimised
RSRs which honour contractual obligations and tolerances
are expected to improve the obtained results in the future.

5.2 Application in Reconfigurable Servlets
As outlined in the concept explanation, both OSGi bun-

dles and Java HTTP Servlets already provide internal re-
configuration support, but only through Servlet context at-
tributes and OSGi configuration objects, respectively. Both
are only created at runtime and cannot be read from any
declarative description. In order to make existing services
reconfigurable and to apply our concepts to existing middle-
ware, we have extended the semantics of Servlets to support
declarative, cross-domain reconfiguration. Our solution for
Servlets involves a new class AdaptiveHttpServlet inheriting
from the default HttpServlet. Upon instantiation, it mirrors
declarative initialisation parameters to reconfigurable con-
text attributes. NFPcalc then proceeds to read the prop-
erty descriptions of all installed Servlets from their web.xml
descriptors to get an overview on available reconfiguration
points. Through the addition of an external interface to the
Servlet container, NFPcalc can access these properties for
non-functional read and write operations for all Servlets in-
heriting from AdaptiveHttpServlet. First results have shown
that this way, a container with several adaptive Servlets can
be ordered to release as many acquired resources as possible
under its contractual obligations. A limiting factor for the
cross-domain calculation is the absence of units. As shown
in the example on service streaming, a reconfiguration is
nevertheless possible as long as the direction of change is
known. We intend to explore the addition of strongly-typed
properties to Servlets and the application of the concepts to
OSGi in the future.

5.3 Methodology for the Creation of Cross-
Domain Mappings

The cross-domain mapping of properties understood by
the user of a service could be created manually by domain
experts or administrators. We have created a monitoring
analysis tool which helps mapping creators to find the right
dependencies automatically. The behaviour of a service de-
pends not just on resource availability, but also on the struc-
ture and content of the messages sent to it. Depending on
the element and attribute values of XML messages, QoS
properties will either remain constant or relate to the mes-
sage values.

The tool calculates the correlation of these values with
measured QoS properties by using a clustering algorithm
over a set of stored SOAP messages. Variations of the mes-
sages can result in a combinatorial set of QoS variations
which is simplified by the clusters. In figure 8, the influence
of one message property on two QoS properties is shown.
The circle positions represent the values of a measured prop-
erty, and their diameters describe the number of occurrences.
The algorithm is a variant of the Quality Threshold algo-
rithm which originates from biological research but is not
uncommon for distance-based grouping of characteristics in
distributed systems [1]. The corresponding message prop-
erties for each cluster are examined and a type-dependent
correlation is established by assigning sets of causation tu-
ples containing all combinations of message properties ex-
pressed as XPath terms over the original messages to each
cluster. The fewer sets there are, the easier it is to detect
dependencies and the easier the mapping rules become.

Figure 8: Clusters of multiple QoS property depen-
dencies on message content property

In figure 9, the result of the algorithm on the requests with
two properties influencing the transmission volume of the re-
sponse is shown. For any known NFP, the transmission vol-
ume can be regulated by reconfiguring the properties before
the messages are passed to the service. Additional research
will be needed to deterministically tell FP from NFPs in re-
quests. Using the clustering algorithm, server providers can
optimise their offered features depending on how resource-
consuming the transmitted message parameters are.

6. CONCLUSION
Dynamic reconfigurability is a desirable factor for adap-

tive service execution. We have shown that using cross-
domain mappings, system property changes can be trans-
lated into configuration changes in the domain of the service.
We also demonstrated that the creation of these mappings
can be automated to some extent based on observed service

Figure 9: Clusters of single QoS property depen-
dency on multiple message content properties

behaviour, and that their use with modified mainstream
service execution containers is feasible. Future work will see
optimised RSRs and more precise mapping rules including
impact quantity in addition to impact direction.

Acknowledegments
The project was funded by means of the German Federal
Ministry of Economy and Technology under the promotional
reference “01MQ07012”. The authors take the responsibility
for the contents.

7. REFERENCES
[1] F. Cantin, B. Gueye, M. A. Kaafar, and G. Leduc. A

Self-Organized Clustering Scheme for Overlay
Networks. In Proceedings of the 3rd International
Workshop on Self-Organizing Systems, volume LNCS
5343, pages 59–70, December 2008. Vienna, Austria.

[2] V. Janjic, K. Hammond, and Y. Yang. Using
Application Information to Drive Adaptive Grid
Middleware Scheduling Decisions. In ACM
International Conference Proceeding Series/Proceedings
of the 2nd workshop on Middleware-Application
Interaction (MAI), volume 306, pages 7–12, June 2008.
Oslo, Norway.

[3] B. N. Jørgensen, E. Truyen, F. Matthijs, and
W. Joosen. Customization of Object Request Brokers
by Application Specific Policies. In IFIP/ACM
International Conference on Distributed Systems
Platforms and Open Distributed Processing -
MIDDLEWARE, April 2000. Hudson River Valley, New
York, USA.

[4] M. Koning, C. ai Sun, M. Sinnema, and P. Avgeriou.
VxBPEL: Supporting variability for Web services in
BPEL. Information and Software Technology,
51(2):258–269, February 2009.

[5] J. Matevska-Meyer, S. Olliges, and W. Hasselbring.
Runtime Reconfiguration of J2EE Applications. In
DECOR’04 - 1ère Conférence Francophone sur le
Déploiement et la (Re) Configuration de Logiciels,
October 2004. Grenoble, France.

[6] C. A. N. Soules, J. Appavoo, K. Hui, D. D. Silva, G. R.
Ganger, O. Krieger, M. Stumm, R. W. Wisniewski,
M. Auslander, M. Ostrowski, B. Rosenburg, and
J. Xenidis. System Support for Online Reconfiguration.
In Proc. USENIX Annual Technical Conference, June
2003. San Antonio, Texas, USA.

