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Abstract—Wireless electrocardiograms (WECG) facilitate the
long-term monitoring of patients in their residential environment.
However, the freedom of movement provokes motion artifacts in
the measurements of the useful signals, which significantly affect
the quality of the data. In this paper, we propose a tensor decom-
position method to combine data from heterogeneous sources and
remove motion artifacts. We transformed synchronously sampled
electrocardiogram and inertial sensors into the time-frequency
space using wavelet decomposition. Afterward, we formed a
three-way tensor consisting of a single lead WECG and a motion
reference. Thus we recorded measurements from eleven healthy
subjects undertaking different types of movements, namely,
Standing up, Bending forward, Walking, Running, Jumping, and
Climbing stairs. An additional WECG sensor was attached at the
back of each subject to measure motion with negligible cardiac
input. This signal was subsequently added to a noise-free WECG
segment to generate artificially corrupted signal. We factorize
the measurement sets using Canonical Polyadic Decomposition
to determine mutual information present in both sensor types
(WECG and inertial sensor) and extract the motion artifacts from
the noisy WECG. We evaluated the results by considering the
Signal-to-Noise-Ratio and the Root Mean Squared Error between
the actual and estimated artifacts.

Index Terms—Inertial sensors, motion artifact, telemedicine,
tensor decomposition, wireless electrocardiogram

I. INTRODUCTION

The most recent statistics published by the World Health Or-

ganization (WHO) reveal that cardiovascular diseases (CVD)

remain the leading cause of death worldwide. Every year 17.9

million people die from CVDs, an estimated 31% of all deaths

worldwide [1].
Early diagnosis is essential to start the appropriate treatment

for patients and reduce the risk of mortality. The electrocar-

diogram (ECG) is the most frequently used method to detect

cardiac arrhythmia. It measures the hearts’ activity on the

surface of the body and provides insights into pathological

symptoms that would otherwise remain hidden. As late diag-

nosis can lead to severe complications and hinder effective

treatments, the availability of portable and reliable ECG de-

vices is crucial. Wireless electrocardiograms provide a user-

friendly opportunity to observe the patients’ cardiac activity

continuously. With a decrease in cost and size, wearable de-

vices increasingly facilitate the monitoring of daily activities.

This work has been funded by the German Research Foundation (DFG)
under the project agreement: DA 1211/7-1 (RoReyBaN)

However, monitoring patients in their residential environment

comes with a downside. The wireless ECG is easily affected

by the movement of patients, which can significantly distort

the signal. These artifacts hinder an accurate interpretation

of the ECG, and their removal remains a challenging task.

Traditional frequency filters fail to adequately eliminate them

as the spectrum of the useful cardiac activity and motion

overlap in their frequency range [2]. The effect of motion

artifacts on the ECG is manifold and can lead, among others,

to higher false-positive QRS detections [3].

Previously, many approaches have been presented to re-

move motion artifact from the electrocardiogram: Independent

Component Analysis [4], [5], Adaptive Filter [6]–[8], Wavelet

Transformation [9]–[11], Tensor Decomposition [12] and a

combination of these [13]–[15]. In this paper, we propose a

dimensionality reduction technique to combine ECG data with

motion reference sensors and remove artifacts from the electro-

cardiogram. Therefore, we recorded a series of WECG while

the subjects undertake different types of everyday activities.

Simultaneously, we measured physical exertion by employing

inertial sensors and combined the measurements in a multi-

dimensional array and apply tensor decomposition in order to

remove motion artifacts from the measurements.

We organize the remaining part of this paper as follows:

In section II, we review related work. In section III we give

a brief introduction to data factorization. In section IV, we

describe the experimental setup and the applied tensor de-

composition to combine sensors and remove motion artifacts.

In section V, we evaluate the results of the proposed artifact

reduction technique. Closing with section VI, we conclude our

work and state open issues that we wish to target in future

research.

II. RELATED WORK

The following review of related work focuses on the multi-

dimensional decomposition techniques and their application to

bio-medical signals as well as approaches employing reference

sensors. For a more comprehensive survey on practices and

possibilities for artifact removal in physiological signals, we

refer the reader to the following review [16].

The application of adaptive filtering covers a wide range

using a variety of reference sensors. Tong et al. [8] employ two



accelerometers mounted on ECG electrodes to reduce motion

artifacts in the electrocardiogram by feeding the accelerometer

data to the adaptive filter algorithm. Liu et al. [17] measure the

skin stretch by employing a non-invasive light-emitting diode

and an optical sensor integrated into the ECG electrodes. The

sensor readouts were subsequently used as motion reference

in a Least-Mean Squares (LMS) adaptive filter. Romero et

al. [18] compare the performance of adaptive filters using an

accelerometer and the skin-electrode impedance as reference

signals. Ghaleb et al. [19] combine a weighted adaptive noise

canceling with a recursive Hampel filter.

Kirst et al. [3] apply the Discrete Wavelet Transform (DWT)

on the electrocardiogram and modify the coefficients according

to specific rules to eliminate motion artifacts. To automati-

cally detect motion artifacts, they employed the electrode-skin

impedance measured between two ECG electrodes. Strasser et

al. [10] calculate the upper and lower thresholds for different

levels of a Stationary Wavelet Transform (SWT) of the artifact

contaminated ECG to separate useful cardiac content from

artifacts. Nagai et al. [9] and Berwal et al. [11] have con-

sequently revised this approach by modifying the thresholds

and the reconstruction rules and with it improved the results.

These approaches do, however, assume that the QRS-complex

and the P- and T-wave can be successfully removed from the

data. Moreover, they rely on detecting outliers in the data, that

can be either caused by motion or by irregularly appearing

pathological symptoms of cardiac diseases.

Blind Source Separation (BSS) techniques derive from

unsupervised learning and aim at separating the sources of a

heterogeneous mixing system. Independent Component Analy-

sis (ICA) is the most prominent approach in removing artifacts

from the ECG. He et al. [20] apply ICA to detect and remove

noise and artifacts in ECG. Their approach is based on finding

the statistically independent components in multi-lead ECG

data and distinguishing between artifact and useful cardiac

activity using the kurtosis. This approach has been continually

refined in the past years [21]–[23]. However, ICA requires at

least two ECG leads and artificially imposes independence on

the artifact and the cardiac components in the signal. Berwal et

al. [11] demonstrate the limitations of ICA in artifact removal.

They illustrated that ICA separates independent sources in

the ECG affected by Bending but was not able to map the

artifacts on one component and the useful cardiac information

on the other component. The motion artifacts were thus not

successfully separated from the ECG and remained in the

signal.

Recently, many researchers have investigated the capability

of tensor-based approaches in Blind Source Separation. Love-

nia et al. [24] combine Tensor Decomposition and Wavelet

Transformation to remove speech artifacts from the electroen-

cephalogram (EEG). They recorded a series of EEG from

multiple subjects performing a specific speech-related task to

induce artifacts in the EEG. Their results suggest that Canon-

ical Polyadic Decomposition (CPD) outperformed previously

published methods like the Independent Component Analysis.

Goh et al. [25] combine Block Term Decomposition (BTD),

and the Continuous Wavelet Transform (CWT) to remove a

series of motion-related artifacts from the EEG. The authors

used temporal and spatial features after applying Tensor De-

composition to detect and remove these artifacts. Thanh et al.

[26] employ a non-negative Tucker Decomposition to extract

features from the EEG and distinguish between epileptic and

non-epileptic spikes.

He et al. [27] employ a tensor-based approach as pre-

processing of a 12-lead ECG for subsequent classification

by a Gaussian spectral clustering. Hoang et al. [28] use the

Tucker Decomposition to decompose multi-lead ECG and feed

resulting features into a Convolutive Neural Network (CNN)

in order to classify Premature Ventricular Contraction (PVC)

of the heart. Lilienthal et al. [12] employ tensor decomposition

to factorize ECG data and extract motion patterns without

the integration of any reference sensors. The approach was

based on the Canonical Polyadic Decomposition, and a tensor

composed of wavelet transformed ECG data. The extracted

components were subsequently analyzed on their correlation

to the motion patterns by considering the reference sensors

employed. Padhy et al. [29] provide a more detailed discussion

of tensor-based approaches for cardiac applications.

III. DATA FACTORIZATION

The following section provides a brief introduction to multi-

dimensional data factorization. We shall explain the applica-

tion to two-dimensional structures and subsequently expand

these models to the multi-dimensional data space.

A. Matrix Factorization

Matrix factorization belongs to a class of filtering algo-

rithms that decompose a matrix into the product of lower-

rank matrices. These techniques are commonly employed to

extract latent information from the data that would otherwise

remain hidden. Singular Value Decomposition (SVD) is one

factorization technique that will subsequently be explained.

Assume we are given a matrix X with the dimensions m×n.

Applying the Singular Value Decomposition on this matrix

factorizes it into the product of three lower-rank matrices U,

Σ and V, according to the following Equation:

X = UΣVT (1)

where, U and V are the left, respective right singular

matrices and,

• U ∈ R
m×m being an orthogonal matrix

• Σ ∈ R
m×n being a non-negative matrix, that is all zero

except for diagnonal entries

• V ∈ R
n×n being an orthogonal matrix

The columns of U and V are orthonormal. The essential

characteristics of Singular Value Decomposition are reflected

in the structure of Σ. As described in Equation 2, its entries

are arranged in descending order of the singular values σii.

These singular values reveal the number and the weight of the

basic features that are hidden in X.

σ11 ≥ σ22 ≥ ... ≥ σmin(mn) (2)



The singular values can subsequently be the source of an

exhaustive analysis of the data. By examining the number

of singular values σii � 0, we can identify a low-rank

approximation of the initial matrix X. An estimation of the

initial matrix X can be calulated by only considering the first

R singular values contributing to the data as follows, where

the operator ◦ denotes the elementwise multiplication:

X ≈
R∑

r=1

σrr ur ◦ vr (3)

As illustrated in Figure 1, the Singular Value Decomposition

can be considered as a summation of R rank-one matrices. The

decomposition of X can thus be viewed as an outer product

of the left and right singular vectors ur and vr, scaled by the

respective singular value σr.

Fig. 1. The principle of Singular Value Decomposition.

Singular Value Decomposition is applicable only to data

that can be expressed in terms of a matrix X. However,

when dealing with multi-channel sources, these dimensions are

time and channel. This would hinder the analysis of hidden

features in the frequency space. Therefore advanced processing

techniques are required to handle the coherences in multi-

dimensional data.

B. Tensor Decomposition
The following section presents a brief introduction to the

basics of tensor decomposition. We will explain the Canonical

Polyadic Decomposition (CPD), which we subsequently apply

to remove motion artifacts from the ECG. Carroll and Chang

[30] and Harshman [31] independently proposed the Canonical

Polyadic Decomposition (CPD). For a more comprehensive

analysis of tensor decomposition approaches, we refer the

reader to the following review article [32].
Matrix factorization methods (e.g., Singular Value De-

composition (SVD), Independent Component Analysis (ICA))

factorize a matrix into a subset of smaller matrices. However,

all matrix factorization techniques require constraints of the

factors (i.e., orthogonality for SVD, independence for ICA) to

decompose the data uniquely. These constraints are artificially

imposed on the data and do not derive from the natural

characteristics present in the ECG.
Similarly to matrix factorization, the concept of multi-

dimensional decomposition techniques is to extract underlying

or latent features from a given multi-dimensional array (an N-

way tensor) X . A three-way tensor is a three-dimensional array

having I × J ×K elements:

X = a ◦ b ◦ c
X ∈ R

I×J×K
(4)

The Canonical Polyadic Decomposition is a rank-based ten-

sor decomposition that decomposes a given multi-dimensional

tensor into a linear combination of rank-one tensors. Such

rank-one tensor is also referred to as a pure tensor. Assuming

we have a three-dimensional tensor, this tensor is of rank-one

if it can be expressed as the tensor product of three vectors,

as described in Equation 4. A subsequent analysis of each

component of the rank-one tensors can accordingly uncover

hidden features in the data. Unlike matrix decompositions,

tensor decomposition can uniquely decompose a given n-

dimensional dataset without imposing harsh constraints on the

factors. However, the decomposition is based on the natural

multi-linear relationship present in the data. The following

Equation expresses this model for the three-dimensional case:

X ≈
R∑

r=1

ar ◦ br ◦ cr (5)

where R is a natural number representing the quantity of rank-

one components in the decomposition, also referred to as the

decomposition rank. The resulting rank-one tensors consist of

three loading vectors (ai, bi, and ci), one for each dimension

of the initial tensor X . Figure 2 demonstrates the principle of

CPD for an R component model.

Fig. 2. The principle of Canonical Polyadic Decomposition for a three-
dimensional tensor.

IV. TENSOR DECOMPOSITION

A. Data acquisition

We acquired the wireless electrocardiogram and physical

activity by employing the Shimmer3 sensor platform [33]. This

platform contains a 3D gyroscope, a 3D accelerometer, a chip

to measure the bioimpedance, and a 5-lead WECG, which can

be sampled synchronously.

To investigate the influence of motion on the electrocar-

diogram, we deployed two sensor setups to independently

record the wireless electrocardiogram at rest as well as isolated

motion artifacts at the back of the subjects. We intended to

generate artificially disturbed ECG sequences.

Therefore, we placed one Shimmer3 platform centrally on

the sternum and attached two electrodes at the left and right

arm position, resulting in the Einthoven lead I (LA-RA). An

additional electrode at the right leg position served as reference

potential (refer to Fig. 3). Thereby, we recorded the WECG

at rest from 11 healthy subjects at a rate of 512 samples per

second.



Noise recordings were obtained by placing one Shimmer3
sensor at the back of each subject at the height of the lumbar

curve. The bias electrode (B) was placed centrally on the

spine. The reference electrode (R) was located approximately

3.5 cm to the right. The positive electrode (P) was positioned

approximately 10 cm to the right of the bias electrode. All

distances refer to the measurement between the electrodes’

center. Figure 3 depicts the employed sensor setup for both

placements. We calibrated the accelerometer to record accel-

erations of ±16G, and the gyroscope to measure an angular

velocity up to 500 ° s−1. These ranges are sufficient for all

movements considered in our experimental setup.

B R P

RA LA

R

Fig. 3. Sensor placement at the front and the back.

Obtaining isolated noise recordings and generate artificially

disturbed WECG sequences has previously been used to

analyze the characteristics of motion artifacts and evaluate

noise reduction performances on ECG signals [18], [34],

[35]. The underlying assumption is that cardiac influence is

negligible at the lumbar curve, and motion artifacts dominate

the ECG. We have subsequently generated artificial motion

artifact contaminated ECG by adding the noise recording on

the clean data of the respective subject. All noise recordings

were scaled to generate a Signal-to-Noise-Ratios (SNR) of

−5 dB.

The advantage of this approach is the availability of a

”ground-truth” signal - the clean ECG at rest. We can thus

quantify the artifacts that the proposed approach removes from

the WECG. In contrast to artificially generated motion artifacts

(e.g., sinusoidal waves), we are more likely to capture the

statistical properties and distinct characteristics of genuine

motion artifacts. Moreover, reference sensors are available that

help to characterize the artifacts in the data. Subsequently,

we do not rely on secondary quantities (e.g., beat detection

algorithms) to evaluate the performance of the motion artifact

removal.

Table I contains all movements considered in our experi-

mental setup. They were selected to reflect different aspects of

everyday life, including motions of lower and higher intensity.

We intentionally included movements of light intensity (e.g.,

Walking and Bending forward) as we associate these with

elderly living. We tried to execute the movements under

normal conditions. Only Bending forward, Standing up, and

Jumping were performed on the spot. Because Running and

Jumping are physically exhausting, these were conducted

in four episodes of 30 s with 15 s of rest in between. We

subsequently detected the active segments and removed the

inactive periods from the dataset, resulting in signal lengths

of 2min for all activities.

TABLE I
OVERVIEW OF THE PHYSICAL ACTIVITIES.

No. Movement Type Duration
in mm:ss

1 Stand up from chair and sit down 02:00
2 Bend forward and come up again 02:00
3 Walking 02:00
4 Running 02:45
5 Jumping on the spot 02:45
6 Stairs up and down 02:00

B. Preprocessing and Tensor construction

As the characteristics between the interfacing medium be-

tween the ECG electrodes and the patients’ skin change

continuously, the measurements are subject to a gradual drift in

the baseline. Furthermore, high-frequency noise and powerline

interference can additionally disturb the signal. To remove

these distortions from the ECG, we applied digital frequency

filters. All signals were preprocessed using a low-pass filter

with a cutoff frequency of fc,low = 80Hz and a high-pass

filter with a cutoff frequency of fc,high = 0.5Hz. The cut-off

frequencies applied are following the proposed sub-bands for

ECG interpretation [36]. Figure 4 depicts a gradual drift in the

baseline of the WECG and the preprocessed ECG data.
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Fig. 4. Removal of baseline wander from the ECG using digital frequency
filters.

Subsequently, we divided the recorded data (td = 120 s)
into four episodes of 30 s for each subject. To avoid bias in

the decomposition process, we normalized the data according

to Equation 6. Normalization is a common practice to give the

input data from heterogeneous sources equal statistical weight

[37].

xnorm(t) =
x(t)−min(x)

max(x)−min(x)
(6)

A variety of time-frequency transformations are available

to capture temporal and spectral aspects of the data simul-

taneously (e.g., Short-Time Fourier Transform (STFT) [38],
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Fig. 5. The result of a rank five CPD for Bending using the accelerometer, including the components for scale, samples and channel.

and Wavelet Transformations (Discrete Wavelet Transform

(DWT), and Continuous Wavelet Transform (CWT) [39]).

Fourier Transformations can model changes in the spectral

characteristics but are incapable of detecting the moment

when these changes occur. The Short-Time Fourier Transform

(STFT) segments the data into multiple windows and applies

the Fast-Fourier Transform in each of them. Thereby the

frequency components in that specific time window can be

determined. However, the spectral and temporal resolution are

conflicting. STFT can achieve a good time resolution by using

small windows to calculate the Fourier Transform, but this

inevitably results in poor spectral resolution. Choosing the

appropriate window length is thus a trade-off between time

and frequency resolution.

Wavelet transformations apply a base function Ψ, which

is compressed or stretched to capture high- or low-frequency

components in the data. The advantage of wavelet transforma-

tions is the excellent time resolution for high frequencies while

preserving a high-frequency resolution for low frequencies.

It is, therefore, suitable to capture the temporal and spectral

aspects of motion artifacts and cardiac data adequately. This

transformation has been used extensively in the reduction of

artifacts from the ECG and other biomedical applications in

recently [3], [37], [40].

We employed the Stationary Wavelet Transform (SWT),

otherwise known as Maximal Overlap Discrete Wavelet Trans-

form (MODWT) [41], to transform the ECG and motion

reference data into the time-frequency space. In contrast to

the regular DWT, the output of each level of SWT contains

the same number of samples as the input data enabling us to

construct a tensor with a consistent number of samples for each

wavelet decomposition stage. As a mother wavelet, we selected

the Haar wavelet [42]. During the wavelet transformation, this

mother wavelet is scaled to cover different frequency bands

of the data. The scaling parameter is inversely proportional

to the frequency: A high scale stretches the mother wavelet

and represents low frequencies of the signal while a low

scale compresses the wavelet resulting in covering the higher

frequencies of the signal. The MODWT transforms the WECG

and reference data into 14 scales, each representing different

frequency bands in the signal.

Each sensor generates a one-dimensional time-related vector

of size J , where J refers to the number of samples. We

transformed the data using Stationary Wavelet Transform into

a two-dimensional frequency-time matrix of size I×J , where

I refers to the wavelet scales and is inversely proportional

to the frequency. By combining the wavelet transformed data

from the WECG and one motion reference sensor in a multi-

dimensional array, we constructed a tensor of dimensions

I×J×K (see Fig. 6). The frontal slice of the tensor represents

the wavelet decomposed data of one sensor. For each segment

recorded, we selected the accelerometer/gyroscope axis that

correlates best with the respective artifactual ECG.

Fig. 6. Construction of the three-dimensional tensor combing the WECG and
a reference sensor.

C. Tensor Decomposition and Reconstruction

After constructing the tensor, we applied a five component

Canonical Polyadic Decomposition according to Equation 5.

For all subsequent tensor modelling, we employed the Tensor-
lab 3.0 Toolbox in MATLAB 2019b [43].

The decomposed data contains three loading vectors, each

corresponding to one dimension of the initial tensor X .

Fig. 5 illustrates these loading vectors for one factor resulting

from a Canonical Polyadic Decomposition applied to a three-

dimensional tensor. The first loading vector represents the

distribution of the corresponding data among the wavelet

scales. The scales thereby result from the MODWT. The

magnitude encodes the strength of the CPD-factor in the re-

spective frequency band. The second loading vector represents

the temporal features, i.e. the temporal distribution of the

factor. The third vector represents the distribution of the latent

factor among the two channels employed in the decomposition

process (i.e., accelerometer (Ch. 1) and WECG (Ch. 2)). It

encodes the magnitude of the CPD-factor among the chan-

nels, i.e. how strong the respective component is present in

Ch.1/Ch.2. The following list illustrates the necessary steps in

denoising the WECG.

The basic premise of our attempt is that latent factors cor-

relating to motion artifacts manifest themselves in the ECG



Algorithm 1: CPD Artifact Reduction

Data: ecg, motion reference

Result: denoised ecg

1 Frequency Filter;

2 Normalization;

3 Wavelet Transform;

4 Tensor Construction;

5 Tensor Decomposition;

6 Reconstruction from CPD-Model;

7 Inverse Wavelet Transform;

8 Artifact Reduction of ECG (see Eq. 7);

and the motion reference. Subsequently, applying the tensor

decomposition with a reference sensor as an additional source

of information can take advantage of the correlation between

the input data and extract motion artifacts from the WECG.

A reconstruction of the decomposed tensor and the inverse

wavelet decomposition leads to the components which are

present in both sensors (the ECG and the inertial reference).

The noise-free ECG signal is subsequently obtained by sub-

tracting the artifact estimation from the noisy ECG as follows:

ECGclean,est. = ECGnoisy −Artifactest.,cpd (7)

V. EVALUATION

The following section provides insights into the findings we

obtained by combing the WECG and the inertial data using

CPD to remove motion artifacts. To objectively evaluate the

approach, we calculated the Signal-to-Noise Ratio (SNR) as

described in Equation 8.

SNR = 10 lg(
PSignal

PArtifact

)dB (8)

where PSignal is the power of the noise-free ECG and

PArtifact is the power of the original, respectively remaining,

motion artifact in the ECG after noise reduction. Secondly,

we determined the Pearson correlation coefficient R between

the motion reference accelerometer and the ECG before and

after noise reduction. This will provide insights into how well

the CPD-model removes mutual information from the ECG.

In addition to the Signal-to-Noise Ratio we evaluated the

performance by considering the Root Mean Squared Error

(RMSE) between the artifacts estimated by the CPD yest and

the original artifacts ytrue. The RMSE for two signals of

length n is defined as follows:

RMSE =

√√√√(
1

n
)

n∑
i=1

(yest − ytrue)2 (9)

Table II contains the results of removing motion artifacts

from the ECG using the CPD-model and the accelerometer. All

values refer to the median from the 11 subjects participating

in the study. We only regarded the absolute values of the

Pearson correlation coefficient, to validate if and how strong

the accelerometer and the ECG are correlated after noise

reduction.

TABLE II
PERFORMANCE OF THE CANONICAL POLYADIC DECOMPOSITION TO

REMOVE MOTION ARTIFACTS USING THE ACCELEROMETER.

Movement SNRafter RMSEArtifact RRef,before RRef,after
in dB

Jumping 1.1 0.07 0.23 0.05
Running 1.1 0.06 0.21 0.06
Bending 2.4 0.06 0.27 0.02
Standing up 1.1 0.06 0.12 0.05
Stairs 0.5 0.06 0.14 0.05
Walking 0.8 0.07 0.23 0.05

The CPD-model removes the most substantial portion of

the motion artifacts and increases the Signal-to-Noise-Ration

from −5 dB to at least 0.5 dB for all movements regarded.

There are, however, fine-grained differences in how well the

algorithm performs for specific movements. When we regard

the Signal-to-Noise-Ratio, the algorithm performs best for

Bending forward and weaker for Climbing up and down a

flight of stairs. For the remaining movements, the algorithm

produces comparable levels of SNR.
Using the Canonical Polyadic Decomposition, we can ef-

fectively decrease the correlation between the ECG and the

accelerometer RRef for all movements regarded in our analy-

sis. Moreover, the Root Mean Squared Error (RMSE) between

the original and the removed artifacts is low. We thereby infer

that CPD can serve as a useful method to remove motion

artifacts from the ECG.
We subsequently replaced the accelerometer in the third-

order tensor with the gyroscope and the bioimpedance and

repeated the decomposition and reconstruction procedure for

each sensor separately. Figure 7 depicts the results in the

form of the Signal-to-Noise-Ratio. Combing the ECG and

the reference sensors significantly enhances the signal quality

for all sensors types. Overall, the accelerometer performs the

best for all movements save Bending forward. There are fine-

grained differences in how well the respective sensors remove

artifacts for a specific movement. Nevertheless, all sensors can

be employed in the proposed tensor-based approach.
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Gyroscope
Bioimpedance
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R
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Fig. 7. Performance of the CPD-model for different reference sensors.

To illustrate the performance of the artifact reduction

method, Figure 8 displays the results of our proposed ap-

proach for a 30 s interval of Bending forward. Note that the



difference in magnitude of ECGnoisy and ECGest results

from the removal of the mean in the decomposition process.

The signal ECGnoisy is significantly disturbed due to the

artificially generated motion artifacts. Not all QRS-complexes

are visually detectable, and significant noise affects all parts

of the ECG. After applying the proposed tensor approach, we

can remove the majority of motion artifacts from the ECG.

The QRS-complexes become visible, and even the P-waves

can now be manually detected.
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Fig. 8. Performance of the CPD motion artifact reduction for one subject
performing the movement Bending.

We subsequently compare the removed and the original

artifacts as well as the accelerometer as motion reference in

Fig. 9. The artifacts extracted using the CPD approach relate

to the artifacts induced. Moreover, the extracted artifacts from

the ECG do not contain any apparent cardiac information (e.g.,

QRS-complexes). This is especially vital as applying motion

artifact reduction should not change the characteristics of the

underlying ECG and remove valuable information.
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Fig. 9. Comparison of the accelerometer, the original artifacts and the
extracted artifacts using the proposed CPD-model for one subject performing
the movement Bending.

VI. CONCLUSION AND FUTURE WORK

In this paper, we employed the Canonical Polyadic Decom-

position to remove motion artifacts from the measurements

of a wireless electrocardiogram. We recorded data from 11

healthy subjects undertaking various types of movements

associated with everyday activities. The movement types were

chosen to reflect different aspects of daily routines and cover

intensities associated with elderly living. Using the Shimmer3
platform, we employed an additional wireless ECG at the

back of the subjects to record motion artifacts with as little

cardiac content as possible. These noise measurements were

subsequently scaled and added to a noise-free ECG of the

respective subject in rest. Thereby we generated ECG with

artificially superimposed motion artifacts.

We constructed a three-dimensional tensor consisting of

one ECG lead and one of the available reference sensors

(accelerometer, gyroscope, and bioimpedance). By employing

the Canonical Polyadic Decomposition, we combined the

data and extracted mutual information present in the ECG

and the motion reference sensor. These were subsequentially

subtracted from the ECG to obtain noise-free data. The results

suggest that CPD can successfully remove motion artifacts

generated by a variety of different movements. All of the

regarded movement sensors are capable of capturing artifacts

and can be included in the multi-dimensional tensor. We

conclude that CPD is a powerful tool to remove motion

artifacts from the ECG without additionally disturbing the

signal or removing useful cardiac information.

In future research, the authors intend to closely investigate

the correlation between the ECG and motion artifacts, as this

will likely influence the outcome of the decomposition process.

These data will help to characterize the motion artifacts

better and thereby enhance the quality of the decomposition

process. Our approach was limited to the Canonical Polyadic

Decomposition. Advanced tensor methods such as Block Term

Decomposition or Tucker Decomposition might improve the

performance of the motion artifact reduction technique as these

methods offer more relaxed constraints in the decomposition

process.
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