
Hosting and Discovery of Distributed Mobile Services in an XMPP Cloud

Philipp Grubitzsch and Daniel Schuster
Faculty of Computer Science

TU Dresden
Dresden, Germany

{philipp.grubitzsch,daniel.schuster}@tu-dresden.de

Abstract—While originating as an instant messaging in-
frastructure, the eXtensible Messaging and Presence Protocol
(XMPP) has its applications as a lightweight middleware for
real-time event distribution, e.g. for mobile computing or the
Internet of Things. Services based on XMPP are traditionally
realized as server components which does not allow for dis-
tributed mobile services. We present an alternative approach
for distributed hosting of XMPP services. Service hosting
nodes may be added and removed to the overall system at
any time. The solution only uses standardized XMPP features
and extensions like roster groups, entity capabilities, and in-
band registration. An evaluation shows how concrete service
instances can be efficiently distributed on different XMPP-
enabled cloud servers.

Keywords-XMPP, mobile services, hosting, cloud, roster,
security

I. INTRODUCTION

Modern mobile applications and applications in the Inter-
net of Things are often realized as a compound of different
native apps for smartphones and tablets (Android, iOS),
smart object software (e.g. running on Contiki), HTML5-
based Web UIs as well as mobile services running in the
cloud.

Developing such application compounds is a challenge
regarding the protocol development and testing, different UI
techniques on different platforms, heterogeneity of device
and network capabilities, as well as discovery and hosting
of the services. In this paper we focus on the last one of
the mentioned challenges trying to support developers in
building mobile services for mobile application compounds.

We were experiencing the problems mentioned above by
ourselves when developing collaborative mobile applications
with native clients on different platforms requiring real-time
communication between the devices and the service as well
as directly between the devices. Examples are a location-
based group finder application, a location-based multi-player
game to explore the public transport of a city, a collaborative
robot control application as well as an application for
connecting providers and consumers of power supply for
electric cars [1]–[3].

We built these solutions on top of the eXtensible Messag-
ing and Presence Protocol (XMPP) and its many extensions.
XMPP is currently gaining momentum as low-cost middle-
ware for any kind of real-time messaging where authentica-

tion and presence mechanisms are useful. Mobile services
based on XMPP can be realized either as server-integrated
components or as so-called XMPP bots connecting as an
ordinary XMPP client.

The latter approach is more flexible as it enables the
mobile service to run anywhere in the network. It doesn’t
matter if it is realized inside a dedicated VM, as a cloud
service, on a developer machine or even a mobile device as
long as it is able to connect to an XMPP server.

The drawback of this approach is that XMPP service
discovery is only able to show XMPP server components
like Multi-User Chat and its items (e.g., chat rooms). XMPP
bots do not receive special attention by the XMPP server and
thus have to make themselves known using other means.

This paper presents an approach how this can be done
using XMPP’s built-in presence mechanism in connection
with roster groups, i.e., groups of contacts that can be
managed by every XMPP client and are stored at the
XMPP server. This idea can easily be extended to also
manage the availability of hosts and services. Moreover,
roster groups can be used for deployment access control,
too. Thus developers are only able to modify the services
they contributed themselves using roster groups again.

An overview of the approach is shown in Section IV while
the roster-based concept is described in Section V. Using this
approach we extended our XMPP-based service platform
Mobilis as described in Section VI. An evaluation in Section
VII shows the ability of the platform to efficiently add new
service hosts at any time which only marginally affects the
time to find and create service instances.

Before diving into the details of our approach we provide
some background knowledge on XMPP as a middleware
(Section II) and related work (Section III).

II. XMPP AS A MIDDLEWARE

When talking about XMPP, one often refers to the whole
XMPP infrastructure consisting of different XMPP clients
and federated servers running the core XMPP protocols as
well as a number of XMPP Extension Protocols (XEPs).

In this XMPP world, each user is identified by a so-
called JID (Jabber Identifier) which consists of three parts:
username@domain/resource. The domain part identifies the
XMPP server where the user is registered with his username

and password. The user may connect an arbitrary number of
devices (e.g., smart phone, tablet, notebook, smart TV) to
the server using different resource identifiers for each device.

Exchange of information is done using small XML snip-
pets called stanzas. When user1@domain1.com wants to
send a message to user2@domain2.com, he can use the so-
called Bare JID of the receiver without the resource part
thus generating a message stanza like this:

Listing 1. Example XMPP message
1 <message from="user1@domain1.com/phone"
2 to="user2@domain2.com">
3 <event xmlns="mydomain:example">ExampleEvent</event>
4 </message>

The server then first forwards this message stanza to the
XMPP server running at domain2.com. The target server
then selects the appropriate resource of the receiver based
on priorities and delivers the message to the target device.
This just works in real-time as every device is connected to
its server using an always-on TCP connection. If the target
device is already known to the sender, he could also use the
Full JID with resource ID in the to= attribute.

As can be seen in Listing 1, the message may contain
any namespaced child element. The message stanzas imple-
ment a fire-and-forget semantics. There is also a reliable
request-response mechanism called IQ (info/query) stanzas
in XMPP. An IQ request always has to be answered by an
IQ result or error. This mechanism is used to retrieve the
buddy list of participants at startup (called roster). The online
status of participants on the roster is transported via presence
stanzas. These three basic mechanisms - presence, message
and iq - build up a general purpose event middleware which
can be used for instant messaging but many other use cases
as well. An overview of XMPP technology can be found in
[4].

If we want to use XMPP as a middleware for mobile
app compounds as described above, the client apps need
XMPP client libraries which are widely available for many
platforms, e.g., Smack for Java and Android, Strophe.js
for JavaScript or XMPPFramework for iOS. As already
mentioned above, the service part may be realized either
as an XMPP component (a server plug-in) or as an XMPP
client (bot), while the latter approach is preferable due to its
flexibility but does not offer built-in service discovery.

III. RELATED WORK

Leveraging XMPP as a service middleware dates back
to multi-agent systems [5]. Each agent connects to the
system as an XMPP client and communicates its availability
using XMPP presence. Basic services like discovery and
management are realized as XMPP components. Kestrel [6]
uses a similar approach for many-task computing where each
machine gets its own user account at the server with each

processor connecting as an own resource and publishing
presence.

Later works extend this idea to XMPP-based service plat-
forms and cloud computing. The i5Cloud [7] uses XMPP for
inter-service communication in the cloud as well as commu-
nication between devices and the cloud service. Junction [8]
uses a so-called Switchboard to offer XMPP-based services
for peer-to-peer interactive mobile applications like a poker
game. Mobilis [9] defines a service platform where mobile
clients may access XMPP-based services running as XMPP
clients. Its main focus is to support native multi-platform
clients with a service description language offering client
and server stubs for many platforms. We build upon Mobilis
adding discovery of distributed hosting and discovery of
services in this work. But the approach described in this
paper could also be used in any other XMPP-based service
environment.

The idea of XMPP-based service hosting was later ex-
tended to hosting services even on mobile devices. This
was first realized for ad-hoc scenarios using the Serverless
Messaging extension of XMPP [10]. Srirama et al. [11] are
using XMPP to access mobile services on Android devices
while discovery can be done ad-hoc (ZeroConf) or via a
separate Peer-to-Peer network (JXTA). Our approach was
thus designed to work for both scenarios, i.e., cloud service
hosting as well as mobile service hosting without the need
of external service discovery.

Other approaches build on traditional middleware solu-
tions like MQTT, AMQP, or SOAP to realize the app-to-
service communication described in this paper. But they
lack the ability to federate with arbitrary servers running
in different domains. Furthermore, the security and pres-
ence functionality is unique for XMPP. Thus, approaches
based on these non-XMPP solutions are often extended with
XMPP for federation [12], [13].

Our work adds important building blocks to existing
XMPP-based service hosting: The concept of roster groups
has not yet been leveraged by existing applications. Similar
functionality for service discovery and access control can
only be reached by proprietary mechanisms in the works
described above. The big advantage of our work is its
compatibility with standard XMPP functionality which thus
can be implemented in any XMPP-based system.

IV. OVERVIEW

We aim to scale up the architecture for XMPP-based
mobile services while making the service discovery on a
distributed, inter-domain system transparent for the clients.
We thus distinguish the roles Broker and Runtime for dis-
covery servers and hosting servers, respectively. We expect
Broker URIs to be known to their clients by external means
(e.g. well-known ID or configuration).

sync sync

Service discovery

Client 3Client 2

Service discovery

Client 1

Service discovery

Runtime 5

Runtime 6

Runtime 8

Runtime 9

Runtime 10

Runtime 7

Runtime 4

sync sync

Broker 2

sync
Broker +

Runtime 1

sync

sync

sync

sync

Broker 3

Figure 1. XMPP-based distributed service topology

As can be seen in the example topology in Figure 1, nodes
can be Client, Broker, Runtime, or both Broker + Runtime.

As already mentioned above, we want the concept of
service hosting to be flexible enough to run a service not
only on cloud servers but also on client computers or even
mobile devices. Runtimes register at a Broker to publish
their availability and services. Clients use a Broker to
discover available services and service instances. The Broker
offers all service descriptions from the Runtimes registered
at the Broker as well as service descriptions available at
synchronized Brokers.

To interconnect with other Brokers, a Broker has to
explicitly peer with another Broker which starts the syn-
chronization process. In the pictured case, this leads to the
fact, that Client 3 can just use the services of Broker 3
and Broker 1, while Client 1 can make use of all services
on all Brokers. For the proposed distributed inter-domain
service cloud, service discovery mechanisms and security
issues have to be addressed.

All nodes in Figure 1 act as XMPP clients. Please note
that we intentionally omitted XMPP servers. The placement
of XMPP servers is out of the scope of our approach. For
performance reasons, different cloud runtimes each should
use their own XMPP server as well to separate the messaging
traffic. But runtimes with low utilization may also share a
common XMPP server. The same holds true for the Brokers.
XMPP’s inherent federation capabilities enable each node on
the world-wide XMPP network to connect to each other and
share presence information.

V. ROSTER-BASED CONCEPT

Based on this basic architecture we now describe the
details of our concept which entirely builds on XMPP’s
native roster management to realize a registry for distributed
multi-instance services. In addition, we also show how to
map general security features to further roster functions
and realize access control for services at a Runtime. The
following subsections all refer to Figure 2, which is showing
the most simple setup of the architecture described above
with just a Runtime synchronizing with a Broker + Runtime
and a Client requesting the location of a service.

A. XMPP Accounts and JIDs

Each runtime uses its own XMPP account like
rt1@xmpp.com and therefore has its own roster. As the roster
of an XMPP account is stored on the XMPP server, all
contained information is persistent, even if a Runtime is shut
down.

We also set up an own XMPP account for each installed
service of a Runtime. To ease the use of the system and to
prevent naming conflicts, we propose the use of In-Band
Registration [14] and let the runtimes create new accounts
on installation of a service. For that, the following naming
scheme should be used:
[usernameOfServer].[servicename]@[domain]

Every new instance of a service opens a separate XMPP
connection with a new resource number. For an instance of
a service XHunt in Figure 2 the result can be a JID like:
rt1.xhunt@xmpp.com/i1

Last but not least, client users and developers all also have
their own XMPP accounts to assure their identity. Again,
with the resource-enhanced JIDs in XMPP a client user can
run multiple client devices (smartphone, tablet, notebook)
with the same account.

B. Synchronization, Presence and Discovery

The main benefit of the roster in our approach is the
propagation of service presence. Since every service on
every runtime uses its own XMPP account, they all can
be distinguished as separate entries in a roster. Now, if
distributed Runtimes could share the JIDs of their installed
services, they would not only be able to get notice of their
availability, but also of new instances of a service. This is
due to the fact that a new instance connects to the XMPP
server as a new resource of its service XMPP account and
propagates presence. This presence information is sent to
all distributed Runtimes which have the particular XMPP
account in their roster.

Two more issues need to get addressed. First, we need
an extra resource for every service itself, to display service
presence in case of no instance is active. We introduce a ser-
vice presence resource which is getting active immediately
after service installation:
rt1.xhunt@xmpp.com/service

rt2@xmpp.com rt1@xmpp.com

dev1@xmpp.com/remote

Service „XHunt“
rt1.xhunt@xmpp.com

dev1@xmpp.com
dev2@xmpp.com

dev1@xmpp.com

Synchronize Services

rt1.xhunt@xmpp.com

rt2@xmpp.com

... ...

rt1@xmpp.com

1a  1b

2b 

3a 

3b

3c 

3d 

4b

r4.friendfinder@abc.de

\service
\i1
\2

user1@xmpp.com/MXA

2aInstance 1 „Xhunt“
rt1.xhunt@xmpp.com/i1

4a

rt1.xhunt@xmpp.com/i1

rt1.xhunt@xmpp.com/i2

5a
5b

5c

Feature string example for an instance:
http://mobilis.inf.tu-dresden.de/instance?servicenamespace=http://mobilis.inf.tu-dresden.de/Services/XHunt,
version=3,name=XHunt,rt=rt1@xmpp.com

Runtime 1

Instance 2 „Xhunt“
rt1.xhunt@xmpp.com/i2

Broker + Runtime 2

Discovery component
(XEP-0030 XEP-0115)

Publisher /
Developer

User

Figure 2. Roster for administration of service registry and access rights

Secondly, we need to get further service information from
the roster entries when a runtime is processing a discovery
request. To address this issue, we make use of XMPP Service
Discovery [15] in combination with Entity Capabilities [16].
Each service and each instance has a feature string as
described in [15]. This string contains all needed information
about the service or the instance. We propose a feature string
as follows (see example in Figure 2):

1 {myDomain}/{service|instance}?{pm1=value1,pm2=value2,...}

Service denotes a service presence resource while instance
signalizes a concrete service instance running at a Runtime.
The parameters are key-value pairs needed for service dis-
covery. We used the keys servicenamespace, version, name
and rt for our purposes, but this can be extended if needed.

To prevent unnecessary heavy network use and to speed
up the processing of discovery requests, Entity Capabilities
is utilized as it realizes a caching mechanism working
together with XMPP presence. If a runtime needs the feature
string of available resources in the roster, it usually has
to send a disco#info request just for the first time. After
that it caches the information locally, as long as the cached
information doesn’t change. Once it changes, the server
sends out a new presence notification with the new hash
value of the feature string. The client then has to issue the
disco#info request again.

C. Roster Groups

Another useful feature of the XMPP roster is the ability
to assign entries to roster groups. Our approach uses this
mechanism for two different tasks: user access control and
M2M access control.

1) User Access Control: It is essential that just certain
people have access to special functions and resources of a
Runtime. E.g., just authorized users should be able to install
new services, reconfigure installed services or have access to
the runtime configuration itself. Usually this can be realized
by security groups. Each group gives its members access to
a resource, which is represented by the group.

We map the described principle of security groups to the
roster, by making use of roster groups. Every roster group
is holding roster entries, which belong to particular JIDs.
These JIDs can be checked against XMPP requests from
certain users for a special resource.

To make these special roster groups distinguishable from
other types of roster groups, we introduce a prefix tag ug:
(user group). This and later tags can also be used for filtering
roster groups in a GUI. We obtain the three following roster
groups for access control:

• ug:deploy - User has the right to deploy new services.
• ug:[serviceName] - User is allowed to change an in-

stalled service with the given name.
• ug:administrators - User can change runtime configu-

ration.

2) Peer Access Control and Discovery: From the
machine-to-machine perspective we want to synchronize
only peers which are trusting each other. We make use of
roster groups for this issue again. If administrators want to
allow their Runtime to synchronize, they put the JIDs of the
Brokers they trust in a roster group pg:brokers where pg
means peer group.

The other direction is represented by the group
pg:runtimes which is used by a Broker to check if the
Runtime is allowed to publish services. A Broker + Runtime
has entries in both groups.

The last roster group represents all installed services to
enable fast search of services during service discovery.

• pg:runtimes - List of Runtimes from which a Broker
receives service updates.

• pg:brokers - List of Brokers to which a Runtime
publishes service updates.

• pg:services - Installed services of all runtimes (local
and remote) and their running instances (different re-
sources).

D. Typical Scenario

A short scenario following the numbering in Figure 2
should make the described principles of the roster concept
more comprehensible. In this scenario, a developer tries to
publish a new service ”XHunt” on Runtime 1 which should
be visible on Broker + Runtime 2 where a user tries to
connect to the newly created service.

1) Service upload
a) Check if uploading user is in ug:deploy.
b) Service upload is allowed and executed by the

developer.
2) Service installation

a) Create XMPP account for the new service using
In-Band Registration.

b) Create roster group with scheme
ug:[servicename] and add uploading user
by default.

3) Runtime synchronization
a) Get all trusted Brokers from roster group

pg:brokers.
b) Send JID of new service to trusted Brokers.
c) Check if the JID of from attribute is a trusted

Runtime in pg:runtimes.
d) Add new service JID to roster group pg:services.

4) Starting new instances
a) New instances connect as resources of their ser-

vice XMPP account.
b) Presence is sent by the service itself (service

presence resource) and the instances to other
Brokers to show their availability in real-time.

5) Discovery

a) On a discovery request, the responsible Broker
explores the roster group pg:services. XMPP Ser-
vice Discovery and Entity Capabilities are used
to get and process the service specific feature
string for each resource of any entry from local
cache or by a separate disco#info request from
the JID itself.

b) The user receives a response with JIDs of ser-
vices matching his request and further informa-
tion.

c) The user can connect to a certain service instance
directly using its JID.

VI. CASE STUDY

To prove the conceptional approach, we implemented the
proposed functions in our XMPP-based Service Environ-
ment Mobilis [9] as a case study. The code is open source
and can be found on GitHub [17]. This is just an example of
how the approach can be implemented in any XMPP-based
system.

Figure 3 thus describes all involved protocols and the
components on a conceptual level. It shows how the ap-
proach from Section V can be realized.

A. Discovery Protocol

The Discovery Protocol is responsible for the service
discovery and the creation of new service instances. The
Discovery Service handles all server-side communication of
the coordinator protocol. We implemented three different
algorithms for general service discovery, filtered discovery
for a certain service, and to create a new service instance on
an appropriate remote runtime that is offering the requested
service.

All three algorithms have in common that they explore
connected XMPP resources in the roster. They process all
resources for each entry in the roster group pg:services.
XMPP Service Discovery and Entity Capabilities are uti-
lized to get the feature string of every resource. Then all
algorithms decide their own way if either a resource matches
their request to process or not.

B. Deployment Protocol

This protocol takes care of all service deployment fea-
tures. Developers are able to install and update services,
configure services and uninstall them. The Deployment
Service uses the user groups to ensure that just authorized
users can deploy and change services on a Runtime.

C. Runtime Protocol

The Runtime Protocol includes all communication be-
tween Runtimes and Brokers to synchronize their services.
It covers two different cases:

Discovery
Service

Deployment
Service

Runtime
Service

Runtime
ServiceDiscovery Protocol Runtime Protocol

D
ep

lo
ym

en
t

P
ro

to
co

l

Runtime Protocol

Deployment Protocol

o InstallService

o ConfigureService

o Uninstall Service

Discovery Protocol

Mobile
Service

Mobile
Service

RuntimeClient

Broker + Runtime

Developer

Application Protocol

Application Protocol

o PublishNewService

o CreateNewServiceInstance

o SearchService

o CreateNewServiceInstance

o StopServiceInstance

Figure 3. Involved protocols and components in our Mobilis-based case study

1) Publish a new Service: This case applies if a new
service is installed on a Runtime. After the Runtime has
got the list of all trusted Brokers from its roster it sends an
XMPP IQ of the type set as shown in Listing 2.

Listing 2. Publish request of a new service
1 <iq id="m_32" to="rt1@xmpp.com/runtime"
2 from="rt2@xmpp.com/runtime" type="set">
3 <publishNewService
4 xmlns="http://mobilis.inf.tu-dresden.de/runtime">
5 <serviceJID>rt2.xhunt@xmpp.com</serviceJID>
6 </publishNewService>
7 </iq>

As response it receives an empty IQ result for successfully
publishing on one of the distributed runtimes or an IQ error
otherwise.

2) Synchronize all Services: There are several cases mak-
ing it necessary, that Runtimes and Brokers can synchronize
all their services at once. This happens after the initial
subscription handshake or after a shut down phase of any
Runtime in the cloud. Hence, we simply extended the
function of the IQ in Listing 2. For such a case, the request
type is changed to get and can contain multiple serviceJIDs.

Listing 3. Sync. request of all services
1 <iq id="m_36" to="rt2@xmpp.com/deployment"
2 from="rt1@xmpp.com/deployment" type="get">
3 <publishNewService
4 xmlns="http://mobilis.inf.tu-dresden.de/runtime">
5 <serviceJID>rt1.geotwitter@xmpp.com</serviceJID>
6 <serviceJID>rt1.xhunt@xmpp.com</serviceJID>
7 <serviceJID>rt1.friendfinder@xmpp.com</serviceJID>
8 </publishNewService>
9 </iq>

If the requested Broker is a Broker + Runtime the re-
sponse also contains all services of it.

Listing 4. Sync response of all services
1 <iq id="m_36" to="rt1@xmpp.com/Deployment"
2 from="rt2@xmpp.com/Deployment" type="result">
3 <publishNewService
4 xmlns="http://mobilis.inf.tu-dresden.de/runtime">
5 <serviceJID>rt2.friendfinder@xmpp.com</serviceJID>
6 <serviceJID>rt2.ninecards@xmpp.com</serviceJID>
7 </publishNewService>
8 </iq>

The process is initialized by the Runtime that is coming
online after a shut down phase or the certain Runtime that
adds a Broker in case of subscription handshake.

VII. EVALUATION

We obtained several benefits from building our distributed
service environment up on the proposed XMPP roster
concept. There is the ability to discover services in an
inter-domain service cloud (by XMPP-Server federation),
the possibility to scale-up the architecture in general and
realizing load balancing in special.

But the proposed approach also results in additional com-
munication and processing overhead. Especially because a
runtime is using its XMPP roster instead of a local database,
the key-value pairs describing an entity have to be retrieved
directly from the entity using XMPP Service Discovery.
This needs a lot of additional time in comparison to a local
database query. Hence, we absolutely recommend the use
of Entity Capabilities as well, because it caches an entity’s
feature string if it did not change since the last request.

To evaluate the performance costs of our approach, we set
up three test cases as shown in Figure 4. Case A serves as in-
dicator for the classical single-server architecture. It doesn’t

forward

forward

forward

Runtime 1

Runtime
2

Runtime 3

Test Client

SD / create

Runtime
5

forward
forward

Runtime 4forward
SD/

create

Test Client
Broker

Runtime 1

SD/
create

Test Client
Broker +

Runtime 1

A)

B)

C)

Broker

Figure 4. Test scenarios to measure the administrative costs of the approach

make use of the proposed roster approach and was the only
possible setup in the previous Mobilis architecture. Case B
uses the roster approach with just one remote Runtime and a
Broker that uses the own roster to process service discovery
(SD) requests and to forward create instance requests. The
last scenario in C is an upscaled architecture of case B with
five remote Runtime servers.

In all cases, four services are installed on each Runtime.
Three of the four services on every Runtime are running
five instances at the beginning of the test. All these instances
can get discovered as instance resources in the rosters of the
Broker in case B and C. Additionally they have one service
presence resource per service of a runtime. In summary that
means 15+4 = 19 resources for case B and 5∗(15+4) = 95
resources for case C to process in the Broker rosters.

The three algorithms, described in Section VI-A are called
for the three possible client requests on the Broker. The
responses for general service discovery contain all available
services in the cloud. A filtered service discovery delivers
all running instances for a requested service. The create
instance request for a certain service is performed as a two
step creation process. First, the manager retrieves the list of
all Runtimes in the roster supporting the requested service.
Secondly, it forwards the create request to a randomly
chosen runtime (alternative load balancing: round robin or
by load), that sends back the response containing the JID of
the created instance.

We measured the response time at the test client for each
request message. For the cases B and C we also logged the
latency of the first request and a later random request. This
was done to address the impact of Entity Capabilities.

Figure 5 shows the results for each request message in
dependency to the driven test case setup. As can be seen, the
latency for a general service discovery is much faster in case
A (42 ms) in comparison to the first call in case B (70 ms),
but especially in case C (306 ms). This is due to the fact, that
for each connected resource in the roster group pg:services
no feature string is cached yet. This impacts particularly on
the latency of case C, where 95 separate Service Discovery
requests have to be sent.

A later random call can reach the response time of A (B:

42 27

195

70

26

191

47
28

201

306

36

267

41 24

215

0

50

100

150

200

250

300

350

gen. disco. filt. disco. createre
sp

o
n

se
 t

im
e

in
 m

ill
is

ec
o

n
d

s

administrative costs of the roster approach

A) local runtime B) 1 runtime: first call B) 1 runtime: random call

C) 5 runtimes: first call C) 5 runtimes: random call

Figure 5. Administrative costs of the roster approach

47 ms, C: 41 ms) because the needed information just has to
be restored from the local cache of the Broker. The results
for the filtered service discovery are almost the same pattern
in the diagram, but have just a less average latency and a
smaller deviation between all cases. This happens because
the algorithm for the filtered discovery can skip entries that
don’t match the requested service namespace.

The test for a create message is showing nearly no
difference between case A (195 ms) and B (191 ms / 201
ms). The Broker in B has to manage just one distributed
runtime. So there is no much choice available to forward
the request to. In contrast, the Broker in C has to process
95 resources and to choose from 5 possible runtimes. This
is why more time is needed for both, first call (267 ms) and
random call (215 ms).

The results are showing that the proposed approach needs
more time for the first call of a resource’s feature string, but
can almost hit the speed of a local registry for a later random
call.

VIII. CONCLUSIONS

Our approach shows how XMPP can be leveraged to
realize flexible service hosting and discovery for mobile
computing scenarios and/or the Internet of Things. Only
standard XMPP extensions are used which are widely
available as free server implementations as well as client
libraries for many platforms. Our key idea is to represent
client users, developers, hosts, and mobile services as XMPP
users enabling presence exchange amongst all these entities.
Roster groups are used as an efficient tool to manage access
control and search. The evaluation shows that due to the
use of the Entity Capabilities extension the performance is
nearly as good as for the centralized setup.

In future work we want to further evaluate how the
approach supports hosting of services on mobile devices. We
already implemented a single service Runtime for Objective
C which shows the feasibility of the approach. But further
work has to be done in this field especially regarding the
limited resources and occasional connection degradation or
loss on mobile devices.

REFERENCES

[1] R. Lübke, D. Schuster, and A. Schill, “Mobilisgroups:
Location-based group formation in mobile social networks,”
in Second IEEE Workshop on Pervasive Collaboration and
Social Networking (PerCol), Seattle, WA, USA, 2011.

[2] D. Schuster, D. Kiefner, R. Lübke, T. Springer, P. Bihler,
and H. Mügge, “Step by step vs. catch me if you can - on
the benefit of rounds in location-based games,” in Third IEEE
Workshop on Pervasive Collaboration and Social Networking
(PerCol), Lugano, Switzerland, 2012.

[3] S. Bendel, T. Springer, D. Schuster, A. Schill, R. Ackermann,
and M. Ameling, “A service infrastructure for the internet
of things based on xmpp,” in IEEE International Conference
on Pervasive Computing and Communications (PerCom), San
Diego, CA, USA, 2013.

[4] P. Saint-Andre, “XMPP: Lessons Learned from Ten Years of
XML Messaging,” IEEE Communications Magazine, vol. 47,
no. 4, pp. 92–96, 2009.

[5] M. E. Gregori, J. P. Cámara, and G. A. Bada, “A Jabber-based
Multi-Agent System Platform,” in Proc. of the 5th ACM Joint
Conference on Autonomous Agents and Multi-Agent Systems,
2006, pp. 1282–1284.

[6] L. Stout, M. A. Murphy, and S. Goasguen, “Kestrel: an
XMPP-based Framework for Many Task Computing Ap-
plications,” in Proc. of the 2nd Workshop on Many-Task
Computing on Grids and Supercomputers (MTAGS). ACM,
2009, pp. 11:1–11:6.

[7] D. Kovachev, Y. Cao, and R. Klamma, “Building mobile
multimedia services: a hybrid cloud computing approach,”
Multimedia Tools and Applications, pp. 1–29, 2012.

[8] B. Dodson, A. Cannon, T.-Y. Huang, and M. S. Lam,
“The Junction Protocol for Ad Hoc Peer-to-Peer Mobile
Applications,” [Online] http://mobisocial.stanford.edu/papers/
junction.pdf, 2011.

[9] D. Schuster, R. Lübke, S. Bendel, T. Springer, and A. Schill,
“Mobilis - comprehensive developer support for building per-
vasive social computing applications,” in Networked Systems
(NetSys), Stuttgart, Germany, 2013.

[10] G. Huerta-Canepa and D. Lee, “A Virtual Cloud Computing
Provider for Mobile Devices,” in Proc. of 1st ACM Workshop
on Mobile Cloud Computing & Services: Social Networks and
Beyond, 2010, pp. 1–6.

[11] S. N. Srirama, C. Paniagua, and J. Liivi, “Mobile web service
provisioning and discovery in android days,” in Proceedings
of the 2013 IEEE Second International Conference on Mobile
Services. IEEE Computer Society, 2013, pp. 15–22.

[12] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and
M. Morrow, “Blueprint for the Intercloud-Protocols and For-
mats for Cloud Computing Interoperability,” in Proc. of the
4th IEEE Conference on Internet and Web Applications and
Services (ICIW), 2009, pp. 328–336.

[13] E. Konieczny, R. Ashcraft, D. Cunningham, and S. Maripuri,
“Establishing presence within the service-oriented environ-
ment,” in Aerospace conference, 2009 IEEE. IEEE, 2009,
pp. 1–12.

[14] P. Saint-Andre, “XEP-0077: in-band registration,” http://
xmpp.org/extensions/xep-0077.html, 2012.

[15] J. Hildebrand, P. Millard, R. Eatmon, and P. Saint-Andre,
“XEP-0030: Service discovery,” http://xmpp.org/extensions/
xep-0030.html, 2008.

[16] J. Hildebrand, P. Saint-Andre, R. Troncon, and J. Konieczny,
“XEP-0115: Entity capabilites,” http://xmpp.org/extensions/
xep-0115.html, 2008.

[17] TU Dresden, “Mobilis - pervasive social computing using
XMPP,” https://github.com/mobilis, 2014.

