
Reproducing Network Conditions for Tests of
Large-Scale Distributed Systems

Robert Lübke, Daniel Schuster, Alexander Schill
Computer Networks Group

Technische Universität Dresden
Dresden, Germany

{robert.luebke, daniel.schuster, alexander.schill}@tu-dresden.de

Abstract—Testing distributed systems is difficult, error-prone
and time-consuming. Especially scalability tests are hard to
perform because of the large number of connected devices. The
heterogeneity of these devices (PCs, smartphones, tablets) and
their various network access technologies (DSL, cable, WiFi,
3G/4G) even worsen the situation. We argue that the reproduction
of network conditions is necessary to provide an adequate testbed
for experiments with distributed systems. We therefore propose
an architecture that allows performing automated tests of large
scale distributed systems including the emulation of network and
application behavior.

I. INTRODUCTION

Network applications obviously show a behavior that de-
pends on the used network technology as these technolo-
gies mostly have entirely different characteristics. Testing
distributed systems is often done in laboratory environments
with almost perfect network conditions. In real scenarios the
distributed systems’ components are situated in data centers
all over the globe and have to communicate with each other
overcoming thousands of kilometers and a significant number
of network hops. Therefore, we argue that the network-specific
characteristics have to be integrated with tests of distributed
systems to reflect the real world conditions accurately enough.

The reproduction of network conditions is relevant for every
application communicating over a network, but it is essential
for large-scale distributed systems, for example Cloud Com-
puting solutions. Running automated tests regularly makes it
easier to achieve the general aim of fault-tolerant and reliable
network computing.

Experiments with large distributed systems and reproduction
of network behavior can be performed in different ways. Sim-
ulation is a synthetic approach in which the whole networked
system is mapped to a model that allows various calcula-
tions. Furthermore, hardware network emulators connecting all
nodes of the system can also be used for this purpose. Another
approach is a distributed emulation environment, a federation
of multiple test networks of various institutions that consist
of thousands of nodes all over the world. Examples of these
three approaches will be discussed in detail in section II.

We found limitations in all three approaches, when perform-
ing experiments with a concrete test system: a conferencing
system (audio / video). Testing it requires an advanced and
accurate reproduction of network conditions like in any other
large real-time and multimedia application. This includes

network parameters like the limitation of the available data
rate, packet delay and its variation (also called jitter), packet
loss, duplication and reordering. These parameters must be
assignable separately to up and down link of a connection and
dynamic changes during test execution are required to support
varying conditions. Regarding mobile users who are connected
via telecommunication technologies (3G, 4G, WiFi) advanced
effects like disconnection phases and handovers between cells
as well as technologies also have to be reproduced. Although
all approaches support basic network parameters, only sim-
ulation can achieve the described advanced reproduction of
network behavior.

A special requirement concerning scalability tests is the
large number of software instances that have to be coordinated.
To achieve the large number of nodes in scalability tests with a
maintainable hardware effort, multiple software instances have
to be executed on one machine, but their network characteris-
tics must be emulated separately. Emulation environments can
easily handle large scenarios, but simulation- and hardware-
based approaches are limited.

As simulation requires the application behavior to be part
of the simulation model, one cannot use the original software
under test. With Hardware-based solutions and emulation
environments on can handle the accurate reproduction of
application behavior.

We have shown that none of the presented approaches
matches all mentioned requirements. Therefore we propose
another approach: integration of network emulation and ex-
periments with distributed systems. With network emulation a
slow and unreliable network is imitated on a real physical
network with better characteristics. Real network traffic is
exchanged between the nodes of the system, but it is shaped
according to certain characteristics. These are the main re-
search questions to be tackled with our work:

• Is it possible to use network emulation for large-scale
tests of distributed systems with several thousand nodes
covering all necessary effects and characteristics?

• Is it possible to emulate application behavior without
abstraction from the original software under test when
performing large-scale tests of distributed systems?

• How can one emulate the heterogeneity of endpoint sys-
tems, which can be found especially in mobile scenarios,
when performing large-scale tests of distributed systems?

II. RELATED WORK

Network emulation is quite an old research area and a lot
of work has been done in the last two decades. This section
gives a brief overview on the state of the art of network
emulation and investigates its applicability for experiments
with distributed systems.

Examples for the already mentioned distributed emulation
environments are OneLab [11], PlanetLab [7] and G-Lab
[10]. Network emulation support has been added to many
emulation environments, for example in [8] for G-Lab. These
environments fulfill most of the requirements, but are not
flexible enough to perform large scale tests, for instance they
do not support the requirement of running multiple software
instances on the machines while emulating the network condi-
tions differently. Most environments neither support complex
topologies nor dynamic changes during run time. Furthermore,
one can often use them only after adding nodes to the
infrastructure.

There are many hardware based products, that are said
to perform the emulation precisely. We found no product
that was able to emulate complex network topologies and
change the connection parameters dynamically. Due to these
limitations of the hardware solutions, we focused our search
on freely available software emulators, that are presented in
the following.

NISTNet [2] is able to emulate most of the required pa-
rameters, but it cannot emulate network topologies. Another
widespread tool is Netem/TC [9] that acts as traffic shaper
in most common Linux distributions. It can also emulate
networks as it provides means to modify bandwidth, delay,
loss and other effects based on various connection parameters
like IP address or port number. The wide area network
emulator WANem [5] is based on Netem. It allows analyzing
and measuring real network links and emulating disconnects.
However, Netem and WANem are not able to represent whole
network topologies. In FreeBSD Dummynet [1] is the standard
traffic shaping component. Its basic concept called pipes is
pretty handy to create virtual network topologies. Although
Dummynet itself only emulates bandwidth, loss and delay, it
has many extensions. KauNet [3] adds support of other pa-
rameters and it introduces a pattern-based approach. It further
enhances precision and reproducibility of Dummynet by using
time- or data-driven patterns [4]. ModelNet [12] in contrast to
KauNet uses an unmodified version of Dummynet to emulate
huge topologies on a predefined number of computers.

Comparison papers like [6] showed the reasonable emula-
tion quality of Dummynet, NISTNet and Netem/TC, although
some emulators are still facing problems in certain scenarios.
Dummynet for example still has problems with the accurate
emulation of high data rates.

Some of the presented solutions are able to emulate network
topologies and link characteristics as we require it for large-
scale testing of distributed systems. But these solutions focus
on network development experiments and therefore do not
provide any means to integrate the emulation of the network

behavior with the emulation of the application behavior. To
our knowledge there is no system combining the emulation
of network and application behavior in an integrated way to
facilitate experiments with large distributed systems.

From all presented network emulators, the combination
of Dummynet and KauNet is the best solution to emulate
network topologies of any size and complexity. We therefore
use both as a basis for our integrated emulation platform that
is presented in the following section.

III. PROPOSED APPROACH: THE NESSEE PLATFORM

This section covers the architecture of a platform that can
perform large scalability tests of distributed systems using
network emulation: NESSEE (Network Endpoint Server Sce-
nario Emulation Environment). The general architecture and
the most important components are shown in Figure 1.

As NESSEE emulates client/server-based systems, there are
test systems dedicated to client- and server-side software
under test (SUT). Each test system can run multiple instances
of the SUT. Mobile devices like smartphones and tablets act
as test systems for mobile software. The TestNodeModule
(TNM) is a platform independent NESSEE component that
also runs on each test system. It starts the SUT instances
and uses the available IPC (inter process communication)
mechanisms of the operating systems to control its execution.
This approach allows testing the original software without
further adaption than providing the IPC interface. Applications
requiring special hardware or other resources can run on
dedicated SUT machines. The TNM communicates with these
machines via SSH (Secure Shell).

The central NESSEE Server acts as a coordinator for
all other components. It manages all available test systems,
controls the TNMs according to the executed test scenario and
collects log files of all involved entities. After a test run these
logs are saved in the Central Log Repository. Every time a test
should be executed the test scenario has to be matched with the
available resources to provide an adequate test environment.
The NESSEE Server also provides a multi-tenant web front
end that allows the users to manage test systems and test
scenarios as well as run, control and evaluate tests.

The different test scenarios are imported to the NESSEE
Server as files written in the Test Description Language
(TDL). The TDL is a generic XML-based and modular
language to describe test cases that can be executed with
NESSEE. The NESSEE Editor is a graphical authoring tool
for TDL files that facilitates creation and editing of test cases.
Using this description language the testers can define the num-
ber of utilized SUT instances, their behavior and the network
characteristics and topologies that should be emulated. A TDL
file can also be enhanced with test-specific script files (written
in JavaScript) that are later executed by the NESSEE Server’s
or TNMs’ script engines. This script-based approach is used
to flexibly emulate the application behavior.

Another important component is the Degrader that is
responsible for the network emulation during the test. It is
configured to be the standard gateway of all test systems

Mobile Test Systems

Client Test Systems Server Test Systems

Android Test System
Test

Node
Module

iOS Test System

Windows Test System

NESSEE
Server

Degrader
(Network Emulation)

NESSEE Editor

Test
Node

Module

save logs
load test cases

create & edit
test cases

controls
gets log

configures
gets log

Central Log
Repository

degraded degraded

TDL file
(Test Description

Language)

Client SUT COM

SSH

Linux Test System

Test
Node

ModuleClient SUT

D
ed

ic
at

ed
 S

U
T

m
ac

h
in

e

IPC

SSH

Mac OS Test System

Test
Node

Module
Cocoa

controls
gets log

controls
gets log

Windows Test System

Test
Node

Modulecontrols
gets log

Dedicated SUT machine

COM

SSH

Linux Test System

Test
Node

Module

Server
SUT

Server
SUT

IPC

SSH

controls
gets log

SUT
app

IPC

d
e

gr
ad

e
d

Test
Node

Module

SUT
app

IPC

Windows RT Test System
Test

Node
Module

SUT
app

IPC

D
ed

ic
at

ed
 S

U
T

m
ac

h
in

e

Client SUT

Client SUT

Client SUT

Client SUT Dedicated SUT machine

Server
SUT

Server
SUT

Fig. 1. General architecture of the NESSEE platform

and therefore acts as a router. To prevent scalability problems
in the network emulation, multiple Degraders are supported.
Before test execution the Degrader is configured by the
NESSEE Server according to the loaded scenario. Filtered by
Dummynet rules, which is a mechanism similar to firewall
rules, the incoming traffic has to pass various Dummynet pipes
dependent on the source IP addresses and ports. These pipes
can be attached with certain network parameters like data
rate, loss and delay, but also with the more advanced KauNet
patterns. This pattern-based approach allows very accurate and
reproducible emulation of network characteristics. Using these
mechanisms the NESSEE Degrader supports the emulation of
network topologies of any complexity, data rate limitations,
packet delay and its variation, loss, reordering and duplication.
Mobile clients connected with telecommunication networks
can also be emulated with disconnections and handovers. With
the help of traffic generators it is also possible to emulate
background traffic of any kind.

IV. PRELIMINARY RESULTS

The evaluation of accuracy and performance of the network
emulation component is done with the help of multiple tools,
for example iperf1 for data rate, loss and reordering as well
as ping2 for duplication, delay and its variation (jitter).

1http://sourceforge.net/projects/iperf/
2http://linux.die.net/man/8/ping

As the accuracy of the underlying Dummynet and KauNet
have been evaluated before [6], we focus on the accuracy
of our Degrader emulating complex network topologies. We
therefore run scenarios in which only one parameter is con-
figured in a chain of three network nodes. Furthermore, we
run more complex scenarios as illustrated in Figure 2. The
deviation of expected and measured network parameters is
determined and averaged over multiple test runs with different
configured values. The resulting deviations are:

• data rate: ±3.50%
• packet delay: ±0.20%
• packet loss: ±0.10%
• packet duplication: ±0.00%
• packet reordering: ±0.13%
Except for the data rate emulation, which still has to be

improved, all parameters are emulated accurately. Effects like
bandwidth sharing and the variation of delay (jitter) according
to a Laplace distribution can also be observed.

Although the Degrader supports multiple test scenarios by
multiple testers at the same time, the scalability is limited by
the capacity of the Degrader’s network interfaces. Therefore,
the platform has to be enhanced with multiple cooperating
Degraders.

The used measurement tools have to be configured and exe-
cuted separately to determine the various network parameters.
To facilitate the evaluation of our approach and the comparison

 D
at

a
C

e
n

te
r

1

ISP 2
20.000 kbps, 4ms, 0%

ISP 1
50.000 kbps, 3ms, 0%

Network Node
100.000 kbps,
15ms, 0%

Network Node
10.000 kbps, 35ms, 1%

Network Endpoint 1
10.000 kbps, 1ms, 0%

Network Endpoint 2
10.000 kbps, 1ms, 0%

Network Endpoint 3
10.000 kbps, 1ms, 0%

Network Node
10.000 kbps, 1ms, 0%

Network Endpoint 4
10.000 kbps, 1ms, 0%

Network Endpoint 5
10.000 kbps, 1ms, 0%

Network Node
54.000 kbps,
3ms, 0.001%

Network Endpoint 6
11.000 kbps, 0ms, 0%

Network Node
6.000/1.000 kbps,
50ms, 0%

Network Node
54.000 kbps,
3ms, 0.001%

Network Endpoint 7
unlimited, 0ms, 0%

Network Node
unlimited, 0ms, 0%

Network Endpoint 8
3.600/1.450kbps,
100ms, 0.5%

Network Node
7.000/1450 kbps,
100ms, 0,2%

Network Node
384 kbps, 100ms, 0,5%

Network Endpoint 9
3.600/1450 kbps,
100ms, 0.5%

Server Cluster 1 Server Cluster 2

Fig. 2. One of the complex test scenarios used for the evaluation

with other network emulators we are developing an integrated
measurement tool that is able to determine all relevant network
parameters in one measurement. With this tool at hand we will
perform an extensive comparison of the existing basic network
emulators’ accuracy and performance. The most challenging
issue we will have to tackle is the required high-precision
measurement, i.e. a time accuracy not exceeding about 50
micro seconds. The last research paper comparing multiple
systems [6] is from 2009. As new versions of the emulators
were published and the hardware was improved too, we are
expecting very different results, which will also be an impor-
tant contribution to the research community. The integrated
measurement tool will also allow us to determine practice
oriented values for the various parameters of different network
access technologies, for example DSL, Cable and mobile
networks (WiFi, 3G, 4G). This facilitates the configuration
of network emulators when creating typical test scenarios.

The scalability of NESSEE’s architecture itself was proofed
with test executions running up to 1000 SUT instances on
Windows test systems. The TestNodeModule is currently a
Windows application and still has to be implemented for the
other main platforms. We expect the encapsulation of OS-
specific mechanisms in a platform-independent TNM to be
very challenging. At the end the mobile test systems have to be
integrated and the Degrader has to be enhanced to accurately
emulate the mobile communication technologies as well.

In conclusion the remaining objectives of our work are:
• Development of a platform-independent TestNodeModule
• Integration of mobile test systems
• Improve the scalability of the network emulation with

multiple cooperating degraders, allowing the execution
of even larger scenarios

• Development of an integrated measurement tool

V. CONCLUSION

The main contribution of this work is an approach that
integrates tests of large-scale distributed systems with the
emulation of multi-level network topologies, fine-grained net-
work parameters and complex network behavior. It facili-
tates performing experiments with distributed systems under
real-world network conditions. To realize our approach we
proposed the NESSEE architecture and the Degrader as a
concept for performing the network emulation. The evaluation
showed the good accuracy of the current implementation
and the feasibility of emulating complex scenarios. However,
scalability has to be improved for even larger scenarios and
platform independence must be achieved.

We further plan to contribute an extensive comparison of
current network emulators’ accuracy and performance once
our integrated measurement tool is implemented. The result-
ing parameters of typical network connections will also be
valuable data sets for other researchers.

REFERENCES

[1] M. Carbone and L. Rizzo, “Dummynet Revisited,” ACM SIGCOMM
Computer Communication Review, vol. 40, no. 2, pp. 12–20, April
2010. [Online]. Available: http://doi.acm.org/10.1145/1764873.1764876

[2] M. Carson and D. Santay, “NIST Net: a Linux-based network
emulation tool,” ACM SIGCOMM Computer Communication Review,
vol. 33, no. 3, pp. 111–126, July 2003. [Online]. Available:
http://doi.acm.org/10.1145/956993.957007

[3] J. Garcia, E. Conchon, T. Pérennou, and A. Brunstrom, “KauNet:
Improving Reproducibility for Wireless and Mobile Research,”
in Proceedings of the 1st international workshop on System
evaluation for mobile platforms, ser. MobiEval ’07. New York,
NY, USA: ACM, 2007, pp. 21–26. [Online]. Available: http:
//doi.acm.org/10.1145/1247721.1247726

[4] J. Garcia, P. Hurtig, and A. Brunstrom, “KauNet: A Versatile and
Flexible Emulation System,” in Proceedings of the 5th Swedish National
Computer Networking Workshop (SNCNW 2008), Karlskrona, Sweden,
April 2008.

[5] H. Kalita and M. Nambiar, “Designing WANem : A Wide Area Network
emulator tool,” in Communication Systems and Networks (COMSNETS),
2011 Third International Conference on, January 2011, pp. 1 –4.

[6] L. Nussbaum and O. Richard, “A Comparative Study of Network
Link Emulators,” in Proceedings of the 2009 Spring Simulation
Multiconference, ser. SpringSim ’09. San Diego, CA, USA: Society
for Computer Simulation International, 2009, pp. 85:1–85:8. [Online].
Available: http://portal.acm.org/citation.cfm?id=1639809.1639898

[7] Princeton University, “Planetlab. an open platform for developing, de-
ploying, and accessing planetary-scale services,” http://www.planet-lab.
org, 2013, accessed: 01/15/2013.

[8] D. Schwerdel, D. Hock, D. Günther, B. Reuther, P. Müller, and P. Tran-
Gia, “ToMaTo - a network experimentation tool,” in 7th International
ICST Conference on Testbeds and Research Infrastructures for the De-
velopment of Networks and Communities (TridentCom 2011), Shanghai,
China, Apr. 2011.

[9] Stephen Hemminger, “Network Emulation with NetEm,” in
linux.conf.au, Canberra, Australia, April 2005. [Online]. Available: http:
//devresources.linux-foundation.org/shemminger/LCA2005 netem.pdf

[10] University of Würzburg, “G-lab,” http://www.german-lab.de/, 2013, ac-
cessed: 01/15/2013.

[11] UPMC Paris Universitas, “Onelab. future internet testbeds,” http://www.
onelab.eu, 2013, accessed: 01/15/2013.

[12] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić,
J. Chase, and D. Becker, “Scalability and Accuracy in a Large-
Scale Network Emulator,” in Proceedings of the 5th symposium on
Operating systems design and implementation, ser. OSDI ’02. New
York, NY, USA: ACM, 2002, pp. 271–284. [Online]. Available:
http://doi.acm.org/10.1145/1060289.1060315

