
An MDA Approach for Adaptable Components

Steffen Göbel

Institute for System Architecture
Dresden University of Technology, Germany

goebel@rn.inf.tu-dresden.de

Abstract. Components should provide maximum flexibility to increase
their reusability in different applications and to work under changing
environment conditions as part of a single application. Thus, adapta-
tion and reconfiguration mechanisms of single components and compo-
nent assemblies play a crucial role in achieving this goal. In this paper
we present a model of Adaptable Components that allows modelling of
adaptation and reconfiguration operations taking place at development,
deployment or runtime. The concept of composite components is uti-
lized to encapsulate adaptation operators and to map component para-
meters to different predefined internal configurations of subcomponents.
The component model is not tied to a particular component platform.
Instead, it can be mapped to existing component platforms like EJB us-
ing an MDA approach. Different Platform-Specific Models for the same
target component platform enable tailored flexibility for particular com-
ponent deployments. For example, a model can support or not support
runtime reconfiguration. Extensions to UML diagrams are introduced to
graphically model reconfiguration operations.

1 Introduction

Two of the key success factors of component-based software engineering are reuse
of components in different applications and composition of complex applications
out of well-defined and loosely coupled parts. Component platform standards like
JavaBeans, Enterprise JavaBeans (EJB), Microsoft COM, and Microsoft .NET
have crucially contributed to this success. To increase reusability and flexibility,
components should support mechanisms to adapt them to different environments
and to add new functionality.

This adaptation process can be carried out at different times in the compo-
nent life cycle: at development time, at deployment time, or at runtime. However,
components look quite differently and consist of different artefacts at these three
times. For example, at development time a component might comprise a set of
Java source files and an XML descriptor. At runtime the same component might
consist of binary program code structured in classes and several data structures.
As a result, the conceivable adaptation mechanisms also differ at the three times.
Some mechanisms might change the source code of components and others might
employ interceptors at runtime.



A variety of adaptation mechanisms has been developed by the research com-
munity and software industry, but most of them are only applicable at one time,
either development, deployment, or runtime. A unified model describing adapt-
able components at all three times is missing. In this paper we introduce such
a model for the development of Adaptable Components (ACs). It employs the
concept of composite components to encapsulate adaptation mechanisms. Adap-
tation is considered as a superset of the concepts reconfiguration, customization,
and parameterization in this paper.

The model of ACs combines the following ideas: (i) The adaptivity is ex-
pressed by component parameters. The notion of component parameters com-
prises component properties used, for example, in JavaBeans and type para-
meter used in C++ templates or Java generics. In a previous work [7] we also
showed that QoS properties are also a kind of parameters. (ii) An AC as a
composite component encapsulates a set of predefined internal configurations
of subcomponents. Component parameters are mapped to these configurations.
That means that the internal configuration of an AC changes if component pa-
rameters are changed. (iii) The model of ACs is platform and programming
language independent. An MDA approach enables transforming of the model
to different target component platforms. Currently, only Java is supported as
programming language. (iv) Existing adaptation mechanisms can be integrated
by special modelling operators.

The paper is structured as follows: In the next section we introduce our model
of ACs, explain model constituents, and modelling techniques. In the third sec-
tion the model is illustrated based on a simple example—a crypto component.
The fourth section deals with the implementation of the model and, in partic-
ular, with the MDA approach to transform the model to different component
platforms. The paper closes with an examination of related work, a conclusion,
and an outlook to future work.

2 Model of Adaptable Components

This section first describes the constituents and concepts of our model of ACs.
The concept of composite components is employed to encapsulate model con-
stituents, especially subcomponents. The advantage of this approach is that ACs
do not look and behave differently than other components from outside. Many
constituents (e. g., adaptation operators and glue code) in the model are op-
tional, which increases flexibility and enables several application scenarios.

The remaining part of this section deals with mapping of component pa-
rameters and modelling of configurations and reconfigurations by using UML
diagrams. New UML stereotypes are introduced to describe structural reconfig-
uration operations.

2.1 Component Constituents

The model of ACs is schematically depicted in Fig. 1. ACs define explicit depen-
dencies to other components by fixed sets of typed provided and required ports



Repository

Glue Code

In
te

rfa
ce

 B
in

di
ng

Adaptation
Manager

Adaptation
operators

Adaptation
Specification

Context
Model

<<controls>>

Active
configuration

Management interface Parameter interface

Aspect
operators

Fig. 1. Model of a adaptable component

each implementing a certain interface. Any communication with other compo-
nents requires explicitly defined connections to these components via ports. The
ports of an AC stay the same, even if the internal configuration is changed in
the course of a reconfiguration. This means that the adaptation process stays
transparent to other components of an application. A management interface
(similar to the equivalent interface in CORBA Components) is used to navigate
to required and provided interfaces and access the component parameter inter-
face. The parameter interface provides read and write access to component value
parameters (properties) by get and set methods.

We define the configuration of an AC as a set of subcomponents, a set of
adaptation and aspect operators applied to subcomponents, a set of connections
between ports of these subcomponents, and a binding between the external ports
of the AC and ports of subcomponents. Thus, the active configuration determines
the current runtime properties of a component, a kind of operating range. The
set of valid configurations is defined by the adaptation specification containing
the initial configuration and transitions to other valid configurations (see Sec. 2.2
for details).

The component repository contains all available subcomponents of an AC.
A subset or all of these subcomponents, which are designated as active subcom-
ponents, form an active internal configuration at runtime. Only active subcom-
ponents process incoming method calls and the active configuration determines
communication links. The management interface enables adding of new subcom-
ponents and accordantly configurations at runtime. The interface binding as the
central hub forwards requests of external ports to ports of active subcomponents
and also connects internal subcomponents. The adaptation manager controls the
interface binding and the reconfigurations using the adaptation specification. It



thereby enforces consistency constraints and synchronizes reconfiguration oper-
ations.

Glue code is a special kind of subcomponent. The difference is that subcom-
ponents are usually reused or at least intended to be reused by other applications
whereas glue code is tailored to a particular AC. Glue code enables adding miss-
ing functionality to an AC (e. g., a new interaction protocol) that otherwise
prevents subcomponents from working together.

Adaptation operators take a single subcomponent as input and transform it
to a new subcomponent with a possibly different set of ports. They are typically
applied to adapt incompatible port interfaces. Incompatibilities occur because
component originally developed by different developers and for different applica-
tions are reused in a new application. For example, incompatibilities are caused
by slightly different method names, different method signatures, and missing
methods. Potential implementation approaches for adaptation operators include,
but are not limited to:

– adapters deployed at runtime that extend or change some functionality of a
subcomponent with or without providing a new interface;

– byte code transformers [9] that adapt subcomponents at deployment or load-
ing time and before the application is started;

– source code transformers [2] that modify the source code of subcomponents
before or during the compilation.

The actual implementation strategy is left open by our model.
Aspect operators are applied to a set of subcomponents and influence the

behaviour at defined joinpoints like in aspect-oriented programming [10]. As
with adaptation operators, different types of aspect operators can be employed
at development, deployment, and runtime. Joinpoints include, but are not lim-
ited to, places before and after methods, component instantiations, component
destructions, and reconfiguration operations.

So far we explained that the management interface of AC is used to change
parameters and therewith the active internal configuration. However, these pa-
rameter changes need not necessarily be triggered by an external entity but can
also be triggered by the AC itself, for example, if environment conditions change.
The adaptation manager can utilize a context model of the environment to check
conditions defined by the adaptation specification and change component para-
meters if specified. This way self-adaptable components can be modelled utilizing
the mechanism of parameter mapping.

2.2 Modelling of Configurations and Configuration Variations

The modelling process of ACs defines the adaptation specification as described
in the last subsection and thus all valid configurations of an AC. Two different
approaches support the graphical specification of valid configurations: complete
configurations and configuration variations.



Complete configuration—as the name suggests—graphically describe all sub-
components, connections, interface bindings, and parameter settings of a particu-
lar configuration by an UML component diagram. UML 2.0 supports all required
concepts including the description of interface bindings using the delegate con-
struct from the composite structure package. The description of complete con-
figurations for ACs is useful if only a small set of different configurations exists
and if these configurations differ in many aspects (e. g. different subcomponents
and connections).

However, modelling of complete configurations is not very flexible if several
configurations of an AC have only a few structural differences. For example, it
should be possible to model an AC where an integer parameter specifies the
number of instances of a particular subcomponent. Instead of modelling many
complete configurations with different numbers of this subcomponent, it is suffi-
cient to model the initial configuration with one subcomponent and the reconfig-
uration operations that add one subcomponent. Applying these reconfiguration
operations multiple times to the initial configuration can create all desired con-
figurations.

Thus, configuration variations as the second model approach describe changes
applied to a particular initial configuration to indirectly define a new configura-
tion. Six different atomic reconfiguration operations can be identified to describe
a transformation from one configuration to another one:

– changing component parameter
– adding a connection between subcomponents or between an external inter-

face and a subcomponent’s interface
– removing a connection between subcomponents or between an external in-

terface and a subcomponent’s interface
– adding a subcomponent
– removing a subcomponent
– replacing a subcomponent by another subcomponent

It can easily be proven that these reconfiguration operations are sufficient to
transfer any configuration to any other configuration1.

UML has no built-in mechanisms to model reconfigurations of component
nets, but the UML meta-model can be extended using stereotypes or new meta-
classes for new concepts. Thus, we defined extensions for each of the above
mentioned reconfiguration operations. New connections and subcomponents are
highlighted and mark with a plus symbol as stereotype. Removed connections
and components are drawn with a dashed line and a minus symbol as stereotype.
Fig. 2 depicts the graphical notation of the extensions. These extensions can now
be utilized to graphically model configuration variation consisting of several re-
configuration operations with UML diagrams. The developer takes a component
diagram of a particular configuration as starting point and then graphically
models the reconfiguration operations to get to the new configuration.
1 A trivial transition first removes all connections and subcomponents of the old con-

figuration and adds all new subcomponents and connections later on.



<<replace>>

+

-

- +

+

Add subcomponent and connection

Remove subcomponent and connection

-

Replace subcomponent

<<delegate>>
-

<<delegate>>
+

Fig. 2. UML extensions for reconfiguration modelling

2.3 Mapping of Component Parameters

In general, the parameter mapping is defined by a function with component pa-
rameters as arguments that selects a predefined configuration and an ordered
set of configuration variations applied to this configuration. Additionally, a pa-
rameter can influence parameters of subcomponents using the change parameter
reconfiguration operation.

The setting of component parameters, which then selects the active configu-
ration, is considered at four different times (see also Sec. 4.3):

Development time The developer can optionally define a default value for a
parameter. It can be overridden at deployment time or runtime.

Deployment time The parameter value is set during the deployment of the
application.

Creation time The parameter value is set during creation of a new component
instance.

Runtime The parameter value is changed at an already existing component
instance during the runtime of the application. This process is generally
called reconfiguration.

Development, deployment, and creation time parameter settings can be sup-
ported quite easily. The components just need to be initialized and wired ac-
cording to the resulting configuration. However, changing parameters at runtime,
which possibly leads to a reconfiguration of components, requires considerably
more effort. Particularly, the runtime environment of components has to address
the following issues that can also be found in database transactions: atomicity
– a reconfiguration must be executed completely or not at all; consistency – an
AC must be in a valid state before and after a reconfiguration transition; and
isolation – a reconfiguration must be executed without the interference of other
reconfigurations or application activities.

Two kinds of parameters are considered: parameters with a finite set of possi-
ble values (enumeration) and parameters with integer or real values in a certain
interval. In the following, we describe a few special forms of parameter mapping.



– The simplest form of parameter mapping assigns a particular configuration
to each enumeration parameter value. For example, a component parameter
“compressionAlgorithm” with the possible values “bzip2” and “gzip” could
be mapped to two different configurations, respectively.

– A configuration is assigned to an interval of integer or real parameters. For
example, a component parameter “compressionLevel” with a allowed range
from 0 to 10 could be mapped to two different configurations in the intervals
0–5 and 5–10.

– Parameters are directly or indirectly mapped to parameters of subcompo-
nents.

– An integer parameter specifies how often a configuration variation should be
applied to a configuration.

3 Example: Crypto Component

In this section a crypto component is taken as a simple example to illustrate the
use of ACs. The crypto component shall support a set of symmetric encryption
algorithms (AES, Twofish, Blowfish). The interface contains only two methods:
encrypt and decrypt. They enable encrypting and decrypting of given byte
arrays with a given encryption key. Different loss-less compression algorithms
(deflate, bzip2) are also part of the crypto component to optionally compress
data before encryption and decompress it after decryption, respectively. Data
compression is useful to reduce data size and to maximize the entropy of data,
which complicates possible attacks on encryption algorithm.

Several parameters are exposed to adapt the crypto component:

cryptoAlgorithm is an enumeration parameter to select the active encryp-
tion/decryption algorithm (values: AES, TWOFISH, BLOWFISH).

key is an byte array parameter to set the active encryption key. This parameter
does not influence the configuration of the crypto component.

compressionAlgorithm is an enumeration parameter to select the active data
compression algorithm (values: DEFLATE, BZIP2, NONE).

If a user of the crypto component changes these parameters, a different internal
configuration of the crypto component as depicted in Fig. 3 is selected.

The crypto component consists of three subcomponents for encryption al-
gorithms and two subcomponents for compression algorithms. We assume that
these subcomponents are available as libraries (e. g., open source projects) and
need not to be implemented. Glue code implements the coupling of encryp-
tion/decryption and compression/decompression because this functionality was
not supported by the crypto algorithms. All it does is calling the compression
method of a compression subcomponent before calling the encryption method
of a encryption subcomponent and accordingly for decompression and decryp-
tion. An adaptation operator is required for the Twofish subcomponent because
it has a slightly different and therefore incompatible interface than the other
encryption components. The methods for encrypting and decrypting are named



Adaptation OperatorAdaptation Operator

AESAES

GluecodeGluecode

InflateInflate

BlowfishBlowfish

GluecodeGluecode

Bzip2Bzip2

TwofishTwofish

(a) comp.encryption = TWOFISH; comp.compression = NONE;

(c) comp.encryption = AES; comp.compression = INFLATE;

(b) comp.encryption = BLOWFISH; comp.compression = BZIP2;

Fig. 3. Example: Crypto component with different internal configurations

encryptBytes and decryptBytes. The adaptation operator internally maps the
different methods pairs to change the interface to be compatible with the other
subcomponents.

The crypto component is intended to be reused in different applications. For
example, the following use cases are conceivable:

– The crypto component is used in a application with a fixed configuration,
for example, always with AES and Inflate. This means that all parameters
except the encryption key are set at development or deployment time.

– The parameters of the crypto component are set when creating new in-
stances. However, once the instances have been created, parameters are im-
mutable.

– The parameters of the crypto component are changeable at any time to give
maximum flexibility.

Each of these scenarios enables different optimizations (see Sec. 4.3) but this
should be completely transparent to the application developer. For example, in
the first scenario unused subcomponents can be omitted whereas the last scenario
requires additional program code to handle runtime reconfiguration.

4 Implementation and Mapping to Component Platforms

Our model of ACs presented in Sec. 2 is independent of any component platform
and does not define any implementation details deliberately. However, the model
is useless without an actual implementation. There are at least two implementa-
tion strategies: (i) all model constituents and concepts are directly supported by



the component platform and associated framework or (ii) all model constituents
are mapped to an existing component platform (e. g., EJB or JavaBeans) and
missing functionality is either generated or implemented as auxiliary services.
In this paper we only describe the latter approach but in a previous work [8]
we also showed the feasibility of the first approach. The main advantage of the
mapping approach is that existing application servers and component platforms
can be reused. It is also feasible to integrate a single new AC in an existing
component-based application with reasonable overhead. In this way expensive
developments from scratch can be avoided.

In this section we first describe the implementation of the metamodel of ACs
and a generic framework to support the life-cycle of ACs, especially creating
of instances, parameter mapping, and runtime reconfiguration. Next, we show
how the model can be mapped to a component platform in general, and to EJB
in particular. We explain how the different model concepts can be emulated
by the target component platform and which constraints are necessary for the
development of components. Other component platforms might be supported in
a similar way.

4.1 Metamodel of ACs

The metamodel of an AC contains all the information necessary to control AC’s
life cycle—from creation, over reconfiguration until destruction. It describes all
subcomponents, adaptation operators, interfaces, configurations, variations, etc.
We chose the Eclipse Modeling Framework (EMF, [6]) as tool for implementing
the metamodel. EMF provides a lot of useful features that simplified our imple-
mentation. It employs a subset of MOF 2.0 called Ecore to store metamodels, it
generates code to access instances of the metamodel (in our case AC models), it
generates a simple Eclipse Plugin as editor for the metamodel, and it includes
default support for persistence of model instances using XMI.

Fig. 4 depicts a simplified class diagram of AC’s metamodel. Adaptable-
Component is the entry point to this diagram. An AC has a set of Configu-
rations that are mapped to certain parameter values or value ranges via Para-
meterMappings. A Configuration defines the set of ComponentInstances that
are wired using several Connections between component Ports. A Reconfigu-
ration defines necessary ReconfigurationOperations to switch from one con-
figuration to another one.

The metamodel is not only used by runtime support of ACs (see next section)
but also by the modelling tool to design and develop ACs. This modelling tool
is currently under development and will be realized as an Eclipse Plugin.

4.2 Generic Life-Cycle Support for ACs

Although the mapping to different component platforms differs in many de-
tails, we have developed a generic framework that can be used and extended by
platform-specific implementations. It contains a set of Java classes implementing



Fig. 4. UML class diagram of AC’s metamodel

common functionality for managing AC’s life cycle and relies on the implemen-
tation of the metamodel. It is employed to develop platform-specific adaptation
managers, component repositories, and interface bindings (see Fig. 1). The of-
fered functionality can be divided into three categories: creation of instances,
runtime reconfiguration, and helper functions.

Creation of Instances Several steps are necessary to create an AC instance.
First, the current values of component parameters are used to determine the
active configuration of the AC. Next, all subcomponents including glue code and
adaptation operators are instantiated according to the configuration. In the last
step, ports of subcomponents are connected among each other and with external
ports of the AC. These steps are not necessarily all performed at runtime of the
AC. For example, the first step might also be performed during deployment of an
AC and could generate appropriate code. The actual implementation strategy is
defined by the platform-specific model (see Sec. 4.3).

Runtime Reconfiguration Parameter changes at runtime can trigger reconfigu-
rations of ACs. A reconfiguration must adhere to the characteristics described
in Sec. 2.2 and is performed in several steps. First, the new configuration is
determined by the parameter mapping. Next, all component instances that are
influenced by reconfiguration operations (e. g., an instance might be removed)
must be stopped putting the component in an inactive state. Inactive means
that no method call is currently in progress in this instance and new calls are



blocked. Special caution is required to prevent deadlocks in this step. Next, all
necessary reconfiguration operations are executed. In the last step, all blocks are
removed and method calls can be continued.

Helper function Several functions (e. g., creating and removing connections and
subcomponents) are provided to solve small tasks both during the creation of
instances and the runtime reconfiguration. Many of them are intended to be
implemented or extended by platform-specific code. Thus, they are hooks for
platform-specific behaviour.

4.3 Model Mapping

The mapping of our model of ACs to a particular component platform requires
that all model constituents and concepts described in Sec. 2 are supported or
emulated by means of the target platform. The most important concepts to be
mapped are composite components, explicit dependencies by ports, and compo-
nent parameters. This leads to a Platform-Specific Model (PSM) and a platform-
specific implementation, later on.

The emulation of unsupported features by the target component platform
often requires defining constraints. That means that certain feature of the com-
ponent platform must not be employed for developing ACs. For example, many
component platform use name servers to acquire references to collaborating com-
ponents and the accordant program code is tangled in the business logic. Using
this feature could violate explicitly defined dependencies between components.

We consider at least three different PSMs for each component platform. The
different features are illustrated in Fig. 5. The right level of flexibility for a
certain AC can be chosen depending on application needs. This choice requires
no changes to the AC by the developer. It is all transparently managed by the
runtime framework and development tools.

4.4 Example: Model Mapping to EJB

We chose EJB as target component platform to demonstrate how a model map-
ping can be achieved. As described in the previous section, each model con-
stituent and concept must be emulated by features of EJB. Due to limited space
we only focus on the ”PSM Runtime“ according to Fig. 5. Since runtime recon-
figuration is the most complicated part, the other two PSMs are even simpler to
realize.

EJB does not directly support composite components, which are a key con-
cept in our component model to encapsulate all other constituents. However, it
is feasible to flatten ACs and emulate this concept with functionality available
in EJB. We defined the following mapping rules and constraints:

– A single stateful session bean is generated for every AC and its home interface
is bound to JNDI (Java Naming and Directory Interface). This session bean
also implements the management and parameter interface. Method calls are
forwarded to the adaptation manager.



yesnonoSynchronization required

-++Method call performance

yesyesnoAdaptation Manger required

-±+Instance creation and 
initialization

+--Runtime reconfiguration

++-Start time configuration

+++Deploy-time configuration

PSM
Runtime

PSM
Start time

PSM
Deploy timeFeatures

yesnonoSynchronization required

-++Method call performance

yesyesnoAdaptation Manger required

-±+Instance creation and 
initialization

+--Runtime reconfiguration

++-Start time configuration

+++Deploy-time configuration

PSM
Runtime

PSM
Start time

PSM
Deploy timeFeatures

PIM of Adaptable Components

D
iff

er
en

t c
om

po
ne

nt
pl

at
fo

rm

Code generation / Tools

Runtime support / Libraries

Fig. 5. Overview and comparison of the model mapping

– Every subcomponent is bound to JNDI with unique names only known to
the AC session bean.

– A getPortName method is generated for every subcomponent. It hides the
process of getting references by JNDI from the component logic. The Adap-
tation Manager initializes all references during start-up or after a reconfigu-
ration.

– Business methods of subcomponents must not directly use JNDI but the
generated helper methods to access other components. This constraint is
necessary to enable explicitly defined connection between components and
reconfiguration at runtime.

– Glue code is encapsulated in a session bean and otherwise handled like any
other subcomponent.

Other components outside the AC only work with the generated session bean
like with any other session bean and need not to be aware of implementation
details.

The support of runtime reconfiguration of ACs with EJB is relatively easy
to implement. The EJB specification enforces non-reentrant instances. The EJB
container must ensure that only one thread can be executing an instance at any
time. That means that a method call and a parameter change possibly triggering
a reconfiguration can never happen at the same time. Thus, no additional code
needs to be injected to block method calls during a reconfiguration.



5 Related Work

Many Architecture Description Languages (ADL, [12]) use composite compo-
nent concepts to provide a uniform view of applications at different abstraction
levels. However, ADLs focus on highly distributed systems and many view con-
figurations statically. Exceptions are Darwin [5] and Rapide [11] supporting con-
strained changes of configurations as well as C2 [14] and Wright [1] supporting
almost arbitrary configuration changes at runtime. As opposite to our approach,
reconfigurations are specified by program code or scripts, a model transformation
to different component platforms is not considered, and a mapping of component
parameters to different configurations is not supported.

OpenORB and OpenCOM [4, 3] aim at developing a configurable and re-
configurable component-based middleware platform. They support composite
components based on enhancements of Microsoft COM and, especially, offers ex-
tensive meta-programming interfaces to adapt components and the middleware
itself at runtime. ObjectWeb Fractal [13] completely focuses on the development
of an adaptable composite component model with reflection and introspection
capabilities to monitor a running system. Components need not to adhere to a
fixed specification, but can rather choose from an extensible set of concepts and
corresponding APIs depending on what they can or want to offer to other compo-
nents. However, both approaches focus on the definition of appropriate interfaces
and not on the design of adaptable components. Reconfigurations must be de-
veloped by program code using meta-programming APIs. The reconfiguration
mechanisms are integrated in a special-purpose component platform.

6 Conclusions and Outlook

In this paper we presented a model of adaptable components that is indepen-
dent of a particular component platform. It enables mapping of component pa-
rameters to different internal configurations and, therewith, encapsulating of
structural adaptation. Adaptation operators and glue code as optional model
constituents help to integrate and reuse existing components in new ACs. Dif-
ferent PSMs for a single target component platform enable tailored flexibility
according to application needs.

We showed how this model can be mapped to the EJB platform as an ex-
ample. Additionally, we have already implemented support for JavaBeans. Map-
pings to WebServices and JMX are currently under development. We also work
on sophisticated tool support for designing and developing ACs.

Some detail problems will be addressed by further research: In some cases,
the state of components must be transferred to replacement components in the
course of a reconfiguration. This will be supported by special state transform
operators. We will also investigate how the generated code, especially to syn-
chronize reconfigurations, can be optimized.



References

1. R. Allen, R. Douence, and D. Garlan. Specifying and Analyzing Dynamic Software
Architectures. In Conference on Fundamental Approaches to Software Engineering
(FASE’98), Lisbon, 1998.

2. U. Aßmann. Invasive Software Composition. Springer-Verlag, 2003.
3. G. S. Blair, G. Coulson, L. Blair, H. A. Duran-Limon, P. Grace, R. Moreira, and

N. Parlavantzas. Reflection, Self-Awareness and Self-Healing in OpenORB. In
Workshop on Self-Healing Systems (WOSS ’02), pages 9–14, Charleston, SC, USA,
2002.

4. G. Coulson, G. S. Blair, M. Clarke, and N. Parlavantzas. The design of a config-
urable and reconfigurable middleware platform. Distributed Computing, 15(2):109–
126, 2002.

5. S. Crane, N. Dulay, J. Kramer, J. Magee, M. Sloman, and K. Twidle. Configu-
ration management for distributed software services. In IFIP/IEEE International
Symposium on Integrated Network Management (ISINM’95), Santa Babara, USA,
1995.

6. Eclipse Modeling Framework (EMF). http://eclipse.org/emf/.
7. S. Göbel. Encapsulation of Structural Adaptation by Composite Components. In

ACM SIGSOFT Workshop on Self-Managed Systems (WOSS’04), Newport Beach,
CA, USA, 2004.

8. S. Göbel and M. Nestler. Composite Component Support for EJB. In Win-
ter International Symposium on Information and Communication Technologies
(WISICT’04), Cancun, Mexico, 2004.

9. R. Keller and U. Hölzle. Binary Component Adaptation. In ECOOP 09, Brussel,
1998. Springer.

10. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In M. Akşit and S. Matsuoka, edi-
tors, 11th European Conf. on Object-Oriented Programming, volume 1241 of LNCS,
pages 220–242. Springer, 1997.

11. D. C. Luckham and J. Vera. An event-based architecture definition language. IEEE
Transactions on Software Engineering, 21(9):717–734, 1995.

12. N. Medvidovic and R. N. Taylor. A classification and comparison framework for
software architecture description languages. Transactions on Software Engineering,
26(1):70–93, 2000.

13. ObjectWeb. Fractal. http://fractal.objectweb.org/.
14. P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic,

A. Quilici, D. S. Rosenblum, and A. L. Wolf. An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems, 14(3):54–62, 1999.


