
NESSEE: An In-House Test Platform for Large
Scale Tests of Multimedia Applications

Including Network Behavior

Robert Lübke, Daniel Schuster and Alexander Schill

Computer Networks Group
Technische Universität Dresden

Dresden, Germany
{robert.luebke,daniel.schuster,alexander.schill}@tu-dresden.de

Abstract. This paper presents the test platform NESSEE that can be
used for reproducing network behavior in large-scale experiments with
distributed systems. The main target group of our platform consists of
companies that require an easy-to-use in-house emulation environment
for testing their developed applications. In our scenario we use NESSEE
to test the video conferencing software of our industry partner Citrix.
We illustrate this with examples from scalability, functional and network
testing. The evaluation of the concepts shows its applicability in other
scenarios as well.

Key words: NESSEE, emulation platform, network characteristics, ap-
plication behavior, testing

1 Introduction

During the development of an application, there should be a testing phase in
which the application is executed under different real-world conditions. Various
inputs are passed to the program to examine if it can meet its requirements
and to find faulty behavior. In current software engineering models, this testing
phase already starts in an early stage of the implementation using prototypes and
is repeated regularly. This requires much coordination efforts, especially when
testing large distributed systems. Therefore, there is the need of tool support
and automation to facilitate this recurring process.

Every application communicating over a network must also be tested under
various network conditions, especially if the overall system is distributed over
several nodes. To do this you have to find a suitable environment to perform
those tests in. Companies usually use the targeted production environment of
the application for this. The results have great practical relevance, but often
this approach is not feasible because of security reasons and confidentiality of
the software. An alternative is a dedicated test environment with characteristics
similar to the target environment. But rebuilding a global-scale infrastructure
for large-scale experiments is time-consuming and expensive. Simulation is a
synthetic approach, where the application itself and all necessary conditions, for

2 Lübke et al.

example the network behavior, are transformed into a model that is used for
calculations. Due to model complexity it is only applicable in small scenarios.
Furthermore, the abstraction of the original application under test may lead
to less accurate tests and experiments. In the research community there are
federated test platforms in which emulation can be used to reproduce network
behavior. Emulation is a combined approach using the original application and
calculating only some of the real-world conditions with a model. Unfortunately,
these federated systems are missing means for automated testing and are not
suitable for most companies.

We therefore developed own concepts for an in-house emulation platform for
large-scale tests with distributed systems and implemented these in a testbed
called NESSEE (Network Endpoint Server Scenario Emulation Environment).
In conclusion, our main contributions are:

– combination of a large-scale testbed with the fine-grained emulation of multi-
ple network characteristics

– emulation of application behavior
– means to continuously integrate into the application developer’s work flow
– a generic specification of test cases using a scripting approach

The remainder of this paper is structured as follows. At first, we discuss
the problems of performing large-scale tests with real-time multimedia applica-
tions and derive certain requirements. We then highlight similar approaches and
discuss their shortcomings. Then we present the main concepts of our own ap-
proach, the NESSEE platform, and illustrate some of the experiments it allows
to perform. After the evaluation of our concepts, we finally conclude the paper.

2 Problem discussion and requirements

In our use case we require a test platform for performing various experiments
and different kinds of tests with the video conferencing solution of our indus-
try partner Citrix. Especially those real-time multimedia applications which are
offered as software as a service have to reach a certain quality level to meet
the users’ expectations. This requires an extensive testing phase including the
reproduction of occurring real-world effects that could influence the application.

One major aspect that must not be concealed is the network with all its char-
acteristics and technology-specific effects, including basic network parameters
like bandwidth limitation, packet delay and loss as well as advanced network pa-
rameters and effects like packet reordering, duplication, jitter, connection hand
overs and disconnects. In the real world, the systems running the application
are connected with each other via multiple hops and the network behavior de-
pends on concurrent traffic. Therefore, emulation of network topologies of any
complexity and background traffic are required. All mentioned parameters and
effects should be re-configurable during run time of the experiment to increase
the flexibility. The dynamic reconfiguration should be based on time and user
interaction.

NESSEE 3

The coordination effort for the testers should be as small as possible, espe-
cially the creation of test cases should be facilitated. Furthermore, the aim is
to run automated tests, which require the emulation of the application behav-
ior. When performing scalability tests, thousands of software under test (SUT)
instances need to run on the test systems and they must be started and con-
trolled in an automated way. To achieve this, the SUT must provide some kind
of control interface that can be used by the emulation platform. The necessary
adaptions of the SUT for this interface should be as slight as possible to emulate
the real application behavior as precise as possible. Another way to reduce user
efforts is to support current best practices of software engineering like continu-
ous integration and test-driven development. The emulation platform should be
able to seamlessly integrate into the application developer’s work flow.

To be able to share test resources among users we require a multitenancy
approach, allowing multiple users to run experiments concurrently. Of course,
the emulation platform is supposed to handle multiple large experiments at once.
This especially requires a good scalability of the overall system.

3 Related work

In the last decade much research work has been done in the area of large testbeds
for realistic measurements and experiments. FIRE [1] and GENI [3] are initiatives
supporting the development of those testbeds. Some existing and well-established
testbeds, each designed with different goals, are presented in the following.

OneLab [2] and PlanetLab [6] are very large and well-known testbeds sup-
porting the development of new network services. PlanetLab provides more than
thousand nodes all over the world that can be used for experiments. However,
the number of users is also quite big which makes it difficult to reserve enough
resources for own experiments. G-Lab [10] is an experimentation platform for fu-
ture Internet studies and development with the main focus on routing, mobility
and security. The G-Lab testing facilities are located in several German universi-
ties and consist of wired and wireless hardware with over 170 nodes. The Topol-
ogy Management Tool [9] allows the user to create virtual network topologies
using the G-Lab experimental facility. Emulab [11] is a network testbed offering
various different experimental environments, for example emulation, simulation
as well as live experimentation in the Internet. Resources like hosts, routers and
networks are virtualized and the experimenter just specifies the desired topology
and characteristics. The experiment itself is then launched on selected suitable
machines and switches. Emulab is open source software and was used to build
many independent testbeds all over the globe. ProtoGENI [8] extends Emulab
and follows the approach of bridging different physical sites into one testbed.
ORBIT [7] focuses on wireless network experiments. The experimental facili-
ties consist of about 400 wireless nodes and support both, network emulation
and field-trial capabilities. FEDERICA [4] is a European testbed very similar to
GENI, using the concepts of sliced infrastructure for processing and networking.

4 Lübke et al.

Despite efforts of the providers the presented federated research testbeds
do not completely fit the needs of companies, which prefer in-house solutions
because of legal and security reasons. Some testbeds have complex registration
procedures and unflexible membership dues for companies. Furthermore, all men-
tioned testbeds focus on research instead of software testing. They provide the
means for manually performing non-recurring experiments. If the results of the
experiment are successfully obtained, it usually gets archived. Software testing on
the other hand requires recurring and reproducible test runs as well as means for
automation. Beside the detailed reproduction of network conditions, automated
software testing also requires the emulation of application behavior during the
experiment. We therefore developed an own test platform that is chiefly based
on well-established concepts of existing network testbeds, but that is also able
to meet the requirements of testing software, especially multimedia applications.

4 Concepts of the NESSEE test platform

This section covers the main concepts of our own test platform called NESSEE.
Its general architecture is illustrated in Figure 1. Client/server-based distributed
systems and especially multimedia applications are the main focus of the plat-
form. Therefore the environment consists of Test Systems for emulating the
client- and server-side Software Under Test (SUT) behavior. As discussed pre-
viously companies usually prefer in-house solutions. Therefore the test systems
are either physical or virtual machines inside the company network. If security is
not that relevant, the test systems could of course be located at cloud computing
providers. NESSEE integrates with Amazon EC2 allowing to start up and shut
down virtual test systems dynamically. To achieve the large number of applica-
tions for scalability tests, multiple SUT instances must be executed on a test
system. A performance metric is used to determine how many instances can be
handled. Each test system further runs the TestNodeModule (TNM), which
starts and controls the SUT instances via Inter Process Communication
(IPC). Depending on the used operating system the supported IPC mechanisms
are COM (Windows), Unix command-line access, SSH and a custom IPC mech-
anism using message passing. The SUT developer just has to implement one
of these mechanisms to make the SUT controllable via NESSEE. As this usu-
ally requires only slight adaptations, it enables NESSEE to emulate the real
application as accurately as possible without abstracting from the original SUT.

The central NESSEE Server coordinates all components involved, includ-
ing the test systems running the TNM. It further collects log files from the SUT
and NESSEE components and stores them in the central log repository for later
inspection by the tester. A multi-tenant web front end can be used to control
and configure the NESSEE Server. Additionally, one can use a Web service API
to interact with NESSEE. This is especially useful for build and continuous inte-
gration software that automatically trigger NESSEE tests. Using this approach,
NESSEE seamlessly integrates into the development process of the SUT.

NESSEE 5

Fig. 1. General architecture of the NESSEE platform

The actual test cases are described in a dedicated format using the generic
XML-based Test Description Language (TDL). It consists of modules de-
scribing the network conditions, the application behavior and the composition
of the test case. Additionally, the testers can use JavaScript to specify the ap-
plication behavior within scripts. During the test, these scripts are executed by
script engines inside the NESSEE Server and the TNM. The scripting approach
provides the tester with all means of a programming language and therefore al-
lows a flexible specification of the application behavior. The NESSEE Editor
is a graphical environment for authoring TDL modules as well as scripts and
thus reduces the efforts of test case creation.

The Degrader component is responsible for the emulation of the desired net-
work behavior. It acts as a router for all test systems and artificially deteriorates
the characteristics of all incoming traffic based on source IP address and port.
Before a test run is started, the Degrader is configured by the NESSEE Server
according to the network description of the test case. Among others, the De-
grader emulates complex topologies, bandwidth limitations, packet delay, jitter,
loss, reordering and duplication as well as connection handovers and disconnects.
Detailed information about NESSEE’s network emulation is given in [5].

5 Types of experiments

This section discusses common types of experiments that are necessary when
testing multimedia applications. We further illustrate and give concrete examples
of how these experiments can be performed with the help of our previously
discussed concepts.

6 Lübke et al.

5.1 Functional testing

Functional testing is essential not only in the multimedia scenario, but for all
kinds of software. The functions of the software are tested by providing input
and comparing the output with the expectations that come from the software
specification. At first, the functions of the SUT must be identified. As we use
well-defined interfaces to the SUT (see Section 4) this list of functions is given
by the SUT’s API. The creator of the test can then write a script that calls
the corresponding methods of the SUT via its helper object. When creating the
input, especially borderline cases should be checked. The expected output is also
specified in the script and is compared to the actual output during the test run.
This process is illustrated in Figure 2. In this example, the SUT just provides
two functions, one for setting a desired video resolution and one for getting it.
If setting fails or getting it afterwards does not return the expected resolution,
the test fails.

TestNodeModule Software Under Test

API
+ SetResolution(TRes res) : bool

+ GetResolution() : TRes

C
O

M

SUTHelper
+ SetResolution(TRes res) : bool

+ GetResolution() : TRes

ScriptEngine

Functional_test.js
var res = new TRes("640*480");

if(!sut.SetResolution(res) ||

 sut.GetResolution() != res)

 test.fail("Wrong resolution");

Fig. 2. Example of a functional test in the NESSEE platform

5.2 Scalability testing

Scalability testing is a type of non-functional testing and its aim is to test
whether or not a system behaves as expected when it is changed in size in
order to meet a growing need. In multimedia applications, scalability plays an
important role for server-side components, that serve a certain number of clients.
The objective is to find out the maximum number of clients and to examine the
behavior under heavy load.

With the presented concepts, NESSEE is able to handle those scalability
tests with minimal coordination effort for the testers. Such large-scale tests are
described in TDL like any other test and behavior of the applications can be
scripted. The emulation platform automatically chooses suitable test systems,
deploys and starts the SUT and the tester can concentrate on the test itself even
if many test systems and SUT instances are involved in the test.

In our use case, we examine the scalability limitations of the video con-
ferencing server components running experiments with up to 6,000 client SUT
instances. Figure 3 is a screen shot of the web front end, giving an overview
about involved SUT instances running on the test systems.

NESSEE 7

Fig. 3. In large-scale tests the web front end visualizes the states of the SUT instances
with different icons and provides detailed information via tool tips.

5.3 Network testing

The aim of network testing is to examine the behavior of the software under
various network conditions. Basically, every application communicating over a
network should undergo those tests, but it is essential for real-time multimedia
applications, because the quality and the user experience directly relate to the
network conditions. As discussed in Section 4, the NESSEE emulation platform
supports the fine-grained configuration of a variety of network parameters. But
this configuration is not static as network testing requires the network conditions
to change. Therefore, the testers have the possibility to reconfigure the charac-
teristics manually using the web front end, but also automatically using the test
scripts. Figure 4 illustrates this with an example of a network test. Changing the
network characteristics is usually combined with one of the previously mentioned
test types, functional or scalability testing.

6 Evaluation

NESSEE fulfills the analyzed functional requirements of a platform for auto-
mated tests of multimedia applications. In the evaluation of our concepts the
non-functional requirement of scalability should be examined.

The scalability and accuracy of the network emulation components
was already shown in previous work [5]. We evaluated the deviations of config-
ured and actually measured values for various network characteristics in large
and complex scenarios and produced the following results:

– data rate: ±3.50%
– packet delay: ±0.20%
– packet loss: ±0.10%

– packet reordering: ±0.13%
– packet duplication: ±0.00%

8 Lübke et al.

Network_test.js

// env is the helper for the

// network environment

var delay = env.Get("Delay_up", "DSL2000");

// delay is now 25 – see GUI example above.

// now double the delay:

env.Get("Delay_up", "DSL2000", delay*2);

Fig. 4. For network tests the characteristics can be changed manually via the web
front end and automatically via the test scripts.

All parameters are emulated accurately, except for the data rate, which still
needs improvement. We also observed effects like bandwidth sharing and the
variation of delay (jitter).

The scalability of the script engine approach was evaluated in multiple
scenarios. We compared the NESSEE Script Engine with other similar engines
regarding the performance of long-running functions, big data handling and mul-
tiple calls of smaller functions. Our engine did not always achieve best results,
but it is sufficient for the usage inside the emulation environment. One quite
important aspect is calling native code from JavaScript as illustrated in Fig-
ure 2 with the sut helper object that is resolved to the native class SUTHelper.
This feature is used frequently by test scripts during the test run and therefore
requires good performance. To evaluate this, we measured the execution time
for a varying number of calls and compared it with other commonly used script
engines. The results in Figure 5 show the very good performance of our script
engine in comparison with other implementations.

We further investigated on the scalability of the IPC approach used to
start and control the SUT. Regarding this, it is necessary to know how many SUT
instances can be run on one machine at the same time. In our evaluation we used
the COM interface that the video conferencing client provides and measured the
starting time of a varying number of instances. The results of two different test
machines are shown in Figure 6. Obviously, the results depend on the hardware
performance. They show that it is possible to start over 500 instances of the
SUT at the same time, although the start up phase was up to two minutes.
Nonetheless, this amount of time is acceptable in such large-scale scenarios.

NESSEE 9

0

100

200

300

400

500

600

700

800

900

0 10000 20000 30000 40000 50000 60000 70000 80000

Ti
m

e
 in

 m
s

Number of calls from script to original code

NESSEE Script
Engine
Chakra

RemObjects

V8.NET

Fig. 5. Time for making calls from script to original code using different script engines

0

20

40

60

80

100

120

140

0 100 200 300 400 500

Ti
m

e
 t

o
 s

ta
rt

 a
n

d
 in

it
ia

liz
e

 (
in

 s
e

c)

Number of SUT instances

CPU 4*2.5GHz,
8GB RAM

CPU 2*2.66GHz,
2GB RAM

Fig. 6. Time to start a given number of SUT instances for two test systems

Beside these components, the overall scalability of the whole emulation
platform was already shown in Section 5.2 with the illustration of the large-scale
tests we performed with NESSEE.

7 Conclusion

This paper presented concepts of a platform for various kinds of tests with mul-
timedia applications. Most of the concepts originate from existing testbeds for
network research and were adapted to the use case of automated software testing.
Especially the in-house approach makes the platform attractive for companies.
We implemented and evaluated our concepts in the NESSEE platform. Our
main contribution is the combination of accurately emulating various network

10 Lübke et al.

characteristics as well as application behavior inside a large-scale test platform.
Furthermore, we provide means to continuously integrate testbed experiments
in the software development workflow. Finally, we created a generic specification
of test cases using a description language and a scripting approach. Although
the focus of this work is testing of multimedia applications, the generic concepts
can easily be adapted to tests of any large-scale distributed system.

Acknowledgment. This work results from the NESSEE research project that
has been financed by Citrix Systems, Online Services Division. The authors
would like to thank the project members for their contributing work.

References

1. “FIRE,” http://www.ict-fire.eu, accessed: 03/24/2014.
2. “Onelab. future internet testbeds,” http://www.onelab.eu, accessed: 03/24/2014.
3. M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaudhuri,

R. Ricci, and I. Seskar, “Geni: A federated testbed for innovative network experi-
ments,” The International Journal of Computer and Telecommunications Network-
ing, 2014.

4. M. Campanella and F. Farina, “The federica infrastructure and experience,” The
International Journal of Computer and Telecommunications Networking, 2014.

5. R. Lübke, D. Schuster, and A. Schill, “Large-scale tests of distributed systems with
integrated emulation of advanced network behavior,” IADIS International Journal
on WWW/Internet, vol. 10, no. 2, 2012.

6. L. Peterson and T. Roscoe, “The design principles of planetlab,” SIGOPS
Oper. Syst. Rev., vol. 40, no. 1, pp. 11–16, Jan. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1113361.1113367

7. D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R. Sir-
acusa, H. Liu, and M. Singh, “Overview of the orbit radio grid testbed for evalua-
tion of next-generation wireless network protocols,” in Wireless Communications
and Networking Conference, 2005 IEEE, vol. 3. IEEE, 2005, pp. 1664–1669.

8. R. Ricci, J. Duerig, L. Stoller, G. Wong, S. Chikkulapelly, and W. Seok,
“Designing a federated testbed as a distributed system,” in Testbeds and
Research Infrastructure. Development of Networks and Communities, ser.
Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, T. Korakis, M. Zink, and M. Ott, Eds.
Springer Berlin Heidelberg, 2012, vol. 44, pp. 321–337. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-35576-9 26

9. D. Schwerdel, D. Hock, D. Günther, B. Reuther, P. Müller, and P. Tran-Gia,
“ToMaTo - a network experimentation tool,” in 7th International ICST Confer-
ence on Testbeds and Research Infrastructures for the Development of Networks
and Communities (TridentCom 2011), Shanghai, China, Apr. 2011.

10. D. Schwerdel, B. Reuther, T. Zinner, P. Müller, and P. Tran-Gia, “Future internet
research and experimentation: The g-lab approach,” The International Journal of
Computer and Telecommunications Networking, 2014.

11. B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler,
C. Barb, and A. Joglekar, “An integrated experimental environment for distributed
systems and networks,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 255–270,
Dec. 2002. [Online]. Available: http://doi.acm.org/10.1145/844128.844152

