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ABSTRACT 

Reproducing the characteristics of complex network infrastructures is not supported by current testing 
environments for distributed systems. We argue that the emulation of multi-level topologies and fine-
grained network behavior is necessary to provide an adequate testbed for experiments with distributed 
systems. Therefore, we developed an extensible emulation environment called NESSEE, which emulates 
application behavior as well as network aspects. Evaluation results show its applicability for large-scale 
tests. Furthermore, the developed NESSEE platform is actually used by our industry partner Citrix 
Online for testing video conferencing and eCollaboration systems. 
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1. INTRODUCTION 

Reproducing network characteristics is a well-established mechanism for example in network 
protocol development. It allows researchers to test new protocols or modifications of existing 
ones in a reproducible way. However, it can also be applied in network planning to predict 
consequences of certain infrastructure changes. Besides these use cases reproducing network 
characteristics is appropriate and even necessary for testing distributed systems. These tests 
often take place in laboratory environments with almost perfectly connected network nodes. In 
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reality the parts of the distributed systems are located all over the globe and have to interact 
with each other overcoming thousands of kilometers and a significant number of network 
hops. During this communication packets get lost, delayed, reordered and corrupted. 
Concealing this behavior while testing distributed systems does not reflect the real world 
accurately enough. 

Reproducing network conditions can be achieved by either simulation or emulation. While 
network simulation is a synthetic approach in which the whole networked system is mapped to 
a model that allows various calculations, network emulation is the imitation of a slow and 
unreliable network on a real physical network with better characteristics. 

This work focusses on network emulation, because real network traffic must be exchanged 
between the nodes of a distributed system. A simulation of the application behavior would 
cause inordinate abstraction, because the software under test has to be reduced to a black box 
with certain distributions of incoming and outgoing packets. 

In the following, we will present the basic principles of networks with relevant parameters 
and effects and identify the requirements of a test environment for distributed systems. After 
the discussion of related work, we present the concept of an emulation environment for 
scalability tests of distributed systems that includes network emulation. We further evaluate 
our approach, conclude the paper and point out the main objectives of our future work. 

2. NETWORK PARAMETERS AND EFFECTS 

The links and nodes of a computer network have different characteristics that depend on the 
used technologies. These characteristics can be specified with the help of various metrics. 
Furthermore, technology-specific effects can occur in the network. This section covers the 
most important network metrics and effects of typical computer networks. We focus on 
parameters and effects that can be observed at the IP layer and higher because network 
emulation is usually done at this layer. 

One of the most important parameters is the data rate which is often called bandwidth. 
Here one has to differentiate between the capacity C, the available bandwidth A and the Bulk 
Transfer Capacity (BTC). The capacity C of a link is defined as the maximum possible IP 
layer data rate. If one link is used by multiple communications at the same time, the capacity 
is shared. This is often called bandwidth sharing. The available bandwidth A of a link is the 
unutilized fraction of the capacity over a certain time interval. BTC is the maximum 
throughput obtainable by a single TCP connection [Prasad et al, 2003]. Most Internet service 
providers shape the traffic of their customers to an artificial maximum data rate. These rates 
may vary upon time. 

Another very basic parameter is the delay between sending and receiving a packet. The 
overall delay is the accumulated value of propagation delay DP (through signal transmission), 
queuing delay DQ (dependent on the current load of the routers) and transmission delay DT 
(time to transmit all bits of one packet). As it is not trivial to determine the One Way Delay 
(OWD) in only one direction, mostly the Round Trip Delay (RTD) is specified. The RTD can 
be determined by simply measuring the time between sending a packet and receiving the 
corresponding answer. The OWD is usually not a constant, but it varies according to a Laplace 
distribution. This delay variation OWD is known as jitter on the application layer. 
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The loss of single or even multiple packets can occur because of overloaded routers or 
defective hardware / software. The loss ratio specifies the amount of packets that get lost 
during a communication relatively to the total amount of packets. This parameter is specified 
as One Way Loss Ratio (OWLR) or Round Trip Loss Ratio (RTLR) dependent on the 
reference. During the transmission packets can get corrupted, if some of the contained bits get 
flipped. However, those failures are covered and masked by lower layers and affect the IP 
layer with a higher loss ratio. 

Packet duplications can occur because of unnecessary retransmissions or defective 
hardware/software. In such cases a packet arrives twice or even more often at the receiver. The 
Duplication Ratio (DR) is the amount of duplicated packets relatively to the total amount of 
packets. 

If different packets of one communication can take different routes, it is possible that they 
arrive at the receiver in another order as they were sent. This effect is specified as the Packet 
Reordering Ratio (PRR). 

Especially in wireless connections further effects like permanent or short-time 
disconnections can be observed. When users move while they are connected to mobile cellular 
networks handovers between the cells and between different technologies can occur. 

3. REQUIREMENTS 

When performing scalability tests of the video conference systems of our industry partner 
Citrix Online, we spotted some special emulation requirements for general testing of 
distributed systems. The support of complex network topologies is essential to allow 
emulation of networks at any complexity level. Furthermore, the emulator has to differentiate 
between up and down links. It should also allow dynamic configuration changes during the 
runtime of a test. The essential parameters for the network emulation are data rate, delay and 
loss. The other parameters and effects that are described in the previous section should also be 
emulated. 

To achieve the necessary degree of realistic behavior it is important to use the original 
software under test and not an abstract model. Finally, it is required to control the large 
number of software under test instances during test runtime to emulate application behavior as 
well. 

4. RELATED WORK 

Much work has been done in the area of network emulation during the last two decades. The 
aim of this section is to give a brief overview on the state of the art of network emulation. 

Emulation environments like PlanetLab [Peterson et al, 2006], OneLab [OneLab, 2012] 
and EmuLab [White et al, 2002] are a federation of multiple test networks of different 
scientific institutions and companies. Usually researchers can do experiments with these 
networks after they participated in the project by adding nodes to the test infrastructure. These 
environments have been enhanced by network emulation tools as described in [Carbone and 
Rizzo, 2001]. 
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In [Schwerdel et al, 2011] a network emulation tool for the test environment G-Lab 
[Schwerdel et al, 2010] was developed. This tool called ToMaTo allows the definition of 
complex topologies and certain link characteristics with a graphical editor. Emulation 
environments fulfill most of the stated network-related requirements for large-scale testing of 
distributed systems (see Section 1). However, they are not applicable for this use case, because 
they are not flexible enough in terms of dynamic changes during the runtime of an experiment. 
Furthermore, the main focus of these environments is performing experiments for network 
development and not large-scale testing of distributed systems. Therefore, there are no means 
to control and emulate the application behavior. 

When searching for other solutions to emulate network behavior we found many hardware 
based products of various manufacturers. These hardware emulators are able to shape traffic 
very precisely, but they do not support complex network topologies and have limitations 
concerning dynamic changes during the test run. Therefore, we focused our search on freely 
available software emulators due to their greater flexibility and adaptability. The most 
important emulators we found and examined are discussed in the following. 

NISTNet [Carson and Santay, 2003] is able to emulate all of the effects listed above. 
However, NISTNet is not able to emulate network topologies. In addition it is not further 
developed and its beta level code (according to the official web site) prevents the application. 

In contrast Netem/TC [Hemminger, 2005] was introduced as traffic shaper in most 
common Linux distributions since version 2.6. The provided functionalities to modify 
bandwidth, delay, loss and other effects based on various connection parameters like IP 
address or port number qualify Netem to work as a network emulation node inside a network 
emulation environment. Based on Netem the wide area network emulator WANem [Kalita and 
Nambiar, 2011] was developed. It provides extensions like an analyzer for measuring real 
network links and an option to emulate disconnects [Nambiar and Kalita, 2011]. However, it is 
not possible to use Netem or WANem for representing a whole network topology. 

In FreeBSD 2.2.8 Dummynet [Carbone and Rizzo, 2010] became the standard traffic 
shaping component of the ipfw firewall. Its basic concept called pipes is pretty handy to create 
virtual network topologies. Although Dummynet is only able to emulate bandwidth, loss and 
delay, there are many extensions based on this software. KauNet [Garcia et al, 2007] adds the 
ability to configure bit errors and it introduces a pattern-based approach. By using time- or 
data-driven patterns the precision and reproducibility of Dummynet was enhanced [Garcia et 
al, 2008]. ModelNet [Vahdat et al, 2002] in contrast to KauNet uses an unmodified version of 
Dummynet to emulate huge topologies on a predefined number of computers. 

Recent work by [Nussbaum and Richard, 2009] showed that the emulation quality of the 
emulators Dummynet, NISTNet and Netem/TC is reasonable, although some emulators are 
still facing problems in certain scenarios. Dummynet for example still has problems with the 
accurate emulation of high data rates. 

This section showed that there are already some solutions that can emulate network 
topologies and link characteristics as we require it for large-scale testing of distributed 
systems. But these solutions focus on network development experiments and therefore do not 
provide any means to integrate the emulation of the network behavior with the emulation of 
the application behavior. To our knowledge there is no system combining the emulation of 
network and application behavior in an integrated way to facilitate testing large distributed 
systems. 

From all the mentioned network emulators, Dummynet with its extension KauNet seems to 
be the best tool to emulate network topologies of any size and complexity. Therefore, we use it 
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as a basis for our integrated emulation platform NESSEE that is presented in the following 
section. 

5. THE NESSEE PLATFORM 

NESSEE (Network Endpoint Server Scenario Emulation Environment) provides a generic 
architecture for scalability tests of client/server-based distributed systems including network 
emulation. The general architecture and its most important components are presented in the 
following. 

Figure 1. General architecture of the NESSEE platform 

5.1 General Architecture 

As NESSEE is an emulation environment for typical client/server-based systems, the 
Software Under Test (SUT) can be the client software as well as the server software. The 
SUT is installed on various test systems that are usually virtual machines (VM), but physical 
machines can also be used. Typically, multiple instances of the client SUT run on one Client 
Test System. Server Test Systems usually contain only one instance of the server SUT. 

Both types of SUT (client and server software) communicate with each other. All the 
communication is routed through the Degrader, as it is the standard gateway of all test 
systems. The Degrader is responsible for the network emulation. The network conditions of 
each SUT instance can be configured separately based on IP addresses and ports, which allows 
the differentiation of multiple SUT instances on one machine. 

The central component NESSEE Server manages the test systems and coordinates the 
SUT and the Degrader according to a certain test case. The NESSEE Server also has a web 
interface, which the testers can use to manage their test systems, create and edit tests, control 
running tests and to analyze finished tests. 

The client SUT instances are controlled via a Test Node Module (TNM), which also runs 
on each client test system as it follows an agent-based approach. Besides controlling the 
applications, the TNM agents help fetching logs and statistics. 
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Additionally, the test cases contain JavaScript based test scripts that are executed by the 
NESSEE Server and TNM during the test. These test scripts allow controlling the test 
execution in a very flexible way. This enables the emulation of the SUT’s behavior, which we 
found to be very important in addition to the emulation of network behavior. The SUT 
instances are not informed directly about changing network conditions as this would also not 
be done in reality. 

The results of each test, its statistics and logs are stored in the Central Log Repository. 
The NESSEE Server retrieves the test cases from the Test Case Repository. These test cases 
are described in a generic, XML-based Test Description Language (TDL, see Section 3.2). 
The NESSEE Editor is a TDL authoring tool that enables the graphical modeling and detailed 
specification of test scenario descriptions within an independent application. 

The main components of the NESSEE environment for application and network emulation 
are shown in Figure 1. In the following, the most important aspects of network emulation are 
discussed in detail. 

5.2 Test Description Language 

The Test Description Language is an XML-based generic description language that is used to 
formalize test cases that can be executed by the NESSEE Server. 

The design of the TDL follows a modular concept and the modules are as independent 
from each other as possible. This allows the reuse and combination of components into a test 
case description that is executed on the test systems in the end. The NetworkTopology 
module defines the different network parameter sets and concrete network topologies. The 
Behavior module allows the definition of actions that can be arranged in complex flows. The 
TestCaseDescription links to the other modules and arranges the elements that are defined 
there into single test case representations. 

In this work we focus on the network emulation and therefore provide an example of the 
NetworkTopology module. Here the tester can define different sets of network parameters 
called NetworkCapabilities. Listing 1 provides an example of the capability definition 
including bandwidth (kbps), delay (ms) and its variation (ms), loss (percentage), reordering 
(percentage), duplication (percentage) and a disconnection event every 24 hours. Every single 
parameter can have a direction attribute that indicates whether it should be used for uplink, 
downlink or both. To define the client-side network topology we implicitly use the XML 
structure. The child elements of a NetworkNode (gateway, router) can be sub network nodes 
and NetworkEndpoints (the actual user computer). This enables modeling network 
topologies of any complexity. Every network node and endpoint can reference one of the 
previously defined capability parameter sets by its id. The server components of the 
distributed systems (ServerCluster in Listing 1) are modeled to run in DataCenters 
that are connected to the Internet via multiple Internet service providers (ISP). Each ISP can 
also have a special set of predefined network capabilities. 
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Listing 1. Example definition of network capabilities, a simple topology and one server component 

5.3 Degrader 

The network emulation component Degrader is realized as a dedicated machine due to 
performance issues and it operates on the network layer. We used Dummynet as a basis 
because it meets most of the important requirements and because of its extensibility. 
Dummynet is used for the emulation of the basic network parameters. Its extension KauNet 
also allows us to emulate advanced network parameters and effects. Due to our modular 
design the testers can choose which one should be used. Both approaches are presented in the 
following. 
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5.3.1 Emulation of the Basic Network Parameters 

The NESSEE Server provides a module called Degrader Control which binds the Degrader 
machine to the server. After parsing the TDL NetworkTopology module (see Listing 1) into a 
NESSEE internal topology model, the creation of the Dummynet configuration is done within 
an own data structure called Binding Model. Figure 2 shows that this model has the same 
structure as the NESSEE internal topology model. Its nodes are bound to equivalent nodes of 
the topology model. Two additional objects representing a Dummynet pipe and a Dummynet 
rule are attached to each node. A Dummynet pipe represents a channel with certain 
characteristics. These characteristics are derived from the network capabilities configured in 
the test case description. A Dummynet rule basically works like a firewall rule. It determines 
which packets have to pass which pipes based on IP addresses and port numbers of its source 
and destination. 

Figure 2. The Binding Model for the topology definition in Listing 1 

Before starting a test case the Binding Model with all its nodes, pipes and rules is 
converted into the actual configuration commands of the Dummynet emulator which are then 
sent to the Degrader. Figure 3 illustrates the physical data flow from the client to the server 
test systems via the Degrader. All incoming traffic is forwarded to the corresponding pipe 
hierarchy. 

Figure 3. The physical data flow from the client test systems to the server test systems (up link) and back 
(down link) as well as its emulation inside the Degrader (example corresponds to Figure 2) 

Both, Dummynet pipes and Dummynet rules of the Binding Model use an event-based 
approach to react on dynamic changes of the topology model, for example initiated by the 
tester or the test execution engine. This enables the topology model equivalent structure of the 
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Binding Model to easily realize dynamic changes during runtime of a test. Such changes are 
handled by the data structure and sent to the Degrader almost in real-time. 

5.3.2 Emulation of the Advanced Network Parameters and Effects 

A major drawback of Dummynet is the lack of support for the advanced network parameters 
(delay jitter, packet reordering, packet duplication and packet corruption). 

We therefore investigated and integrated KauNet into the NESSEE Server. Its basic pattern 
concept allows the user to manipulate network traffic either data-driven or time-driven. There 
are predefined pattern types for a precise reconfiguration of the data rate and the packet delay. 
Another pattern type is used to introduce a more precise mechanism for packet losses. Finally, 
it is possible to reorder packets by either the dedicated reordering pattern or by appropriate 
configurations of the delay change pattern.  

Since there is no option within KauNet which allows duplicating packets, we added this 
feature on our own. We added a new duplication pattern type which behaves exactly like the 
already implemented ones. This means, one can decide between data-driven or time-driven 
mode. During our tests we noticed that it is not possible to remove patterns from the 
emulator’s configuration once they were added. This feature was added in our customized 
version as well. 

The NESSEE Server was extended to fully support KauNet meaning the creation of pattern 
files and the proper configuration of pipes with these patterns. We decided to change the 
mechanism used to introduce packet loss. Dummynet’s approach is based on random numbers 
and is not highly precise. The pattern based approach increased the reproducibility of the 
experiments and the accuracy especially for shorter time periods.  

One effect which cannot be configured by KauNet itself is the delay jitter. A special delay 
change pattern is created by the NESSEE Server to emulate this effect anyway. Therefore, a 
random number generator is used which can create values for different distribution functions. 
It generates delay times for every single packet position of a pattern file. Currently we support 
uniform, normal and Laplace distribution where the last one seems to be the most common 
form. [Zheng et al, 2001] 

6. EVALUATION 

In this section we investigate on the accuracy of the network emulation and show that the 
Degrader can handle the emulation of complex network behavior. The accuracy and 
performance of the underlying Dummynet itself was evaluated before and found to be 
reasonable [Nussbaum and Richard, 2009]. Therefore, we focus on the evaluation of the way 
our NESSEE Degrader uses Dummynet to emulate complex network topologies. 

To validate that the Degrader really emulates the configured network parameters we 
determine the deviation of configured and actually measured values. Measuring delay is done 
with the ping1 tool. Bandwidth and loss are determined with iperf2. The measured values are 
rechecked with the help of the statistics module of the Citrix Online video server, which also 

                                                 
1 http://linux.die.net/man/8/ping  
2 http://sourceforge.net/projects/iperf/  
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collects information about bandwidth, loss and delay of the conference attendees. All tests are 
done with video conferences of ten minutes length. 

To determine the emulation accuracy of the parameters independently from each other we 
defined various example scenarios in which either bandwidth, loss or delay is specified. In our 
measurements the maximum deviation of delay is +0.3ms (+0.2%) and the maximum 
deviation of loss is ±0.3%. To measure the bandwidth accuracy we had to create a test case 
without any bandwidth sharing between the nodes. We achieved an accuracy of ±3.5% of the 
configured bandwidth. We can observe that the amount of the configured values and the 
measured deviation correlate. This correlation has already been investigated by [Nussbaum 
and Richards, 2009]. 

Figure 4. Network topology of the complex test. The configured network capabilities are bandwidth, 
delay and loss rate. 

In real scenarios all parameters are configured at the same time. Therefore we analyzed the 
accuracy of all combined parameters in a more complex scenario. The topology of this 
scenario is illustrated in Figure 4. Nine Network Endpoints (NE), running the client SUT, can 
be found in this test. All of them communicate with one server cluster in a data center, which 
is connected to the Internet via an ISP with predefined network capabilities (bandwidth, delay, 
loss rate). The Network Endpoints are located in a network topology consisting of routers and 
gateways that are represented by Network Nodes. On the one hand, the expected result of this 
test is to see that bandwidth has to be shared, for example between Network Endpoints 1, 2 
and 3. On the other hand we expect the different network capabilities to be combined. That 
means the delays of the single nodes should be added, the resulting bandwidth should be the 
minimum of the network path and the overall loss rate OWLRsum is determined according to 
Equation (1), where n is the length of the network path and OWLRi are the loss rates of the 
nodes. 
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Figure 5 shows the accuracy in the combined measurements. The loss rate is still emulated 
very accurately (±0.1%), but the deviation of delay has a maximum value of about 4ms. This 
is caused by the more complex network topology as the packets have to pass multiple pipes. 
Due to Dummynet's packet release mechanisms which may release packets slightly too early 
or slightly too late, the delay deviation may vary around the configured value in positive and 
negative direction. 

 

Figure 5. The deviation of configured and measured delay and loss values for each Network Endpoint 
(NE) of the topology shown in Figure 4 

Regarding bandwidth sharing we can state that the measurements reflect the expected 
behavior. The bandwidth sum of NE1, NE2 and NE3 as well as NE4, NE5 and NE6 are nearly 
the same as the limitations of 10,000 kbps of the corresponding parent Network Nodes. The 
overall bandwidth of all Network Endpoints also meets the ISP2 bandwidth limitation of 
20,000 kbps. 

To evaluate our own KauNet modification that allows packet duplication we used the 
ping command to send and receive ICMP ECHO packets. In both possible modes, time- and 
data-driven, we configured a one way duplication rate of 40% and sent 100,000 packets. The 
results shown in Table 1 can be considered as very accurate. In data-driven mode exactly one 
duplicated packet seems to be missing. This is the duplicate of the last packet that is created 
correctly by the Degrader, but it is not recognized by the ping command as it already ends 
when the first response of the last request comes in. So the measured values exactly meet the 
expectations. In time-driven mode slightly more packets get duplicated. The reason for this is 
that the packets reach the Degrader in different time intervals. Therefore, it cannot be 
guaranteed that the packets hit the exact points in time in which the duplication is performed. 
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Table 1. Measurement results for the evaluation of packet duplication 

 Time-driven mode Data-driven mode 
Expected Measured Expected Measured 

Sent requests 100,000 100,000 100,000 100,000 
Received responses 140,000 140,189 140,000 139,999 

Duplicate ratio 40% 40,189% 40% 39,999% 
 
The duplication pattern was also evaluated inside a topology. When n cascaded nodes are 

configured with a certain duplication rate DRi, the resulting duplication rate DRsum can be 
determined using Equation (2). 

 

 
 
The deviation of measured and expected DRsum values for n=3 is ±0,25%. Similar values 

can be observed for the resulting loss rates OWLRsum, if the pattern-based approach is used. 
For this reason the NESSEE Degrader emulates all pattern-supported parameters with KauNet 
and the remaining ones with Dummynet. 

As we pointed out before the delay jitter is emulated according to a Laplace distribution. 
Table 2 shows the measured and expected delay values (minimum, maximum and mean) in a 
ping measurement with 20.000 packets and three cascaded network nodes. The mean 
measured values are slightly above the expected values, because of the delay that also exists 
without emulation. The expected minimum and maximum values are not always hit because of 
the minimal probability due to the Laplace distribution. 

Table 2. Measurement results for the evaluation of delay jitter 

 Upstream Downstream 
Expected Measured Expected Measured 

Delay 
variance 

∆OWD [ms] 

Min 28 32,094 28 31,849 
Mean 48 48,911 48 48,926 
Max 68 65,500 68 66,054 

 
The reordering ratio is measured with iperf using UDP packets. If reordering RRi is 

configured for n nodes inside a topology, packets can get reordered multiple times, which can 
result in a correct final order. Therefore the resulting reordering rate RRsum cannot be 
determined exactly, but we can only calculate an upper limit. This is shown in Equation (3). 
The deviation of measured and expected reordering rate RRsum is ±0.13%. 
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7. CONCLUSION AND FUTURE WORK 

The main contribution of our work is an approach for the emulation of distributed systems 
with multi-level network topologies and fine-grained network parameters. To realize our 
approach we proposed an architecture for network emulation in large-scale tests, a generic 
Test Description Language and the NESSEE Degrader, that emulates network characteristics 
and behavior. The evaluation showed the implementation's good accuracy and the feasibility 
of emulating complex scenarios. 

Our future work covers an extended comparison of existing network emulation solutions 
(software and hardware) not only based on features, but also regarding their performance and 
accuracy. We further want to investigate on methods to determine practice-oriented values for 
the emulation of typical scenarios and network access technologies. The presented architecture 
in Section 5 uses only one Degrader for network emulation. In our ongoing work we are 
designing and implementing architecture extensions for larger scenarios in which multiple 
Degraders will be necessary. 

ACKNOWLEDGEMENT 

This work results from the NESSEE project that has been financed by Citrix Systems, Online 
Services Division. The authors would like to thank the project members for their contributing 
work. 

REFERENCES 

Carbone, M. and Rizzo, L., 2010. Dummynet Revisited. ACM SIGCOMM Computer Communication 
Review, Vol. 40, No. 2, pp. 12-20. 

Carbone, M. and Rizzo, L., 2011. An emulation tool for PlanetLab. Computer Communications, Vol. 34, 
No. 16, pp. 1980-1990. 

Carson, M. and Santay, D., 2003. NIST Net: a Linux-based network emulation tool. ACM SIGCOMM 
Computer Communication Review, Vol. 33, No. 3, pp. 111-126. 

Garcia, J. et al, 2007. KauNet: Improving Reproducibility for Wireless and Mobile Research. 
Proceedings of the 1st international workshop on System evaluation for mobile platforms. New 
York, NY, USA, pp. 21-26. 

Garcia, J. et al, 2008. KauNet: A Versatile and Flexible Emulation System. Proceedings of the 5th 
Swedish National Computer Networking Workshop. Karlskrona, Sweden. 

Hemminger, S., 2005. Network Emulation with NetEm. linux.conf.au, Canberra, Australia. 
Kalita, H. and Nambiar, M., 2011. Designing WANem : A Wide Area Network emulator tool. 

Proceedings of the Third International Conference on Communication Systems and Networks 
(COMSNETS). Bangalore, India, pp. 1-4. 

Nambiar, M. and Kalita, H., 2011. Design of a new algorithm for WAN disconnection emulation and 
implementing it in WANem. Proceedings of the International Conference & Workshop on Emerging 
Trends in Technology. New York, NY, USA, pp. 376-381. 

Nussbaum, L. and Richard, O., 2009. A Comparative Study of Network Link Emulators. Proceedings of 
the 2009 Spring Simulation Multiconference, San Diego, CA, USA, pp. 85:1-85:8. 



LARGE-SCALE TESTS OF DISTRIBUTED SYSTEMS WITH INTEGRATED EMULATION OF 
ADVANCED NETWORK BEHAVIOR 

 

151 

OneLab, 2012. Developing testbeds for the Future Internet. Online at: http://www.onelab.eu/ 
Peterson, L. et al, 2006. Experiences building PlanetLab. Proceedings of the 7th symposium on 

Operating systems design and implementation, Berkeley, CA, USA, pp. 351-366. 
Prasad, R. et al, 2003. Bandwidth estimation: metrics, measurement techniques, and tools. IEEE 

Network Magazine, vol.17, no.6, pp. 27-35. 
Schwerdel, D. et al, 2010. German-Lab Experimental Facility. Proceedings of the 3rd Future Internet 

Symposium, Berlin, Germany. 
Schwerdel, D. et al, 2011. ToMaTo - a network experimentation tool. Proceedings of the 7th 

International ICST Conference on Testbeds and Research Infrastructures for the Development of 
Networks and Communities (TridentCom 2011), Shanghai, China, pp. 1-10. 

Vahdat, A. et al, 2002. Scalability and Accuracy in a Large-Scale Network Emulator. Proceedings of the 
5th symposium on Operating systems design and implementation, New York, NY, USA, pp. 271-
284. 

White, B. et al, 2002. An integrated experimental environment for distributed systems and networks. 
Proceedings of the 5th symposium on Operating systems design and implementation, New York, NY, 
USA, pp. 255-270. 

Zheng, L. et al, 2001. Characteristics of network delay and delay jitter and its effect on voice over IP 
(VoIP). Proceedings of ICC 2001. IEEE International Conference on Communications, Helsinki, 
Finland, pp. 122–126. 

 


