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Abstract—A certain class of wireless devices such as elec-
trocardiogram (ECG), electromyogram (EMG) and electroen-
cephalogram (EEG), are very useful for telemedicine because
they enable the free movement of patients while vital biophysical
measurements are taken from them. However, these devices are
very sensitive to motion artifacts – electric potentials generated
due to the undesirable movement of electrodes on the surface of
the skin or the change in the skin impedance. In this paper we
examine the scope and usefulness of different types of model-
based signal processing and dimensionality reduction techniques
to model and reason about motion artifacts. While the techniques
we review are applicable for a wide range of signals, we limit
our analysis, nevertheless, to wireless electrocardiograms, so that
we can base our investigation on experimental data.

Index Terms—Adaptive filters, Electrocardiogram, motion ar-
tifacts, Independent Component Analysis, Singular Value Decom-
position , Tensor Decomposition

I. INTRODUCTION

Wireless medical devices such as wireless electrocardio-
gram (ECG), wireless electromygram (EMG) and wireless
electrocardiogram (EEG) measure action potentials on the
surface of the skin using different types of electrodes. Action
potentials are electrical voltages generated by the excitement
of tissue, nerve and muscle cells. The ECG measures cardiac
action potentials; the EMG, action potentials generated by
the muscles; and the EEG, action potentials generated by the
neurons of the cerebral cortex [1], [2]. The devices are useful
for diagnosing and monitoring a plethora of diseases, but their
application has so far been limited to clinical settings, mainly
due to their sensitivity to motion.

If we consider just two ECG electrodes at the surface of
the skin to the right and left of the sternum, they essentially
measure a potential difference between two points. As the
distance between the electrodes varies, so does the potential
difference (partly, because the impedance between the elec-
trodes is distance dependent). Hence, the undesired movement
(displacement) of one of the electrodes with respect to the
other introduces a spurious change in the voltage measure-
ment which can be mistaken for a change in the underlying
cardiac action potentials. Because this change arises due to
the movement of the electrode(s), it is referred to as a motion
artifact [1].

In order to remove motion artifacts, a reference signal or
statistics pertaining to either the useful signal or the motion
artifacts should be available. However, a reference model of
the useful signal cannot be established, as it depends on the

underlying cardiac, muscular, or brain conditions, which are
unknown. Similarly, the motion affecting the electrodes is a
result of complex and time-varying physical movements, so
that no readily available model can be employed to estimate
their statistics. In the literature, attempts have been made
to establish a correlation between the physical movements
affecting the electrodes and the useful signal by using ac-
celerometers, tilt, or contact sensors [3], [4], [5]. Some have
employed infrared sensors to indirectly establish the movement
of electrodes from the way the skin texture changes when
it contracts and relaxes in response to the movement of the
body [6]. Some have embedded additional circuits into the
EEG/ECG/EMG platforms in order to measure the change
in the electrical characteristics of the interface between the
electrodes and the skin [7], [8], [9]. Regardless of the specific
sensors employed, the idea is to estimate the motion artifacts
in terms of the motion affecting the electrodes:

n̂ = g (a) (1)

where n̂ is the estimation of the motion artifacts n in terms
of the physical motion represented by a and g(•) is some
mapping function. All the parameters are regarded as random
variables, as they do not accurately represent the underlying
physical conditions. Furthermore, besides the external (unde-
sirable) motion affecting the electrodes, the internal activities
themselves induce their own motion on the electrodes. In the
case of ECG, cardiac action potentials cause the myocardia
to contract and relax thereby making the heart pump blood;
in EMG, the action potentials are results of the actual con-
tractions and relaxations of muscles. In both cases, the action
potentials are associated with actual underlying movements
which can be picked by the motion sensors. The purpose of
this paper is to closely examine the scope and usefulness of
some of the proposed techniques to remove motion artifacts
and to examine the validity of the underlying assumptions.
The rest of this paper is organized as follows: In Section II
we give account to how we obtained the data we use for
our investigation. In Sections III and IV we review two
probabilistic estimation techniques, namely, Independent Com-
ponent Analysis and Adaptive Filters. In Sections V and VI,
we review two dimensionality reduction techniques, namely,
Singular Value Decomposition and Tensor Decomposition.
Finally, in Section VII we give concluding remarks.
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Fig. 1. A three-dimensional array consisting of the raw data from a 5-lead
wireless ECG and 2 inertial measurement units (3D accelerometer and 3D
gyroscope). The array belongs to a single movement lasting approximately
10 s.

II. BACKGROUND

For our evaluation, we rely on actual experiments we
conducted using the Shimmer-3 Platform consisting of a 5-
lead wireless electrocardiogram, a 3D accelerometer, and a
3D gyroscope [10], among others. The platform allows the
synchronous sampling of all on-board sensors. We set the
sampling rate at 512 samples per second and saved the data
locally. The measurements were taken from 11 university em-
ployees doing six simple exercises (Bending forward, Standing
up, Climbing stairs, Walking, Running, and Jumping) and
all the experiments were conducted with the approval of
the TU Dresden’s Ethics Committee (Reference Number: EK
271072017).

Under normal circumstances, the samples of the ECG are
correlated in two complementary ways. Firstly, the heart beats
fairly regularly. Secondly, within a single heartbeat, there is
a conditional dependency between the occurrence of the P
wave, the QRS wave complex, the T wave and the segments
in between. Even in the absence of any external reference
signal, these dependencies can be exploited to estimate the
presence and extent of motion artifacts, provided that there are
no underlying cardiac conditions. Nevertheless, there is some
irregularity in the way the heart beats, bringing uncertainty
in the estimation assignment. This uncertainty increases when
motion artifacts and underlying cardiac conditions are mixed.
Some of the proposed approaches attempt to establish a
correlation between the motion artifacts and the reference
signals in the absence of any underlying cardiac conditions
– i.e., by monitoring healthy subjects in motion. One way to
achieve this is to segment the row ECG measurements into
heartbeats and set up a three-dimensional array (heartbeats vs.
samples vs. channels), as shown in Fig. 1.

Fig. 2 shows thirteen successive ECG segments lasting
approximately 10 s. The measurements were taken while one
of our subjects was jumping. As can be seen, the QRS wave
complex (the waveform at the right end) are the least affected
by motion artifacts, mainly due to their distinct and strong
nature whereas all the others are affected to some extent.

The most widely employed techniques for removing motion
artifacts are Independent Component Analysis (ICA) [11],
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Fig. 2. Thirteen successive ECG segments measured between the left arm
and the right arm (LA-RA) of a subject while jumping. The measurement
duration was approximately 10 s.
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Fig. 3. The model parameters in Independent Component Analysis (ICA)

[12], [13], [14] and Adaptive Filters (AF) [15], [16], [17],
Singular Value Decomposition [18], [19], [20], Principal Com-
ponent Analysis (PCA) [21], [22], and tensor decomposition
[23], [24], [25], [26]. In the subsequent sections we review
these approaches closely. Nevertheless we do not review
Principal Component Analysis. This approach is essentially
similar to SVD and repeated experiments yielded identical
results.

III. INDEPENDENT COMPONENT ANALYSIS

Arising originally in the field of audio signal processing,
the Independent Component Analysis (ICA) aims to separate
two or more independent source signals which are supposed
to have been linearly mixed. There are three basic underlying
assumptions for ICA to yield reliable results:

• The input sources are, statistically speaking, independent.
• There are at least as many output signals as source

signals.
• In case of two source signals, at least one of them should

have a non-Gaussian (non-normal) density function.
Fig. 3 displays the basic estimation model for ICA. Two

independent signal sources (i1 and i2), for our case, the true
ECG signal and the motion artifacts, are mixed with one
another. These signals are picked by two independent detectors
(sensors) producing o1 (the noisy EEG/EMG/ECG signal) and
o2 (the signal picked up by the motion sensor). The source and
the output signals are all regarded as random variables having
their own probability density functions, f(i1), f(i2), f(o1) and
f(o2). Furthermore, it is assumed that the output signals are
mixed linearly, so that:

o1 =a11i1 + a12i2 (2)
o2 =a21i1 + a22i2 (3)



or, [
o1

o2

]
=

[
a11 a12
a21 a22

] [
i1
i2

]
(4)

or, in short:

o = Ai (5)

where i is the input or source vector containing i1 and i2 and
A is the mixing matrix. From which, we have:

i = A
−1
o = Wo (6)

where A
−1

= W is the inverse matrix which is also called un-
mixing matrix. The corresponding density functions are related
with one another as follows:

f (o) = f (i) |W∗| (7)

where |W∗| = ∂i/∂o is the Jacobian matrix of o with respect
to i.

The aim of ICA is to reproduce i1 and i2 by first estimating
W. The estimation steps/conditions are as follows:

1) Because one has already measured o1 and o2, their
statistics are readily available. Furthermore, since each
of these random variables arises from the summation of
two random variables (i1 and i2) , their density functions
are approximated to be Gaussian, in accordance with the
Central Limit Theorem [27] (Ch. 7; refer also to [28] for
more information).

2) Even though i1 and i2 are unknown random variables,
their density functions, nevertheless, are supposed to be
known (for one of them the condition of non-Gaussian
distribution must hold). If, however, both of them are
Gaussian, their summation, too, will be Gaussian and
separating the two signals from one another without any
additional knowledge will not be possible.

3) But if one of them is non-Gaussian, then, the ICA first
attempts to estimate the inverse matrix which maximises
the output signals’ statistics given the statistics of the in-
put signals. Often, the Maximum Likelihood Estimation
is employed for this task [29]. Hence,

f (o|W) = f (Wi) |W| (8)

Equation (8) is expected to be maximum when W =
W∗ in Equation (7). Consequently, Equation (8) is often
employed to evaluate the eligibility of any putative un-
mixing matrix W which maximizes f (o1|W).

4) Once W is determined, then the values of i1 and i2 can
be estimated sample by sample.

In plain terms, consider a single value observed at one of
the outputs, say at o1, o1 = v11 . Since we have said that the
output is the superposition of two independent inputs, we have
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Fig. 4. The distributions of three sample points (50, 100, and 150) in an ECG
taken between the left arm and the right arm (LA-RA) while a subject was
jumping.

an infinite combinations of values that might have resulted in
v11 :

v11 = ia1 + iα2

v11 = ib1 + iβ2

v11 = ic1 + iγ2
...

However, since we already have assumed that statistics per-
taining to the input signals are already available, we know with
what probabilities ia1 , i

b
1, i

c
1, i

α
2 , i

β
2 , i

γ
2 , etc. occur. Similarly,

from the output statistics, we know the probability of v11 .
Moreover, from our independence assumption, we know that
p(v1) = p(ia1)p(iα2 ) + p(ib1)p(iβ2 ) + · · · . However, at any
given instance, only one of the input combinations is possible.
Therefore, the maximum likelihood estimate attempts to pick
up one of those combinations which are the most likely or
which maximize the probability of v11 .

Evaluation

If we take each sample point of a heartbeat as a random
variable, the distribution of these random variables can be es-
tablished by considering the values of the successive heartbeats
for the same sample points. Fig. 4 shows the distributions
of the sample points 50, 100, and 150 for the heartbeats
shown in Fig. 2. A narrower curve implies that the sample
points of the successive segments are consistent with one
another and, hence, less affected by motion artifacts. The
corresponding measurement taken synchronously from one of
the accelerometer axes is shown in Fig. 5

In ICA, it is assumed that since the output random variables
are mixtures of two independent inputs (for our case), their
distributions should be Gaussian. If we take any one of
the random variables in Fig. 4 as o1 and the corresponding
random variable in Fig. 5 as o2 to set up Equation (5),
then the assumption can be taken as plausible. It is apparent
that both output random variables are normally distributed.
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Fig. 5. The distributions of three sample points taken from one of the
accelerometers (the y-axis).
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Fig. 6. The distributions of three ECG sample points (50, 100, and 150) taken
under an ideal condition.

Fig. 6 displays the distributions of the same ECG samples
taken in an ideal condition (i.e., with minimal motion artifacts
present). These random variables can be taken as the inputs
to Equation (5). The randomness in the sample values can
be attributed to the irregularities of the heartbeats even under
normal circumstances, in which case the distribution of the
artifacts-free ECG at any point can be taken as a normally
distributed random variable.

We have now seen that at least three of the parameters
in the artifacts removal assignment are potentially normally
distributed. What we do not know is the distribution of the
motion artifacts, one of the input parameters. In the absence
of this knowledge, it is difficult to justify the use of ICA.

IV. ADAPTIVE FILTER

The implementation of an Adaptive Filter consists of three
tasks: Prediction, measurement, and combination. These tasks
may refer to the estimation of either the ECG or the motion
artifacts. In the first case, the motion artifacts are considered
only indirectly whereas in the second, they are the subject of
estimation, in which case, another step is required to estimate
the clean ECG as follows:

m̂ = r− n̂ (9)

where m̂ refers to the best estimation of the clean ECG; r,
to the noisy ECG; and n̂, to the estimated motion artifacts.
Whether the ECG or the motion artifacts are estimated, in the
Adaptive Filter, the difference between the desired signal and
its estimate is minimized in a mean square error sense [30].

Suppose we wish to estimate the motion artifacts in a noisy
ECG using the outputs of a 3D accelerometer (this refers to
the measurement task):

n̂ = αxax + αyay + αzaz (10)

Hence, the mean square error is given as:

E
{
e2
}

= E
{

(n− [αxax + αyay + αzaz])
2
}

(11)

The error in Equation (11) can be minimized by finding the
optimal αx, αy , and αz . This can be done by differentiating
the equation with respect to αx, αy , and αz , and setting the
result to zero, which yields:

E {nax} = αxE
{
a2
x

}
+ αyE {axay}+ αzE {axaz}

E {nay} = αxE {axay}+ αyE
{
a2
y

}
+ αzE {ayaz}

E {naz} = αxE {axaz}+ αyE {ayaz}+ αzE
{
a2
z

} (12)

Equation (12) can be expressed in a matrix form:

Rna = αRaa (13)

where Rna refers to the left term in Equation (12) expressing
the correlation between the motion artifacts and the linear
acceleration picked by the axes of the accelerometer and
Raa is the correlation between the different axes of the
accelerometer. From which we have:

α = RnaR
−1
aa (14)

Notice that Raa contains only measurable quantities which
can readily be available after an experiment. Equations (10) –
(14) essentially summarize the assumptions one makes when
applying an Adaptive Filter:

1) To begin with, from Rna, it is clear that the mea-
surements of the 3D accelerometer are assumed to be
correlated with the motion artifacts included in the noisy
ECG signal. Often a reference setting (such as controlled
movements) is used to determine this correlation. In gen-
eral, however, there is no direct mechanism to ascertain
this correlation and this is one of the limitations of using
an Adaptive Filter.

2) The weight assigned to a given acceleration component
is proportional to its perceived correlation with the
motion artifacts (Rna) and inversely proportional to the
relative uncertainty it introduces (i.e., its variance). This
fact, which is encoded in R−1

aa , is intuitive: The higher
our uncertainty in a random variable, the lesser should
be our confidence in it1.

1The measure of uncertainty in a random variable is expressed by its
variance. The more dissimilar the samples of a random variable are, the bigger
its variance, and, therefore, the bigger is the uncertainty in its outcomes.
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Fig. 7. The estimation of motion artifacts embedded in a noisy ECG using an
Adaptive Filter. The reference signals are obtained from a 3D accelerometer.

Evaluation

Fig. 7 compares a noisy ECG (coral) and the estimation
of the motion artifacts embedded using an Adaptive Filter.
Measurements from a 3D accelerometer are used as reference
for the estimation. The correlation between the three axes and
the ECG is used to compute Rna. From the plots it is possible
to relate the distortion in the ECG with the physical motion
that is picked by the 3D accelerometer.

V. SINGULAR VALUE DECOMPOSITION

Suppose we have m sources jointly “observing” certain
phenomena of interest, each imperfect in its own way. If we
sample the sources synchronously (i.e., time being a common
variable), then the samples taken from these sources can make
up a matrix, the rows making up the samples and the columns
making up the sources (the random variables). If the matrix is a
square matrix, then it is possible to investigate its eigenvectors
and eigenvalues to determine the unique features the samples
describe. An interesting quality of the eigenvectors is that
they are orthonormal, which means, statistically speaking, they
are independent. For our case, the following observations are
useful to notice:

• The ECG samples are correlated with each other. This
correlation will be taken into account during decomposi-
tion.

• The motion artifacts are independent of the underlying
ECG, as they are results of the motion the electrodes
experience on the surface of the skin. In other words,
the motion artifacts and the ECG will be regarded as
independent features during a decomposition.

• The measurement sources are independent of one another
and, therefore, the measurement error introduced by each
source will be considered as an independent feature.

Any rectangular matrix A of size n×m can be decomposed
into three matrices: U (n×r), Σ (r×r), and V (m ×r) without
any loss of information:

A = UΣVT (15)

U and V are orthonormal matrices2 and Σ is a non-negative
diagonal matrix whose entries σii, 1 ≤ i ≤ r are sorted in
decreasing order. The diagonal entries of Σ are called the
singular values of A and encode its distinct features and
their relative significance. Each column of U encodes a single
feature which is independent of all the other features and ranks
the rows of A in terms of this feature. Similarly, each column
of V encodes a single feature and ranks the columns of A in
terms of this feature. The significance of the features, as we
already remarked, is encoded in Σ.

The advantage of SVD is that few assumptions need to be
made as regards the correlation between the measurement sets
(as random variables) and their probability distributions. SVD
automatically separates the hidden features into independent,
non-overlapping feature spaces. The disadvantage, on the other
hand, is that there are no formal steps which guarantee the
objective interpretation of U and V. Often a case by case
analysis is required to make sense of these matrices.

Evaluation

Fig. 8 displays the plots of the U and the V matrices
associated with the SVD of a matrix containing a noisy
ECG and measurements from a 3D accelerometer and a 3D
gyroscope for a single heartbeat. The measurements were
taken while a subject was jumping. The original matrix had
342 rows and 9 columns, the rows representing the samples
and the columns, the sources. The first 3 columns refer to the
x, y, and z axes of the accelerometer; the columns 4, 5 and
6 refer to the three ECG channels (LL-LA, LL-RA, and LA-
RA), and the last three columns refer to the x, y, and z axes
of the gyroscope.

The analysis of Fig. 8 requires domain knowledge. The plots
on the left side display the columns of the V matrix encoding
the contribution of each source in describing a specific feature.
Likewise, the plots on the right side display the columns
of the U matrix encoding how each feature manifests itself
at a specific sample point. It should be recalled that the
accelerometer and the gyroscope could pick up the external
motion of the body and the internal motion due to the pumping
of the heart. Where sources scored comparably in the V
plot, we can assume that they agree in their observation.
Where the scores show significant variations, then there was
no agreement between them suggesting that the phenomenon
was unique to a specific source. This phenomenon is very
likely an uncorrelated noise.

Thus, two interesting phenomena are picked up by all the
sources, the first occurred approximately at the 51st sample
point and the second at the 224th. These two aspects were also
estimated by the Adaptive Filter in Fig. 7 where we attributed
them to motion artifacts. Since no ECG wave forms resemble
them, indeed these two phenomena must be motion artifacts.
Exception to this observation are the fifth and sixth right-side
plots from the top. In order to analyze these plots, we should

2The matrix U is said to be orthonormal if and only if UᵀU = I or,
alternatively, U−1 = Uᵀ.
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Fig. 8. Using SVD to decompose a noisy ECG and the output of six inertial measurement units. The y-axis in all the graphs refers to the SVD scores of the
channels/samples in the corresponding features.

first refer to the corresponding left-side plots. In the fifth plot,
the channels which scored comparable results are channel 4, 5,
and 6, all of which are ECG channels. Hence, we can presume
this feature to belong to the ECG. Indeed, a close examination
reveals a swelling around the sample point 100 which clearly
belongs to the T wave and the unmistakable QRS wave at
sample point 325. By contrast, the sources in the sixth plot
(left) have variable scores. Therefore, the right side plot must
belong to an uncorrelated noise.

VI. TENSOR DECOMPOSITION

One of the limitations of SVD is that it works only for a
matrix (two dimensions). Tensor decomposition can increase
the degree of freedom by at least one dimension. Every entry
of a matrix xij is an intersection between the i-th row and the
j-th column. An n-way tensor (or an n-dimensional array)
is one whose entries are referred by n indices. A matrix is
sometimes referred to as a two-way tensor. The measurement
set displayed in Fig. 1 is referred to as a three-way tensor
(heartbeats vs. channels vs. samples).

In the same way a matrix can be decomposed into basic
constituting elements, a tensor, too, can be decomposed into
basic constituting elements. However, unlike decomposing a
matrix, decomposing a tensor is not straightforward. To start
with, an assumption has to be made about the number of fea-
tures that are hidden in the original tensor, whereas this is done
automatically with SVD. Secondly, different decomposition
strategies employ different statistical estimation techniques
and decomposition structures, which may result in different
outcomes.

A closer look into the tensor in Fig. 1 reveals that it provides
three orthogonal views which can serve different purposes.
For example, the front view provides a matrix describing the

relationship between the heartbeats and the samples for the
k-th source (channel) – i.e, (heartbeats vs. samples)k. This
view is called the front slice. Likewise, the top view provides
a matrix describing the relationship between the samples
and the channels for the i-th heartbeat – i.e., (channels vs.
samples)i. This is called the horizontal slice. Finally, the side
view provides a matrix describing the relationship between
the heartbeats and the channels for the j-th sample– i.e.,
(heartbeats vs. channels)j . This is called the lateral slice.
It is this flexibility, among others, which makes a tensor
desirable. The chief task of a tensor decomposition is to
explore multidimensional correlations in terms of which the
original tensor can be explained. Compared to the size of the
tensor, the basic features are typically small if the samples are
correlated with each other. For our case, we assume that the
outputs of the motion sensors are to some extent correlated
with the ECG as well as the motion artifacts embedded in it.
So, the decomposition should uncover these correlations.

A tensor decomposition begins by unfolding (flattening) the
tensor into a matrix. The unfolding takes place in different
modes, but whichever way is chosen, the entries along each
dimension form a column vector. The mode-1 unfolding of
the above tensor takes each column vector as they are and put
them together side-by-side. The mode-2 unfolding takes each
raw entry of the matrices and places them as column vectors
in a single matrix. Likewise, the mode-3 unfolding takes the
n-th entry of each slice (along the time dimension) and puts
them together as column matrix (numerical examples can be
found in [23], [31] ).

There are different tensor decomposition strategies. Which
of them is the most suitable depends on the application. The
easiest to interpret and the most widely employed is the
Canonical Decomposition/Parameter Factorization (referred in
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Fig. 9. The results of decomposing a tensor containing measurements of three ECG leads (channels), three dimensional acceleration, and three
dimensional angular velocity. The CANDECOMP/PARAFAC decomposition technique is employed. The y-axis in all the graphs refers to the scores of
the heartbeats/channels/samples in describing a corresponding features.

the literature to as CANDECOM/PARAFAC, or, in short,
CP) [32], [33]. It decomposes a three-way tensor into three
matrices:

X = ABC (16)

or

X =

R∑
r=1

ar ◦ br ◦ cr (17)

where ar, br, and cr, are the r-th columns of the matrices A
B, and C, respectively. In the existence of a strong correlation
the original tensor can be approximated by the outer product
of the first K column vectors of the matrices A, B, and C,
respectively. These matrices explain, respectively, the rows,
columns, and lateral dimension of X in terms of the unique
features uncovered by the decomposition.

Evaluation

Fig. 9 displays the results of a tensor decomposition (CAN-
DECOMP/PARAFAC) on a 13 × 9 × 342 ECG tensor. The
row tensor consists of 13 heartbeats, 9 channels, and 342
samples for each channel. The subject was jumping when the
measurements were taken. The hidden features estimated for
the decomposition were 10. With this assumption, the original
tensor could be reconstructed with an accuracy of 91 % using
Equation (17).

Each row in the figure represents a single feature viewed
from three perspectives. The column on the left depicts how
the feature manifests itself in the heartbeats; the column in the

middle depicts which source contributes to the manifestation
of the feature; the column on the right depicts the temporal
aspect of the feature (i.e., how it manifests itself in the sample).
The most interesting feature is the one in the third row (right).
The figure is somehow flipped, but it is unmistakably a noise
free ECG. The modest swell around sample 100 is the T wave
whereas the one around sample 325 is the QRS wave complex.
If we examine the corresponding channels in the middle plot,
it is apparent that channels 4, 5, and 6 contribute the most
to this wave, which are the three ECG leads. Similarly, the
plot on the right shows which heartbeats contribute most.
Except the first and the last, all heartbeats contributed to
some extent, but the contribution of heartbeats 4 and 11 is
the most significant. Compared to SVD (ref. to Fig. 8 (fourth
plot, right)), the extraction of the ECG signal with tensor
decomposition appears to be by far better.

All the other plots describe artifacts. If we closely examine
the middle plots where all the sources agree (i.e., have similar
scores), we shall ascertain that the fifth, seventh, and ninth
plots are of particular importance. Interestingly, the corre-
sponding plots on the right sides are very similar, from which
we can conclude that the plots refer to motion artifacts.

VII. CONCLUSION

In this paper we reviewed the usefulness of four estimation
techniques to model and remove motion artifacts. All of
them assume that motion artifacts are linearly added to the
useful signals. In ICA, it is assumed that at least one of



the input signals has a non-Gaussian distribution. We have
demonstrated that this assumption is difficult to justify. In an
Adaptive Filter it is assumed that knowledge of the correlation
between the reference signals and the useful signal is available.
Often, this is ascertained by measurements taken under ideal
conditions. The dimensionality reduction techniques, on the
other hand, do not use such prerequisites, examining only the
existence of multidimensional correlations to decompose the
raw measurement sets into non-overlapping clusters. However,
there is no readily available and formal approach to interpret
the results, making it difficult to use the results in the im-
plementation of the algorithms. Instead, domain knowledge is
required for interpretation. Where domain knowledge is avail-
able, dimensionality reduction techniques, particularly, tensor
decomposition, can yield reliable and reproducible results.
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