IADIS International Journal on WWW/Internet
Vol. 10, No. 2, pp. 138-151
ISSN: 1645-7641

LARGE-SCALE TESTSOF DISTRIBUTED
SYSTEMSWITH INTEGRATED EMULATION OF
ADVANCED NETWORK BEHAVIOR

Robert LilbkeComputer Networks Group, Technische UniversitasBea, Germany.
Robin Lungwitz Computer Networks Group, Technische UniversitasBea, Germany.
Daniel Schustelcomputer Networks Group, Technische Universitat @easGermany.

Alexander SchillComputer Networks Group, Technische Universitét @easGermany.

ABSTRACT

Reproducing the characteristics of complex netwafkastructures is not supported by current testing
environments for distributed systems. We argue tiatemulation of multi-level topologies and fine-
grained network behavior is necessary to providedgequate testbed for experiments with distributed
systems. Therefore, we developed an extensibleatimulenvironment called NESSEE, which emulates
application behavior as well as network aspectsluation results show its applicability for largeake
tests. Furthermore, the developed NESSEE platfarmactually used by our industry partner Citrix
Online for testing video conferencing and eCollabiorasystems.

KEYWORDS
Emulation, network, topology, behavior, NESSEE, a€igr.

1. INTRODUCTION

Reproducing network characteristics is a well-dsggthbd mechanism for example in network
protocol development. It allows researchers tonest protocols or modifications of existing
ones in a reproducible way. However, it can alsapplied in network planning to predict
consequences of certain infrastructure changesd@&eshese use cases reproducing network
characteristics is appropriate and even necessaries$ting distributed systems. These tests
often take place in laboratory environments with@dt perfectly connected network nodes. In

138

LARGE-SCALE TESTS OF DISTRIBUTED SYSTEMS WITH INTEGRAD EMULATION OF
ADVANCED NETWORK BEHAVIOR

reality the parts of the distributed systems acated all over the globe and have to interact
with each other overcoming thousands of kilometard a significant number of network
hops. During this communication packets get lostlayked, reordered and corrupted.
Concealing this behavior while testing distributggstems does not reflect the real world
accurately enough.

Reproducing network conditions can be achieveditiieesimulation or emulation. While
network simulation is a synthetic approach in wttted whole networked system is mapped to
a model that allows various calculations, netwomkukation is the imitation of a slow and
unreliable network on a real physical network viadtter characteristics.

This work focusses on network emulation, becauaknetwork traffic must be exchanged
between the nodes of a distributed system. A sitimleof the application behavior would
cause inordinate abstraction, because the softwader test has to be reduced to a black box
with certain distributions of incoming and outgoipackets.

In the following, we will present the basic prinlep of networks with relevant parameters
and effects and identify the requirements of a éesironment for distributed systems. After
the discussion of related work, we present the ephof an emulation environment for
scalability tests of distributed systems that idelsi network emulation. We further evaluate
our approach, conclude the paper and point outtiie objectives of our future work.

2. NETWORK PARAMETERSAND EFFECTS

The links and nodes of a computer network haveewifit characteristics that depend on the
used technologies. These characteristics can bafisdewith the help of various metrics.
Furthermore, technology-specific effects can odouthe network. This section covers the
most important network metrics and effects of tgpicomputer networks. We focus on
parameters and effects that can be observed atPtHayer and higher because network
emulation is usually done at this layer.

One of the most important parameters is the datawaich is often called bandwidth.
Here one has to differentiate between the cap&ithe available bandwidth A and the Bulk
Transfer Capacity (BTC). The capacity C of a liskdefined as the maximum possible IP
layer data rate. If one link is used by multiplercounications at the same time, the capacity
is shared. This is often called bandwidth sharifige available bandwidth A of a link is the
unutilized fraction of the capacity over a certdime interval. BTC is the maximum
throughput obtainable by a single TCP connectiaag®d et al, 2003]. Most Internet service
providers shape the traffic of their customersracadificial maximum data rate. These rates
may vary upon time.

Another very basic parameter is the delay betwesnliag and receiving a packet. The
overall delay is the accumulated value of propagatielay I (through signal transmission),
queuing delay B (dependent on the current load of the routers) teamismission delay D
(time to transmit all bits of one packet). As itniet trivial to determine the One Way Delay
(OWD) in only one direction, mostly the Round TBelay (RTD) is specified. The RTD can
be determined by simply measuring the time betwsemding a packet and receiving the
corresponding answer. The OWD is usually not ateovisbut it varies according to a Laplace
distribution. This delay variation OWD is knownjdager on the application layer.

139

IADIS International Journal on WWW/Internet

The loss of single or even multiple packets canundmecause of overloaded routers or
defective hardware / software. The loss ratio d@ascithe amount of packets that get lost
during a communication relatively to the total ambaf packets. This parameter is specified
as One Way Loss Ratio (OWLR) or Round Trip LossidR4RTLR) dependent on the
reference. During the transmission packets carcaetipted, if some of the contained bits get
flipped. However, those failures are covered andked by lower layers and affect the IP
layer with a higher loss ratio.

Packet duplications can occur because of unnegessdransmissions or defective
hardware/software. In such cases a packet arnvies br even more often at the receiver. The
Duplication Ratio (DR) is the amount of duplicateackets relatively to the total amount of
packets.

If different packets of one communication can tdi&erent routes, it is possible that they
arrive at the receiver in another order as theyeveent. This effect is specified as the Packet
Reordering Ratio (PRR).

Especially in wireless connections further effedike permanent or short-time
disconnections can be observed. When users move thikly are connected to mobile cellular
networks handovers between the cells and betwéfematit technologies can occur.

3. REQUIREMENTS

When performing scalability tests of the video @afice systems of our industry partner
Citrix Online, we spotted some special emulatiomuieements for general testing of
distributed systems. The support of complex netwtokologies is essential to allow
emulation of networks at any complexity level. larmore, the emulator has to differentiate
between up and down links. It should also allowatyit configuration changes during the
runtime of a test. The essential parameters fongiwork emulation are data rate, delay and
loss. The other parameters and effects that a@ilded in the previous section should also be
emulated.

To achieve the necessary degree of realistic behavis important to use the original
software under test and not an abstract model.llizing is required to control the large
number of software under test instances duringrtegime to emulate application behavior as
well.

4. RELATED WORK

Much work has been done in the area of network atioul during the last two decades. The
aim of this section is to give a brief overviewttie state of the art of network emulation.

Emulation environments lik€lanetLab[Peterson et al, 2006DneLab[OneLab, 2012]
and EmuLab [White et al, 2002] are a federation of multipkestt networks of different
scientific institutions and companies. Usually ersbers can do experiments with these
networks after they participated in the projeciaolgling nodes to the test infrastructure. These
environments have been enhanced by network emul&tials as described in [Carbone and
Rizzo, 2001].

140

LARGE-SCALE TESTS OF DISTRIBUTED SYSTEMS WITH INTEGRAD EMULATION OF
ADVANCED NETWORK BEHAVIOR

In [Schwerdel et al, 2011] a network emulation tdot the test environment G-Lab
[Schwerdel et al, 2010] was developed. This todledaToMaTo allows the definition of
complex topologies and certain link characteristiggh a graphical editor. Emulation
environments fulfill most of the stated networkateld requirements for large-scale testing of
distributed systems (see Section 1). However, #ieynot applicable for this use case, because
they are not flexible enough in terms of dynamiarges during the runtime of an experiment.
Furthermore, the main focus of these environmestgerrforming experiments for network
development and not large-scale testing of disteithsystems. Therefore, there are no means
to control and emulate the application behavior.

When searching for other solutions to emulate netveehavior we found many hardware
based products of various manufacturers. Thesenaaedemulators are able to shape traffic
very precisely, but they do not support complexwoek topologies and have limitations
concerning dynamic changes during the test runrefbiee, we focused our search on freely
available software emulators due to their greatexilility and adaptability. The most
important emulators we found and examined are d&sliin the following.

NISTNet [Carson and Santay, 2003] is able to erauldt of the effects listed above.
However, NISTNet is not able to emulate networkologies. In addition it is not further
developed and its beta level code (according totfieial web site) prevents the application.

In contrast Netem/TC [Hemminger, 2005] was intragtlicas traffic shaper in most
common Linux distributions since version 2.6. Thewvded functionalities to modify
bandwidth, delay, loss and other effects based ambws connection parameters like IP
address or port number qualify Netem to work agtavark emulation node inside a network
emulation environment. Based on Netem the wide aedaork emulator WANem [Kalita and
Nambiar, 2011] was developed. It provides exterssilike an analyzer for measuring real
network links and an option to emulate disconnpgsnbiar and Kalita, 2011]. However, it is
not possible to use Netem or WANem for represerdimgnole network topology.

In FreeBSD 2.2.8 Dummynet [Carbone and Rizzo, 2(d&jame the standard traffic
shaping component of the ipfw firewall. Its basimcept called pipes is pretty handy to create
virtual network topologies. Although Dummynet islypable to emulate bandwidth, loss and
delay, there are many extensions based on thiwa@ft KauNet [Garcia et al, 2007] adds the
ability to configure bit errors and it introducesattern-based approach. By using time- or
data-driven patterns the precision and reprodutilof Dummynet was enhanced [Garcia et
al, 2008]. ModelNet [Vahdat et al, 2002] in contraisKauNet uses an unmodified version of
Dummynet to emulate huge topologies on a predefingdber of computers.

Recent work by [Nussbaum and Richard, 2009] shatlvatithe emulation quality of the
emulators Dummynet, NISTNet and Netem/TC is reasienalthough some emulators are
still facing problems in certain scenarios. Dumntyioe example still has problems with the
accurate emulation of high data rates.

This section showed that there are already somati@o$ that can emulate network
topologies and link characteristics as we requirdor large-scale testing of distributed
systems. But these solutions focus on network deveént experiments and therefore do not
provide any means to integrate the emulation ofriisvork behavior with the emulation of
the application behavior. To our knowledge ther@massystem combining the emulation of
network and application behavior in an integrateay wo facilitate testing large distributed
systems.

From all the mentioned network emulators, Dummymi¢t its extension KauNet seems to
be the best tool to emulate network topologiesngfsize and complexity. Therefore, we use it

141

IADIS International Journal on WWW/Internet

as a basis for our integrated emulation platfornrSSEE that is presented in the following
section.

5. THE NESSEE PLATFORM

NESSEE (Network Endpoint Server Scenario Emulamvironment) provides a generic
architecture for scalability tests of client/serbaised distributed systems including network
emulation. The general architecture and its mogioimant components are presented in the
following.

== - — i
. create & edit N~
NESSEE Editor * iest cases Test Case Central Log
Repository Repository
load test cases save logs
Server Test Systems

TestNode
Module

NESSEE Server
Software

Under Test

Client Test Systems

controls

T ¥~ controls

Test System gets log~_| Test System

configures
gets log

Software
Under Test

Server Software
Under Test

Software
Under Test

Software
Under Test

Degrader

degraded
(Network Emulation) ‘ :-:’

Figure 1. General architecture of the NESSEE platfo

5.1 General Architecture

As NESSEE is an emulation environment for typicdient/server-based systems, the
Software Under Test (SUT) can be the client software as well as theesesoftware. The
SUT is installed on various test systems that atelly virtual machines (VM), but physical
machines can also be used. Typically, multipleainses of the client SUT run on oG&ent
Test System. Server Test Systems usually contain only one instance of the servef SU

Both types of SUT (client and server software) camivate with each other. All the
communication is routed through thgegrader, as it is the standard gateway of all test
systems. The Degrader is responsible for the né&tworulation. The network conditions of
each SUT instance can be configured separatelyllmast? addresses and ports, which allows
the differentiation of multiple SUT instances oreanachine.

The central componeMiESSEE Server manages the test systems and coordinates the
SUT and the Degrader according to a certah case. The NESSEE Server also has a web
interface, which the testers can use to manage téwti systems, create and edit tests, control
running tests and to analyze finished tests.

The client SUT instances are controlled viiest Node M odule (TNM), which also runs
on each client test system as it follows an agestet approach. Besides controlling the
applications, the TNM agents help fetching logs stadistics.

142

LARGE-SCALE TESTS OF DISTRIBUTED SYSTEMS WITH INTEGRAD EMULATION OF
ADVANCED NETWORK BEHAVIOR

Additionally, the test cases contain JavaScripetasst scripts that are executed by the
NESSEE Server and TNM during the test. These tespts allow controlling the test
execution in a very flexible way. This enables émeulation of the SUT’s behavior, which we
found to be very important in addition to the entiola of network behavior. The SUT
instances are not informed directly about changietyvork conditions as this would also not
be done in reality.

The results of each test, its statistics and logsstored in the€€entral Log Repository.
The NESSEE Server retrieves the test cases fromeasteCase Repository. These test cases
are described in a generic, XML-basEekt Description Language (TDL, see Section 3.2).
The NESSEE Editor is a TDL authoring tool that enables the graphisatieling and detailed
specification of test scenario descriptions withimindependent application.

The main components of the NESSEE environmentdpli@ation and network emulation
are shown in Figure 1. In the following, the maspbrtant aspects of network emulation are
discussed in detail.

5.2 Test Description Language

The Test Description Language is an XML-based dertscription language that is used to
formalize test cases that can be executed by tI®SEE Server.

The design of the TDL follows a modular concept dnel modules are as independent
from each other as possible. This allows the reumskecombination of components into a test
case description that is executed on the test mgsie the end. ThéletworkTopology
module defines the different network parameter sei$ concrete network topologies. The
Behavior module allows the definition of actions that candsranged in complex flows. The
TestCaseDescription links to the other modules and arranges the eltsribat are defined
there into single test case representations.

In this work we focus on the network emulation dnerefore provide an example of the
NetworkTopology module. Here the tester can defiifeerent sets of network parameters
calledNet wor kCapabi | i ti es. Listing 1 provides an example of the capabiligfikition
including bandwidth (kbps), delay (ms) and its a&tion (ms), loss (percentage), reordering
(percentage), duplication (percentage) and a disxiion event every 24 hours. Every single
parameter can have a direction attribute that atd& whether it should be used for uplink,
downlink or both. To define the client-side netwddpology we implicitly use the XML
structure. The child elements oNat wor kNode (gateway, router) can be sub network nodes
and Net wor kEndpoi nt s (the actual user computer). This enables modetiatyvork
topologies of any complexity. Every network noded aandpoint can reference one of the
previously defined capability parameter sets by ids The server components of the
distributed systemsSér ver Cl ust er in Listing 1) are modeled to run Dat aCent er s
that are connected to the Internet via multiplennet service providers (ISP). EdcBP can
also have a special set of predefined network dhfed

143

IADIS International Journal on WWW/Internet

<NetworkCapabilities 1d="DSL">
<delay direction="both" variation="7"
distribution="laplace">12</delay>
<loss direction="up">0.1</loss>
<loss direction="down">0.09</loss>
<reordering direction="both">0.3</reordering>
<duplication direction="both">0.001l</duplication>
<disconnect start="24h" duration="5s" />
</NetworkCapabilities>
<NetworkCapabilities id="DSL6000" BasedOn="DSL">
<bandwidth direction="down">6000</bandwidth>
<bandwidth direction="up">1000</bandwidth>
</NetworkCapabilities>
<l .. ==
<ClientTopology:>
<NetworkNode id="DSLRouter" NetworkCapabilitiesId="DSL6000">
<NetworkEndpoint id="UserPC" />
<NetworkNode NetworkCapabilitiesId="WiFiRouter">
<NetworkEndpoint id="UserNotebook"
NetworkCapabilitiesTd="WiFiEndpoint"/>
</NetworkNode>
</NetworkNode>
</ClientTopology>
<ServerComponents>
<Datacenter id="datacenter_ europe">
<ISP id="isp0l1" NetworkCapabilitiesId="ISPCaps01"/>
<ISP id="isp02" NetworkCapabilitiesId="ISPCaps02"/>
<ServerCluster id="cluster01l" defaultISPId="isp0l1l"/>
</Datacenter>
</ServerComponents>

Listing 1. Example definition of network capabiis, a simple topology and one server component

5.3 Degrader

The network emulation component Degrader is redlias a dedicated machine due to
performance issues and it operates on the netvayr.l We used Dummynet as a basis
because it meets most of the important requiremanis because of its extensibility.
Dummynet is used for the emulation of the basiavndt parameters. Its extension KauNet
also allows us to emulate advanced network parameted effects. Due to our modular
design the testers can choose which one shoulddx Both approaches are presented in the
following.

144

LARGE-SCALE TESTS OF DISTRIBUTED SYSTEMS WITH INTEGRAD EMULATION OF
ADVANCED NETWORK BEHAVIOR

5.3.1 Emulation of the Basic Network Parameters

The NESSEE Server provides a module called Degr@datrol which binds the Degrader
machine to the server. After parsing the TDL NetwWapology module (see Listing 1) into a
NESSEE internal topology model, the creation of Bhenmynet configuration is done within
an own data structure call®inding Model. Figure 2 shows that this model has the same
structure as the NESSEE internal topology modglnttdes are bound to equivalent nodes of
the topology model. Two additional objects représgraDummynet pipe and aDummynet

rule are attached to each node. A Dummynet pipe repiesae channel with certain
characteristics. These characteristics are definad the network capabilities configured in
the test case description. A Dummynet rule bagicatrks like a firewall rule. It determines
which packets have to pass which pipes based @nldResses and port numbers of its source
and destination.

/Network Endpoiﬁt\
(UserPC)
Pipes: 16,17

‘/ Data Center A

4 |SP(isp01)> (ISP(ispoz)\

&Dipes: 50,51/ \Pipes: 60, 61

Video Cluster
(vidCluster01)

métwork Node
(DSLRouter)

/I\Ietwork Endpoiﬁt\ ,/Nétwork No&e\ Pipes: 14,15

(UserNotebook) 1—! (WiFiRouter)
Pipes: 10,11

Pipes: 12,13

Figure 2. The Binding Model for the topology defiait in Listing 1

Before starting a test case the Binding Model wathits nodes, pipes and rules is
converted into the actual configuration commandthefDummynet emulator which are then
sent to the Degrader. Figure 3 illustrates the jghyslata flow from the client to the server
test systems via the Degrader. All incoming trafficforwarded to the corresponding pipe
hierarchy.

Client test systems Degrader Server test
systems

Client topology emulation Server topology
emulation

Test system 1 Ipfw filter Up link Test system 1

/Network Endpoint : .
IS sonomboy) T%| | Dummynet *—ﬂ Pipe 10 H Pipe 12 H Pipe 14 P Pioe 30 Video Cluster
- Rule A (vidCluster01)

P (SR e — Pipe 60
4 ISP 2]

B o 1 downilink i Infw filter
/'Network Endpoint -« } Pipe 11 H Pipe 13 H Pipe 15 }¢ Pipe 51 & [Dummynet |
(UserpC) j : ISP 1) ey
i YT) S—— Pipe 61
(1sP 2)

Figure 3. The physical data flow from the cliergtteystems to the server test systems (up linkjack
(down link) as well as its emulation inside the Extpr (example corresponds to Figure 2)

Test system 2

Both, Dummynet pipes and Dummynet rules of the Bipdviodel use an event-based
approach to react on dynamic changes of the togofgdel, for example initiated by the
tester or the test execution engine. This enabkes$apology model equivalent structure of the

145

IADIS International Journal on WWW/Internet

Binding Model to easily realize dynamic changesirduruntime of a test. Such changes are
handled by the data structure and sent to the [degeamost in real-time.

5.3.2 Emulation of the Advanced Networ k Parameter s and Effects

A major drawback of Dummynet is the lack of supdortthe advanced network parameters
(delay jitter, packet reordering, packet duplicatamd packet corruption).

We therefore investigated and integrated KauNettine NESSEE Server. Its basic pattern
concept allows the user to manipulate networkitrafither data-driven or time-driven. There
are predefined pattern types for a precise recordigpn of the data rate and the packet delay.
Another pattern type is used to introduce a moeeipe mechanism for packet losses. Finally,
it is possible to reorder packets by either theickddd reordering pattern or by appropriate
configurations of the delay change pattern.

Since there is no option within KauNet which allodigplicating packets, we added this
feature on our own. We added a new duplicatiorepattype which behaves exactly like the
already implemented ones. This means, one can elégtiveen data-driven or time-driven
mode. During our tests we noticed that it is nosgile to remove patterns from the
emulator’s configuration once they were added. Te&ure was added in our customized
version as well.

The NESSEE Server was extended to fully supporiNéaumeaning the creation of pattern
files and the proper configuration of pipes witlegh patterns. We decided to change the
mechanism used to introduce packet loss. Dummyagpsoach is based on random numbers
and is not highly precise. The pattern based apgpraacreased the reproducibility of the
experiments and the accuracy especially for shéirter periods.

One effect which cannot be configured by KauNetlitss the delay jitter. A special delay
change pattern is created by the NESSEE Servemttaée this effect anyway. Therefore, a
random number generator is used which can creéteséor different distribution functions.

It generates delay times for every single packsttjpm of a pattern file. Currently we support
uniform, normal and Laplace distribution where tast one seems to be the most common
form. [Zheng et al, 2001]

6. EVALUATION

In this section we investigate on the accuracyhef metwork emulation and show that the
Degrader can handle the emulation of complex ndtwpehavior. The accuracy and
performance of the underlying Dummynet itself wasleated before and found to be
reasonable [Nussbaum and Richard, 2009]. Therefegefocus on the evaluation of the way
our NESSEE Degrader uses Dummynet to emulate camplsvork topologies.

To validate that the Degrader really emulates tbefigured network parameters we
determine the deviation of configured and actuaiBasured values. Measuring delay is done
with the pingd tool. Bandwidth and loss are determined with ipeFhe measured values are
rechecked with the help of the statistics moduléhef Citrix Online video server, which also

! http://linux.die.net/man/8/ping
2 http://sourceforge.net/projectsfiperf/

146

LARGE-SCALE TESTS OF DISTRIBUTED SYSTEMS WITH INTEGRAD EMULATION OF
ADVANCED NETWORK BEHAVIOR

collects information about bandwidth, loss and geiithe conference attendees. All tests are
done with video conferences of ten minutes length.

To determine the emulation accuracy of the parammételependently from each other we
defined various example scenarios in which eittzgrdwidth, loss or delay is specified. In our
measurements the maximum deviation of delay is m8.3+0.2%) and the maximum
deviation of loss is £#0.3%. To measure the bandwaltcuracy we had to create a test case
without any bandwidth sharing between the nodes.adléeved an accuracy of £3.5% of the
configured bandwidth. We can observe that the amofirthe configured values and the
measured deviation correlate. This correlation &lasady been investigated by [Nussbaum
and Richards, 2009].

C Video Cluster 1) L Video Cluster 2)

Data Center 1

ISP 1
50.000 kbps, 3ms, 0%

ISP 2
20.000 kbps, 3ms, 0%

A
| 1 |
Network Node Network Node Network Node
100.000 kbps, 6.000/1.000 kbps, unlimited, Oms, 0%
15ms, 0% 50ms, 0% A
A + Network Node
li Network Node [17.000/1450 kbps,
54.000 kbps, 100ms, 0%
Network Node Network Node 3ms, 0.001% *
10.000 kbps, 35ms, 1% 10.000 kbps, 1ms, 0% e
A Network Endpoint 8
Network Endpoint 1 Network Endpoint 5 Network Endpoint 7 iOGC?n% 1315;00/kbps,
10.000 kbps, 1ms, 0% 10.000 kbps, 1ms, 0% 54.000 kbps, Oms, 0% Al
Network Endpoint 2 Network Endpoint 6 Network Node
10.000 kbps, 1ms, 0% 10.000 kbps, 1ms, 0% 71384 kbps, 100ms, 0%
Network Endpoint 3
Network Nod. .
10.000 kbps, 1ms, 0% ey (;ggrkbp: € | ¢—Network Endpoint 4 Network Endpoint 9
3ms, 0.001% 11.000 kbps, Oms, 0% 3.600/1450 kbps,
100ms, 0.5%

Figure 4. Network topology of the complex test. Toafigured network capabilities are bandwidth,
delay and loss rate.

In real scenarios all parameters are configuraetdeasame time. Therefore we analyzed the
accuracy of all combined parameters in a more cemgkenario. The topology of this
scenario is illustrated in Figure 4. Nine Netwonkdpoints (NE), running the client SUT, can
be found in this test. All of them communicate withe server cluster in a data center, which
is connected to the Internet via an ISP with priegef network capabilities (bandwidth, delay,
loss rate). The Network Endpoints are located metavork topology consisting of routers and
gateways that are represented by Network Nodesh®one hand, the expected result of this
test is to see that bandwidth has to be sharedxample between Network Endpoints 1, 2
and 3. On the other hand we expect the differetwaord& capabilities to be combined. That
means the delays of the single nodes should bedadlue resulting bandwidth should be the
minimum of the network path and the overall los® @QWLR,,is determined according to
Equation (1), where is the length of the network path a@¥LR are the loss rates of the
nodes.

147

IADIS International Journal on WWW/Internet

OW LRy =1 — (H (1— ()I’I-*’LR,-)) (1)

=1

Figure 5 shows the accuracy in the combined meamnts. The loss rate is still emulated
very accurately (+0.1%), but the deviation of deffeas a maximum value of about 4ms. This
is caused by the more complex network topologyhaspiackets have to pass multiple pipes.
Due to Dummynet's packet release mechanisms whahrelease packets slightly too early
or slightly too late, the delay deviation may varpund the configured value in positive and
negative direction.

O A delay [ms] OA loss [%]
1 0,1
o5 1] []] 0,05
0 © © © =) o on [o [~ 0
I I I < ¥ =Oo S <
05 Q 192) 0 IS o oo = @ -0.05
) © © © S o =D S ~)
- <, < o < < S S
g =] 8 o g o @ o © o u‘? o =) (=) o -0,1 2
158 B H B @ 015 g
g 2 ' 02 @
° [=]
o 25 -0,25 —
b <
3 -0,3
N R
35 '5 2 -0,35
-4 kil - -0,4
4,5 -0,45

NE1 NE2 NE3 NE4 NE5 NE6 NE7 NE8 NE9

Figure 5. The deviation of configured and measuieddy and loss values for each Network Endpoint
(NE) of the topology shown in Figure 4

Regarding bandwidth sharing we can state that teasorements reflect the expected
behavior. The bandwidth sum of NE1, NE2 and NE®elsas NE4, NE5 and NE6 are nearly
the same as the limitations of 10,000 kbps of theesponding parent Network Nodes. The
overall bandwidth of all Network Endpoints also tse¢he ISP2 bandwidth limitation of
20,000 kbps.

To evaluate our own KauNet modification that allopecket duplication we used the
pi ng command to send and receive ICMP ECHO packetsotin possible modes, time- and
data-driven, we configured a one way duplicatice & 40% and sent 100,000 packets. The
results shown in Table 1 can be considered asa@yrate. In data-driven mode exactly one
duplicated packet seems to be missing. This idti@icate of the last packet that is created
correctly by the Degrader, but it is not recognibgdthepi ng command as it already ends
when the first response of the last request comeSa the measured values exactly meet the
expectations. In time-driven mode slightly more kmds get duplicated. The reason for this is
that the packets reach the Degrader in differemie tintervals. Therefore, it cannot be
guaranteed that the packets hit the exact poirtimmin which the duplication is performed.

148

LARGE-SCALE TESTS OF DISTRIBUTED SYSTEMS WITH INTEGRAD EMULATION OF
ADVANCED NETWORK BEHAVIOR

Table 1. Measurement results for the evaluatiomagket duplication

Time-driven mode Data-driven mode
Expected Measured Expected Measured
Sent requests 100,000 100,000 100,000 100,000
Received responses 140,00D 140,189 140,000 139,099
Duplicate ratio 40% 40,189% 40% 39,999%

The duplication pattern was also evaluated insittgpalogy. Whem cascaded nodes are
configured with a certain duplication raBR, the resulting duplication ratBRs,, can be
determined using Equation (2).

n

DRSU?:‘L = H (1 + DR:) =1 (2)
=1

The deviation of measured and expedd#l,, values forn=3 is £0,25%. Similar values
can be observed for the resulting loss r&%%LR,, if the pattern-based approach is used.
For this reason the NESSEE Degrader emulates tdlrpesupported parameters with KauNet
and the remaining ones with Dummynet.

As we pointed out before the delay jitter is emediahccording to a Laplace distribution.
Table 2 shows the measured and expected delaysv@hiaimum, maximum and mean) in a
pi ng measurement with 20.000 packets and three cascae®ebrk nodes. The mean
measured values are slightly above the expectatksabecause of the delay that also exists
without emulation. The expected minimum and maxinuatues are not always hit because of
the minimal probability due to the Laplace disttiba.

Table 2. Measurement results for the evaluatiometdy jitter

Upstream Downstream
Expected| Measured Expected Measured
Delay Min 28 32,094 28 31,849
variance Mean 48 48,911 48 48,926
AOWD [ms] | Max 68 65,500 68 66,054

The reordering ratio is measured with iperf usinBRJpackets. If reorderin@RR is
configured forn nodes inside a topology, packets can get reordarétiple times, which can
result in a correct final order. Therefore the Hasg reordering rateRR,,, cannot be
determined exactly, but we can only calculate apeupimit. This is shown in Equation (3).
The deviation of measured and expected reordeaitelRiR,mis +0.13%.

n

PRRom <1— (][(1 - PRR;) (3)
=1

149

IADIS International Journal on WWW/Internet

7. CONCLUSION AND FUTURE WORK

The main contribution of our work is an approach thee emulation of distributed systems
with multi-level network topologies and fine-grathenetwork parameters. To realize our
approach we proposed an architecture for networldlaion in large-scale tests, a generic
Test Description Language and the NESSEE Degrdaaar emulates network characteristics
and behavior. The evaluation showed the implememtatgood accuracy and the feasibility
of emulating complex scenarios.

Our future work covers an extended comparison ddtieg network emulation solutions
(software and hardware) not only based on featimgsalso regarding their performance and
accuracy. We further want to investigate on mettiod$etermine practice-oriented values for
the emulation of typical scenarios and network ast¢echnologies. The presented architecture
in Section 5 uses only one Degrader for network latimn. In our ongoing work we are
designing and implementing architecture extensimmslarger scenarios in which multiple
Degraders will be necessary.

ACKNOWLEDGEMENT

This work results from the NESSEE project that basn financed by Citrix Systems, Online
Services Division. The authors would like to thah& project members for their contributing
work.

REFERENCES

Carbone, M. and Rizzo, L., 2010. Dummynet Revisit®8 M SIGCOMM Computer Communication
Review Vol. 40, No. 2, pp. 12-20.

Carbone, M. and Rizzo, L., 2011. An emulation toolRtanetLabComputer Communication¥ol. 34,
No. 16, pp. 1980-1990.

Carson, M. and Santay, D., 2003. NIST Net: a Linasdad network emulation tocACM SIGCOMM
Computer Communication RevieMol. 33, No. 3, pp. 111-126.

Garcia, J. et al, 2007. KauNet: Improving Reprobility for Wireless and Mobile Research.
Proceedings of the 1st international workshop onte®gsevaluation for mobile platform&lew
York, NY, USA, pp. 21-26.

Garcia, J. et al, 2008. KauNet: A Versatile andxible Emulation SystemProceedings of the 5th
Swedish National Computer Networking Worksh¢griskrona, Sweden.

Hemminger, S., 2005. Network Emulation with NetHimux.conf.ay Canberra, Australia.

Kalita, H. and Nambiar, M., 2011. Designing WANemA: Wide Area Network emulator tool.
Proceedings of the Third International Conferenae Gommunication Systems and Networks
(COMSNETS)Bangalore, India, pp. 1-4.

Nambiar, M. and Kalita, H., 2011. Design of a ndgoathm for WAN disconnection emulation and
implementing it in WANemProceedings of the International Conference & Whdfson Emerging
Trends in TechnologWNew York, NY, USA, pp. 376-381.

Nussbaum, L. and Richard, O., 2009. A Comparativelystii Network Link EmulatorsProceedings of
the 2009 Spring Simulation Multiconferen&an Diego, CA, USA, pp. 85:1-85:8.

150

LARGE-SCALE TESTS OF DISTRIBUTED SYSTEMS WITH INTEGRAD EMULATION OF
ADVANCED NETWORK BEHAVIOR

Onelab, 2012. Developing testbeds for the Futuermet. Online at: http://www.onelab.eu/

Peterson, L. et al, 2006. Experiences building &laab. Proceedings of the 7th symposium on
Operating systems design and implementa&erkeley, CA, USA, pp. 351-366.

Prasad, R. et al, 2003. Bandwidth estimation: metnmeasurement techniques, and tools. IEEE
Network Magazine, vol.17, no.6, pp. 27-35.

Schwerdel, D. et al, 2010. German-Lab ExperimeRgility. Proceedings of th8rd Future Internet
SymposiumBerlin, Germany.

Schwerdel, D. et al, 2011. ToMaTo - a network eipentation tool. Proceedings of the 7th
International ICST Conference on Testbeds and Relsdafrastructures for the Development of
Networks and Communities (TridentCom 2Q0BbHanghai, China, pp. 1-10.

Vahdat, A. et al, 2002. Scalability and Accuracwiharge-Scale Network Emulatd#troceedings of the
5th symposium on Operating systems design and ringpiation New York, NY, USA, pp. 271-
284.

White, B. et al, 2002. An integrated experimentaltiemment for distributed systems and networks.
Proceedings of the 5th symposium on Operating mygstiesign and implementatiddew York, NY,
USA, pp. 255-270.

Zheng, L. et al, 2001. Characteristics of networlagl@nd delay jitter and itsffect on voice over IP
(VolP). Proceedings of ICC 2001. IEEE International ConferenoeCommunicationsHelsinki,
Finland, pp. 122-126.

151

