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Abstract—In pervasive computing scenarios, user sessions
often involve multiple devices like smartphones, tablets, large
public displays and smart objects. In such settings, session
mobility allows users to split sessions across several devices,
to dynamically include or remove devices from sessions and
to handover sessions from one device to another. While there
are some good SIP-based solutions for session mobility in
ubiquitous audio/video scenarios, there is yet no working
approach for collaborative apps with event-like communication
patterns. We describe and evaluate a solution for session
mobility based on XMPP offering discovery of personal de-
vices, discovery and authorization of public devices, and ad-
hoc discovery of smart objects. All this can be done with
little or no modification of existing XMPP technology, thus
creating a standard-based toolset for session mobility. This
eases development of collaborative apps and finally allows users
to seamlessly continue their task in pervasive settings.
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I. INTRODUCTION

In pervasive computing scenarios, users can profit from
the ability to dynamically involve various types of devices
like smartphones, tablets and large public displays to fulfill
their tasks. This user- and task-centric perspective calls for
rather device-transparent applications, or so-called pervasive
apps.

A prominent use case for pervasive apps are collaborative
location based games where users may catch up certain
goodies at their current location. Users may seamlessly
interact with a public display in front of or inside a building
using their smartphones while others are taking part of the
game using a Web application on their tablets. Another
scenario is the use of a Smart TV to display the pile of
discards in a collaborative card game.

As can be seen from these and other examples, col-
laborative pervasive apps call for a new level of session
mobility. Session data has to be transferred instantly from
one device to another. Multiple devices may be used in a
split session in parallel (especially with public displays). All
this should work with one-touch configuration for the user
as the smartphone is the primary and coordinating device
for such apps.

There are already quite good solutions for mobility of
audio/video sessions using the Session Initiation Protocol
(SIP) [1]. But these methods were designed for data streams
with continuous characteristics. In contrast, the commu-
nication patterns of collaborative pervasive apps follow a
fundamentally different approach as they are rather event-
based with a large number of small messages (location
updates, shared object modifications, etc.).

As the eXtensible Messaging and Presence Protocol
(XMPP) is explicitly designed for exchanging short XML-
structured messages in real-time on a global scale, it appears
to be a quite good candidate to realize session mobility
for such collaborative apps. We suggest a concept based on
XMPP core technology and current community extensions
that provides unified ways to identify other devices, move
sessions across them and adapt communication flows.

Our main contribution is thus developer support for ses-
sion mobility based on XMPP. This includes methods for
discovery of personal devices, actual transfer of sessions,
split sessions with public displays and ad-hoc discovery of
smart objects. The main focus is on collaborative pervasive
apps, but other pervasive apps without collaborative func-
tionality but similar communication patterns may profit from
these findings, too. While we implemented and evaluated
our approach inside the Mobilis framework, it could be
easily applied to any existing or newly developed pervasive
apps. Our approach only requires an XMPP backend and
appropriate XMPP client libraries. Both are freely available
for heterogeneous platforms including smart objects.

II. REQUIREMENTS AND RELATED WORK

Session mobility is a rather overloaded term defining such
diverse things as operating system migration, IP mobility
protocols, multimedia session mobility, or application mi-
gration. Our work on collaboration session mobility is most
closely related to multimedia session mobility as defined in
[2]. We share the notion of a permanent connection or bi-
directional data stream between different devices that has
to be transferred to a new device. The difference lies in
the communication patterns which call for slightly different
requirements.



A. Requirements

[2] defines Device Discovery and the actual session mo-
bility as the two essentials of multimedia session mobility.
Session mobility is further distinguished in moving a session
to a different device (Session Transfer) and running a session
split over multiple devices (Session Split).

We rely on these three basic requirements with some mod-
ifications. Firstly, while for audio and video communication
it is often sufficient to tear down the communication link and
to reestablish it on another device, collaborative apps have
to transfer their shared application state. Hereby, previously
exchanged artifacts like messages, shared objects or files
need to be serialized.

Secondly, we add a fourth requirement which originates in
the communication patterns of collaborative apps. If run in a
split session, a collaborative app may show different aspects
of the collaboration workspace. E.g., the collaborative game
mentioned in the introduction may show the map on a public
display while showing the member list and chat on the
mobile device. Such split scenarios in server based settings
call for packet filtering to only route the messages actually
needed to the respective device.

B. Session Mobility with SIP

As already mentioned above, SIP inherently offers a
session transfer procedure to migrate an active session from
one device to another. After having established an RTP
session between two devices, one of these endpoints may
send a REFER message to its communication partner that
contains a new SIP URI. In return, the partner may then
trigger an INVITE to the new endpoint to initiate a new
session between them. Finally, the connection to the original
client is closed.

Besides the built-in session mobility features, further SIP
extensions have been presented for more advanced scenarios.
CINEMA [1], Mobility Header [3], and Multi-Device Sys-
tem [4] are systems and approaches dealing with SIP-based
split sessions across multiple devices. Session split can only
be provided by extending SIP with proprietary client and
server extensions or using a proxy for all communication.
The latest result of these efforts is the informational RFC
5631 [2], defining the current state of the art in SIP-
based Session Mobility including split sessions. But device
discovery is outside the scope of this specification.

C. Single User Application Session Migration

In contrast to pure multimedia session transfer solutions,
TWIST [5] is an architecture that inserts a middleware
layer into conventional client/server systems. The main goal
of this layer is to enrich existing software with a session
transfer technology. Sessions can only be transferred as a
whole including all application data.

Deep Shot [6] is a framework for capturing a user’s work
state on a desktop client to move and continue it on a
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SESSION MOBILITY FEATURES OF RELATED WORKS
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XMPP –– –– X X
SIP –– X –– ––
CINEMA [1] X X –– ––
Mobility-Header [3], Multi-Device
System [4], RFC 5631 [2]

–– X X ––

TWIST [5], Deep Shot [6] X X –– ––
Session Mobility with XMPP X X X X

mobile device. To initiate the session transfer, a picture of
the display content has to be shot with the target device. The
framework then analyses the application on the screenshot
that in turn is asked to bundle the current state to a URI that
gets sent to the target device. The system’s message channel
is based on XMPP; all information including the screenshot
is transferred in-stream.

D. Discussion

Table I shows the requirements compared to what ex-
isting approaches already deliver. XMPP supports session
split natively as users may login to an XMPP server
with different resources like user1@xmpp.org/iphone and
user1@xmpp.org/pc simultaneously. XMPP servers can be
configured to send messages to both resources if the Bare
JID user1@xmpp.org is used. Packet filtering is supported
by extension XEP-0273 [7].

SIP on the other hand works quite good for session
transfer (with the REFER method discussed above), but
other functionality such as device discovery and session
split has to be added by proprietary extensions like in the
SIP-based works discussed above. Approaches for single
user application session migration offer ideas for device
discovery and session transfer but fail on session split and
packet filtering.

As can be seen in the last row of Table I, our ap-
proach combines the features of existing session mobility ap-
proaches with the discovery and transfer features of session
migration approaches. As XMPP is yet missing appropriate
device discovery and session transfer functionality, we focus
on these two requirements in Section IV and Section V. The
overall architecture fulfilling all the requirements mentioned
above is depicted in the following section.

III. SESSION MOBILITY ARCHITECTURE

The architecture of the session mobility system is por-
trayed in Figure 1. We support native clients like Android
or desktop Java clients, HTTP-based clients like the Kiosk



Figure 1. Session Mobility Architecture using XMPP

client (public display), and ad-hoc clients represented as
the smart light switch. Native clients directly connect to an
XMPP server and communicate to each other via XMPP.
This works across network borders and even on a global
scale by XMPP inter-server communication.

HTTP clients use a BOSH proxy for communication.
BOSH stands for Bidirectional Streams over Synchronous
HTTP and is standardized as XEP-0124 [8]. Ad-hoc clients
advertise presence via DNS service discovery. Clients wish-
ing to connect to such a client need to be in the same subnet.

Discovering devices for session transfer and split sessions
can be done between all different device types. Based on the
affiliation of devices to users and networks we consider three
modes of device discovery which will be discussed in the
following.

IV. DEVICE DISCOVERY

The session mobility system offers the following meth-
ods for device discovery: Personal device discovery for
transferring a session to another device of the same user,
kiosk mode device discovery for moving a session to a
publicly available device and ad-hoc mode device discovery
for seamlessly integrating devices not directly connected to
an XMPP server.

A. Personal Device Discovery

As stated above, the XMPP standard inherently provides
the possibility to login on multiple endpoints with identical
user credentials. For discovering personal devices, we take
advantage of this concept as a user may connect all his

devices to the XMPP server with a single username/pass-
word combination. Built-in functionality of XMPP allows
to query a list of parallel resources to let the user select a
target device. Alternatively, a QR code may be displayed
on the originating endpoint that encodes its JID. A target
device may then scan the code to initiate the session transfer
negotiation. A similar scanning approach is possible with an
NFC tag that reveals the endpoint’s address. Generally, JID
advertising means are limited by device capabilities.

B. Kiosk Mode Device Discovery

Kiosk mode device discovery enables public displays to
be used for private user-based sessions. Kiosk devices are
standalone devices available for public use, such as terminal
computers in hotel lobbies and presentation hardware in
meeting rooms. In a basic scenario, they could provide a
login interface to enable users to enter their user credentials
to start a session.

In our approach, we use a secure session transfer proce-
dure that does not require passwords to be entered on kiosk
devices. Figure 2 shows the authentication flow. A daemon
on the Kiosk Client is connected to an XMPP server over a
device-specific connection. Its JID may be advertised by a
QR code or NFC tag as stated above, or a service repository
similar to the location-based database described in [1].

When a user wants to take over the session, the Kiosk
initiates a second XMPP connection with the requesting
user’s JID. In the following, the server’s SASL challenge is
forwarded by the Kiosk’s inherent connection and answered
on the user device. After the second server link has been



Figure 2. Kiosk mode authentification flow

successfully established, the device may keep the daemon’s
connection open or temporarily disconnect it while the user-
specific session is running.

We have successfully implemented and tested the solu-
tion above in our proof-of-concept. In the meantime, as
XMPP is a living standard, further scenarios realizing secure
authorization for third-party clients have been presented.
Google Talk and Microsoft Live Messenger now support
XMPP authorization using OAuth2 [9] although an official
XMPP extension protocol is not yet existing. The OAuth2
based login procedure is executed on the requesting device,
typically by showing a web frontend with login screen and
authorization checks. This solution is compatible with our
approach; in our system the resulting token would be sent
to the Kiosk Client to use it for the user-specific connection
negotiation.

C. Ad-hoc Mode Device Discovery

Finally, the ad-hoc mode device discovery enables devices
to be integrated into an application session that are not
connected to an XMPP server but advertise their presence on
a local network instead. The ”Serverless Messaging” exten-
sion of XMPP (XEP-0174) is a standard allowing endpoints
to communicate with each other without an intermediate
server [10]. The concept is fundamentally based on the
specifications of multicast DNS and DNS service discovery
for performing autoconfigure queries in a local subnetwork.

To listen to entities supporting ad-hoc device discovery,
their local mDNS daemon has to publish a DNS record
to the multicast address 224.0.0.251 (or FF02::FB in IPv6
networks resp.). Furthermore, a DNS TXT record as in
Listing 1 is published including a key-value based list of
strings representing presence information and connection
information such as the port the device is listening on.

Listing 1. A Multicast DNS TXT Record
j i d = l igh t sensor@xmpp . org
p o r t . p2p j =5562
s t a t u s = a v a i l

An entity that wishes to connect to another entity in the
local network is now able to initiate a direct TCP connection.
Subsequently, similar to a standard XMPP connection to a
server two XML streams are opened, one in each direction.

V. SESSION TRANSFER

The session transfer takes place after a device discovery
and establishment of a communication link between two
devices; regardless of whether the packets are routed via an
XMPP server or sent over a direct peer-to-peer connection.

A. Capturing Application State

As opposed to stream-based audio/video communication
typically managed by SIP, event-based pervasive apps can
have various types of application state. Instant messaging
based applications require most of the previously received
and sent packets, therefore a packet logging and replay
mechanism is a possible means for collecting the current
application state. This catch-all approach benefits of the
packet-based character of XMPP. Other applications may
only depend on the current snapshot; in the case of document
sharing apps the latter is in fact the product of all delta
packets before. Generally we offer a hybrid approach that
lets the application developer decide what data the new
device should be equipped with.

B. Transferring a Session

For transferring the session to another device, the appli-
cation state has to be serialized. The actual session transfer
is preceded by a transfer method negotiation that consists of
an offer/answer model similar to SDP in SIP and the SASL
authentication during the XMPP login phase. Currently,
we offer the mechanisms ’in-band XML’, ’file-based’ and
’compressed bundle’. With in-band XMPP the application
state is encoded as XML and transferred via a plain IQ
message. The file-based mechanism uses XMPP extensions
for file transfer to deliver the application state data files out-
of-band via a direct TCP connection. The last mechanism
is comparable to the file-based transfer except that all files
are bundled in a single compressed ZIP file. As certain
capabilities may not be feasible for every XMPP client, the
app decides which mechanism to use.

C. Packet Filtering for Split Sessions

For efficient communication when certain parts of the
application are running on another device, we propose
to also split the communication at a central point when
messages are routed over an XMPP server. This may be
applicable for location-based instant messaging apps, where
the chat history is shown on one device while another display
shows the location of the user’s contacts. Packet Filtering
enables the communication endpoints to specify a list of
packet filters that is sent to the server.



Figure 3. Discovering a Smart TV from a Mobile Client

The ”Stanza Interception and Filtering Technology”
(XEP-0273) [7] gives the XMPP endpoint fine-grained con-
trol over the delivery of inbound packets. The filtering
is performed on the server upon rules that the client has
to supply in advance. Packet-based filters in XMPP are
filters applying to either IQ, Message or Presence packets
or a combination of these. On the other hand, namespace-
based filters leverage that all XMPP traffic is equipped
with a namespace that identifies packets based on their
functionality.

VI. EVALUATION

To evaluate the session mobility approach, we present two
show cases we implemented, one for kiosk mode and one
for ad-hoc mode. The kiosk mode show case demonstrates
all four requirements mentioned in Section II, while device
discovery is solely based on a QR code. The ad-hoc mode
prototype additionally shows the feasibility of ad-hoc device
discovery.

Both show cases were implemented inside the Mobilis
framework [11], which already offered an XMPP-based
infrastructure to build collaborative Android and HTML5
apps. But as mentioned above, the approach can also easily
be implemented without Mobilis using any combination of
XMPP server and client libraries.

A. Kiosk Mode Evaluation

To demonstrate the Kiosk Client, we extended our existing
urban location-based game XHunt [12] with a control system
that shows the current position of all players on a map. The
mobile client running on Android was extended with the
possibility to invite public displays to the game that present
the location of all players. The functionality is available as
soon as an active game session was started.

The Kiosk Client itself is implemented as an HTML5
application running in state of the art desktop and mobile

Figure 4. Successful Transfer from a Mobile Client

browsers. We employ Strophe.js as XMPP library. In con-
junction with jQuery it offers convenient methods to build
and send custom XMPP packets.

The web app is connected to the XMPP server over a
dedicated device-specific login. During standby mode, the
webpage shows a QR code that encodes its JID. After the
mobile device performed the scanning and decoding of the
bar code as shown in Figure 3, an IQ message is sent to
the XHunt server application that in turn invites the Kiosk
Client to the session.

HTML5 offers maximum portability to possible platforms
for public displays. We implemented an app for the Samsung
Smart TV platform (see Figure 3) which simply opens an
HTML5 viewer capable of the discovery and game logic
through JavaScript. Figure 4 shows the completed session
transfer.

B. Ad-hoc Mode Evaluation

The ad-hoc stack for serverless XMPP communication
was developed with the support of the jmDNS library. Our
prototype includes a simple solution for both an ad-hoc
client and server embedded into an Android application
bundle. As described above, the server publishes a multicast
DNS record on the local link. The client on the other
side maintains a multicast daemon that listens to published
records. We also provide a contact list with the IP addresses
and ports of available ad-hoc devices.

The prototype application built upon the ad-hoc stack
simulates a small lighting system on Android devices. It
connects to all devices that publish an mDNS TXT presence
record on the local network. An IQ request/reply interface
allows to set the background color of the view.

In our trials we have discovered that the prototype runs
very well in small home networks but fails in scenarios
like a campus-wide wifi network. This resembles Apple’s
problems with multicast DNS in larger university networks
that have recently lead to an Internet-Draft at the IETF [13].



C. Discussion

The two show cases demonstrate the feasibility of XMPP-
based session mobility, especially considering the four main
requirements defined in Section II. The two missing points
currently not yet fully integrated in XMPP were mechanisms
for device discovery and session transfer.

Based on our experiments, device discovery based on QR
codes seems to be the most intuitive and reliable mechanism
from the user’s point of view. QR codes shown on notebook
displays or even a TV were recognized by mid-prized
Android smartphones instantly without any errors. Within
a second, the public display joined the session and the user
was able to use the larger display to continue the game.

It even outperformed native discovery of personal devices
based on XMPP service discovery. It was easier and faster
for users to scan the QR code than to select the personal
device based on XMPP service discovery. Ad-hoc mode
discovery on the other hand takes a couple of seconds
to proceed and as mentioned above does not work in all
networks. Thus, we recommend ad-hoc mode discovery only
as a fallback method in case QR code discovery is not
available.

Besides the discovery aspect, we also did some initial
experiments on state transfer with a chat client. On session
transfer, chat history was sent to the new device and the user
could instantly continue his session. But as this functionality
is rather application-specific, we did not further evaluate it.

VII. CONCLUSION

We presented an architecture for session mobility of
pervasive apps between mobile devices, stationary kiosk
devices and ad-hoc smart objects. The system is built on
XMPP and a subset of its extension protocols.

The main contributions of this work include developer
support with mechanisms for device discovery and session
transfer. Though solutions for SIP-based session transfer
exist, they mainly allow for the transfer of audio/video
streams and lack support for event-based interaction and data
like message and file exchange.

As part of future work, we plan to fully demonstrate
interoperability with the internet of things using real sensor
and actor devices based on the lightweight XMPP implemen-
tation presented in [14]. Integrating ad-hoc with server based
communication offers further opportunities for a detailed
evaluation of the system.

Further work needs to be done on the problem of state
transfer. To reach an application-generic solution, state trans-
fer could be handled similar to late join or temporary
connection failure events. If pervasive apps are designed
to exchange application state on a publish-subscribe basis
rather than a push-based protocol, they are able to easily
transfer application state in session mobility situations.
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