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Abstract—Cardiovascular diseases (CVD) claim tens of mil-
lions of lives worldwide every year. About one-third of these
die before they reach 70. For decades, a considerable effort has
been made to supplement clinical treatments with telemedicine.
In this respect, wireless electrocardiograms play a vital role,
since affordable, unobtrusive, and long-term monitoring can be
made with them while patients carry out everyday activities
unhindered. Moreover, symptoms which can otherwise be hidden
during short-term, clinical check-ups can be detected and exact
causes can be assigned to them. Nevertheless, wireless electrocar-
diograms are highly sensitive to motion. Even though hardware
and software solutions have been proposed in the past to remove
motion artefacts, the results are still unreliable. In this paper
we propose (1) to use inertial sensors to directly measure the
motions affecting the electrodes of a wireless electrocardiogram
and to correlate these measurements with motion artefacts and
(2) to employ a dimensionality reduction technique (singular
value decomposition, or, in short, SVD) in order to recover
the underlying useful ECG signals. We consider different types
of intense movements and confirm that SVD consistently and
reliably enables to reconstruct the QRS complex and to some
extent the T waves. SVD, however, is unable to recover the P
and T waves in some irregular and complex motions.

Index Terms—Dimensionality reduction, inertial sensors, mo-
tion artifacts, singular value decomposition, telemedicine, wireless
electrocardiogram

I. INTRODUCTION

According to the 2016 World Health Statistics, cardiovas-

cular disease (CVD) claimed 17.5 million lives worldwide

in 2012 and 6 millions of these died before the age of 70

[1]. Similarly, according to the 2017 European Cardiovascular

Disease Statistics, CVD is “the main cause of death in men in

all but 12 countries of Europe and is the main cause of death in

women in all but two countries” [2]. The same statistics reveals

that CVD accounts for “45% of all deaths in Europe and

37% of all deaths in the EU”. The United Nations Sustainable

Development Goals (SDGs) target to reduce these figures by

one third by 2030 (1) through prevention and treatment and

(2) by promoting mental health and well-being [1].
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A wide range of wireless electrocardiograms have been

developed both by the research community and the industry

to enable affordable, long-term, unobtrusive, and reliable us-

age in rehabilitation and residential settings [3]–[5]. Hence,

patients can freely move and carry out everyday activities

whilst vital cardiac action potentials are being monitored.

This way, the possibility of observing symptoms which may

otherwise remain hidden during clinical diagnosis increases

and the monitoring task (durations, intervals, and rates) can be

remotely controlled and adapted, so that local resources, such

as the available energy and the communication bandwidth, can

be used efficiently.

However, the use of wireless electrocardiograms presently

poses some formidable challenges, the most significant of

which being the inclusion of motion-induced artefacts into the

useful measurements. In Estimation Theory, the statistics of

the noise – such as measurement noise and process noise –

or of a reference signal must be available in order to recover

the useful signal. Indeed, for many applications, establishing

these statistics with sufficient accuracy is an achievable goal.

In dealing with the measurements of a wireless ECG, however,

this is a difficult task. The reason is that the measurements can

be distorted for various reasons, including:

• a change in the characteristics of the underlying cardiac

action potentials (cardiac condition),

• a change in the characteristics of the medium interfacing

the electrodes of the wireless ECG with the skin (for

example, sweat),

• the generation of action potentials due to the contractions

and relaxations of muscles,

• loose contacts and undesirable vibration of electrodes, or,

• a combination of all these.

Measurements taken in controlled environments (for exam-

ple, in a clinical setting, where a patient is resting) cannot be

taken as reference because the heart may not exert in the same

way when it is exposed to different activities. Therefore, a

novel approach is required to establish the statistics of motion

artefacts.



Most existing or proposed approaches employ some variants

of Finite Impulse Response (FIR) filters [6], [7], Adaptive

Filters (AF) [8]–[10], Independent Component Analysis (ICA)

[11]–[13], or a combination of these [14]. Each technique

has its own merits and demerits and is applicable under a

certain set of conditions. In general, FIR filters set the least

preconditions but their usefulness is also limited (they are

mainly used to smooth the noisy ECG signal, but in the

process, tend to suppress episodic components). The use of

adaptive filters implicitly assumes that motion artefacts are

normally distributed whereas the use of ICA explicitly assumes

that either the useful signal or the noise component are non-

Gaussian. In the absence of any reference signal to test the

validity of these assumptions, the justification for employing

these approaches is weak.

In this paper, we employ measurements from 3D accelerom-

eters and 3D gyroscopes along with dimensionality reduction

techniques to reason about and remove movement-induced

artefacts. The premise is the following: The main cause of

signal distortion during movement is the movement itself. The

more vigorous the movement, the most likely the distortion

becomes. Consequently, by establishing a correlation between

the measurements of the ECG and the inertial sensors, it

is possible to localise and remove the artefacts. Other than

the assumption that the ECG measurements and the motion

artefacts can be expressed in terms of a linear combination

of some basic but hidden factors, we make no assumption as

regards the statistical distributions of both signals.

The remaining part of this paper is organised as follows:

In Section II, we review related work. In Section III, we

describe our experiment set-up and data analysis approach.

In Section IV, we take a closer look into the results of

the decomposition process and highlight the opportunities

and challenges of working with inertial sensors. Finally, in

Section V, we give concluding remarks and identify some open

issues which we aim to address in future.

II. RELATED WORK

The work related to ours can be categorized into three

groups: (1) The use of inertial sensors to capture the motions

affecting a wireless ECG (i.e., the electrodes of a wireless

ECG) and the attempt to correlate this motion with the motion

artefacts included in the useful signal; (2) the analysis and

modelling of motion artefacts and the attempt to remove them

from the useful but noisy signal; and (3) the recognition of

ECG waveforms which are affected by motion.

To the best of our knowledge, Tong et al. [15] were

among the first who attempted to model motion artefacts

in terms of inertial measurements. The authors embed a 3D

accelerometer and a two-axis Anisotrophic Magnetoresistive

(AMR) sensor into one of the electrodes of an ECG to measure

and reduce the effect of motion on the quality of the ECG

signal. The authors collected data from eight human subjects,

each time purposefully inducing motion artefacts into one of

the electrodes of an ECG by (1) pushing on the electrode,

(2) pushing on the skin around the electrode, and (3) pulling

on the electrode lead wire. This way, the authors acquire five

datasets from each subject – a noise free dataset, a dataset

containing motion artefacts induced by each of the above three

methods, and a dataset containing both artefacts-free segments

and artefacts induced by all the three methods. At the same

time as the motion artefacts were induced, measurements were

also taken from the AMR and the 3D accelerometer sensors.

Then the noisy measurements and the measurements taken

from the motion sensors were supplied to an adaptive filter.

The authors evaluated the contribution of the motion sensors

in cleaning the noisy signal by evaluating the L2 norm,

the MaxMin statistic, and a percent improvement statistic.

These evaluations were carried out before and after apply-

ing an adaptive filter. The noise-free dataset was used as

the “ideal” reference signal. The authors claimed that there

were indeed strong correlations between the motion artefacts

and the outputs of the motion sensors in all the test cases.

Moreover, compared with the measurements obtained by the

AMR sensor, the measurements of the 3D accelerometers

exhibited stronger correlations. The authors noted that the ac-

celerometer was able to capture the 3-dimensional movements

of the electrode whilst the AMR could only measure the 2-

dimensional movements. Secondly, the relationship between

the accelerometer measurements and the motion artefacts was

better modelled by a linear time-varying system.

Likewise, Kline et al. [16] carry out a comprehensive inves-

tigation into the contribution of mobility to motion artefacts

during the measurement of electroencephalography (EEG).

They, employ accelerometers to investigate the existence of

correlation between the motion of a person and the EEG

measurements during motion. The researcher first insulated the

scalp of nine healthy subjects with silicon swimming caps to

prevent the measurement of true electrophysiological signals,

attached accelerometer to the forehead of the subjects, simu-

lated an electrically conductive scalp on top of each swimming

cap using a wig coated with conductive gel, and deployed

the EEG electrodes at standard locations on the simulated

scalps. The simulated conductive scalps allow the electrodes

to measure voltage differences resulting from gait dynamics.

Moreover, the researchers employed a ten-camera motion

capture system to record kinematic trajectories of calcaneus

markers, which were installed at the feet of the subjects. Then

they let the subjects to freely move on a treadmill at different

speeds (0.4, 0.8, 1.2, and 1.6 m/s). The researchers reported

that the EEG electrodes could indeed pick up signals, which

must have been produced as a result of the movements of the

subjects. Unfortunately, despite the apparent effect of motion

on the quality of the EEG signal, the researchers were not

able to establish quantitative and reproducible relationships

between the measurements of the accelerometers and the EEG

measurements taken from different locations in the scalp.

Romero et al. [14] attempted to estimate the effect of motion

artefacts by measuring the change in the impedance of the

interface between the skin and the electrodes of a wireless

ECG. This impedance is modelled as a series resistive load and

a voltage source connected to a parallel RC circuit. In order to



measure the change in the impedance, the authors integrated

both AC and DC current sources into the wireless ECG

they developed. The current sources inject a small amount

of current into the body and, then, the voltage across the

electrode-skin impedance is measured.

In order to examine the existence of correlations between

the impedance voltage (representing motion) and the motion

artefacts included in the ECG measurements, the authors

deployed four electrodes at the back of a subject, at the height

of the lumbar curve, where ECG signals were expected to

be negligible – two of the electrodes measured the action

potentials arising from motion and the other two measured

the change in the impedance voltage arising from the change

in the skin-electrode interface. Ten subjects were involved in

the experiment and 25 datasets were obtained. The test results

indicate that there were correlations between the motion of

the users and the motion artefacts but the strength of these

correlation was dependent on the signal-to-noise ratio of the

noisy ECG signal. The disadvantage of this approach is the

injection of an extra current into the human body, however

small its magnitude.

Goovaerts et al. [17] employ tensor decomposition in order

to detect T wave alternans (TWA) in the measurement sets of

a 12-lead ECG. TWA is believed to be associated with the

risk of experiencing arrhythmia in patients having the history

of ischemic cardiomyopathy following previous myocardial

infarctions. T-wave alternans is defined as a periodic beat-to-

beat variation in the magnitude of the T-wave. Subsequently,

the author segmented the time-series measurements of each

channel into heartbeats (consisting of P, QRS, and T waves)

to obtain a 2-dimensional matrix (the y-axis making up the

heartbeats and the x-axis, the samples of a single heartbeat).

Then the entire measurement sets are packed into a three-way

tensor. The authors applied CANDECOMP/PARAFAC (CP)

and PARAFAC2 decomposition on the tensor and examined

each factor of the decomposed tensor to detect TWA. The

tensor decomposition enables to examine the existence and

nature of the T-wave from at least two distinct dimensions:

One of them provides insight as to the distribution of the

amplitude of the T-wave in a single channel by considering

all the samples making up the T-wave in that channel as

statistical sources. Similarly, the other dimension provides

insight into the T-waves by considering the 12-channels as

statistical sources.

III. MOTION ARTEFACTS MODELLING

We employed the Shimmer platform1 integrating a 5-lead

wireless ECG, a 3D accelerometer, a 3D gyroscope, and a

3D magnetometer. The ECG component measures cardiac

action potentials at three different positions triangulating the

area surrounding the heart, namely, left leg-left arm (LL-LA),

left leg-right arm (LL-RA), and left arm-right arm (LA-RA).

These channels have different sensitivities to different types

1http://www.shimmersensing.com/products/ecg-development-kit (Last vis-
ited on January 08, 2019: 14:20).
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Fig. 1. Measurements taken from a wireless electrocardiogram and one of
the axes of a 3D accelerometer whilst a person climbed up and down a
staircase inside a building. The x-axis represents the samples whereas the
y-axis measures action potentials in mV.

of motions and, therefore, provide complementary evidence.

In general, the LL-LA is the least affected by motion and the

LA-RA is the most sensitive to motion. We leave out the LL-

LA channel from our analysis and attempt to reconstruct the

useful ECG signal from the two ECG channels and the six

inertial channels.

The advantage of using the Shimmer platform is that all

the channels can be synchronised and sampled at the same

frequency. Its disadvantage is that the location from where

the inertial measurements are taken and the location where

the electrodes of the wireless electrocardiograms are placed

are different2. Hence, the motion affecting the individual

electrodes is an approximation.

A. Preprocessing Stage

In a healthy adult person, the electrocardiogram measures

a sequence of three essential waveforms the P, the QRS,

and the T waves revealing vital underlying cardiac states

during a single heartbeat. The frequency of these waves, their

chronological appearance, and the interval between them are

critical to interpret the electrocardiogram. Motion artefacts

affect all of them, but the least affected are the QRS com-

plex, which are related to ventricular contraction. Motion

artefacts affect individual waveforms as well as cause long-

term drifts. Proposed approaches first attempt to preprocess the

measurement sets in order to correct long-term drifts before

they address localised distortions [18]. In most cases, prepro-

cessing stages are elaborate in themselves and entail band-

pass filtering or similar actions such as detrended fluctuation
analysis (DFA) [19]. In addition, all of these require prior

knowledge pertaining to the measurement sets and introduce

bias into the subsequent processing stages. In this paper, other

than standardising the measurement sets in order to make

sure that all data sets have equal significance, we forego the

preprocessing stage.

2This is because the inertial sensors were not embedded in the electrodes.
Instead, they were embedded in the main platform.
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Fig. 2. Measurements taken from the wireless electrocardiogram and inertial
sensors whilst a person was skipping.

B. Inertial Measurements

As we already purported in the Introduction Section, the

inclusion of motion artefacts in the useful ECG measurements

are a consequence of the physical movements the subject

undergoes. If we capture this movement and correlate it with

the noisy ECG measurements, it is possible to detect and

remove the motion artefacts. Figure 1 displays the measure-

ments taken from the wireless ECG and one of the axes of

the 3D accelerometer whilst a healthy male adult person was

climbing up a staircase. From the accelerometer measurement,

it is possible to determine the climbing up activity and

intermediate resting states at the landings. Indeed, it is even

possible to count the number of stairs the subject has climbed

in each floor. The figure on top shows the long-term drift

the movement introduced into the ECG measurement. An

alignment of the two measurement sets enables to localise the

emergence and trending of the long-term drift episodes, since

the trend either stopped temporarily or changed direction at

every landing.

Figure 2 displays a portion of the measurements taken

from all the inertial sensors and the wireless ECG during

a skipping activity. The figures on the bottom refer to the

ECG measurements taken from the three channels, clearly

revealing how differently the ECG leads were affected by

the movement. The top and the middle figures show that the

inertial sensors measured not only the direction and magnitude

of the movements the body underwent but also the cardiac

waveforms, particularly, the QRS-complex.

C. Singular Value Decomposition

From the two previous figures, it is apparent that the

measurements of the inertial sensors exhibit strong correlations

both with the useful ECG measurements and with the motion

artefacts included in them. It seems, then, plausible to employ

dimensionality reduction techniques, such as singular value

decomposition (SVD) and tensor decomposition, to examine

the nature of these correlations and the underlying phenom-

ena giving rise to them. In other words, given the different

TABLE I
THE STANDARDISED MEASUREMENT SETS OF ALL CHANNELS ORGANISED

AS A MATRIX.

Samples AX AY · · · LL-RA LA-RA

1 -0.02 0.00 · · · -2.21 1.99
2 -0.06 -0.01 · · · -2.20 2.00
3 -0.04 0.00 · · · -2.23 2.00
4 -0.06 0.00 · · · -2.25 2.00
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measurement sets, we can apply dimensionality reduction

techniques in order to discriminate between correlations sig-

nifying motion and cardiac activities. This paper focuses on

the application of SVD.

Consequently, the time series measurements obtained from

the different channels can make up an n × m matrix, where

n refers to the number of samples and m the number of

channels, respectively (ref. to Table I). Since the sensors are

sampled synchronously, the matrix encodes temporal as well

as “spatial” correlations. Applying SVD on this matrix has

threefold advantages. Firstly, SVD reduces the dimensionality

of the matrix thereby yielding a more compact and compre-

hensible representation of the measurement sets. Secondly, the

reduced form represents the time-series data in an orthogonal

(statistically independent) frame of reference. Thirdly, unlike

tensor or similar decompositions, one does not need to make

any assumption as regards the number of feature dimensions

for the new frame of reference. The second aspect is partic-

ularly relevant for our assignment if the motion artefacts are,

indeed, statistically independent of the useful ECG (cardiac)

measurements.

Hence, given a matrix X consisting of all the measurement

sets, the singular value decomposition yields:

X = UΣVT (1)

The matrices U and V are orthogonal (uncorrelated) and

orthonormal and Σ is a diagonal matrix having diagonal entries

which are naturally arranged according to their magnitude (i.e.,

σ11 ≥ σ22 ≥ ...σ33 and so on). Σ reveals how many basic

feature dimensions are hidden in X. The matrix U encodes the

temporal aspects of the underlying features whereas the matrix

V encodes the “spatial” aspects of the underlying features. For

us the analysis of the temporal aspects is the most interesting.

IV. EVALUATION

In the literature, proposed artefact removal techniques are

tested mainly by the accuracy with which the QRS complex

are recognised after the removal of the motion artefacts [20].

But these components of a noisy ECG are the least affected by

motion artefacts, as they are the strongest component. Other

approaches focus on specific symptoms – such as the detection

of epileptic episodes and seizure [4], [21], [22], cardiac

arrhythmia [23]–[25], and atrial fibrillation (an instance of

arrhythmia) [26]–[28] – where the underlying algorithms are

trained and optimised to detect specific wave patterns. Whilst
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Fig. 3. One of the components of the U matrix encodes the QRS complex.

focusing on specific applications is perhaps the best way of

satisfying individual needs, it, nevertheless, limit the scope

and usefulness of both the wireless ECG platforms and the

proposed algorithms. On the other hand, the unbiased removal

of motion artefacts, regardless of the ultimate purpose, makes

the approach more relevant.

In our evaluation, we focused on the detection of all

waveforms, giving particular consideration to the P and T
waves, as these are highly sensitive to motion artefacts. Our

evaluation strategy is straightforward when healthy subjects

are involved: If the QRS complex are detected with 100%
accuracy, then for each QRS wave complex, there should be

a corresponding P and a T wave. A cross validation of this

approach can be made as follows: By taking the duration of the

dataset and the average heart rate of the subject, it is possible

to estimate the expected number of distinct waveforms. Then

one can set a threshold for each wave and count its frequency

of occurrence both before and after the motion artefacts are

removed. The result can be compared with the expected

number of waveforms.

As we already pointed out, the number of columns in U
correspond to the number of hidden features (factors) in X.

Ideally, since the cardiac action potentials consist of the P,

QRS, and T waves and the zero-potential intervals between

them (i.e., the PQ and ST intervals), U should have four

distinct features corresponding to these. Furthermore, since

the motion artefacts are statistically independent of the ECG

waves, at least one of the columns of U should encode motion

artefacts. However, obtaining distinct features which can be

mapped one-to-one to the above waveforms and intervals is

an objective difficult to achieve. Firstly, the cardiac action

potentials are not entirely independent of the motion the

subject undergoes. Indeed, the more vigorous the motion is, the

faster the heart beats. Secondly, the distinction in magnitude

between the different wave forms, particularly, between the P
and the T waves, is not that great, so that in the presence of

strong motion, discriminating between them is difficult.

A. The Detection of QRS Complex

Figure 3 displays the plots of the first component of U for

eight arbitrarily selected regions of the rows of U, each region

consisting of 200 samples. The original matrix X corresponds

to the skipping movement displayed in Figure 2. Clearly, this

component encodes the QRS complex. As can be seen, the

decomposition process has effectively removed the long-term

drift, suppressed all the waveforms save the QRS complex,

and contrasted the QRS waveforms against the zero-potential

reference. Subsequently, the QRS complex for the skipping

movement could be detected with 100% accuracy.

Similarly, Figure 4 displays one of the SVD components

corresponding to the QRS wave complex for a different type

of movement. Here, the noisy ECG measurements correspond

to a person doing push-ups. The top and the middle plots

refer to the LL-RA and LA-RA channels whereas the bottom

corresponds to one of the components of the U matrix. The

SVD outcome somehow inverted the QRS complex. Nonethe-

less, it is unmistakable that the component encodes the QRS
wave complex. Even though the original waveforms of both

channels were significantly affected by motion artefacts, the

decomposition has enabled to reproduce the original waveform

almost with 100% accuracy. This observation is consistent in

most of the movement types we considered (walking, running,

skipping, cycling, and jumping).

It is important to note that wireless ECGs in telemedicine

should mainly be employed as emergency devices. The ac-

curate and reliable detection of the QRS waveforms enables

to reason about the cardiac state of patients and to trigger

more advanced clinical diagnosis or monitoring. For example,

in clinical settings, the diagnosis of atrial fibrillation or flutter

requires the detection of a burst of P waves in a given interval

[29], [30]. The same condition, however, can be determined

from the number of QRS complex in that same interval [31].

Subsequently, the detection of the QRS complexes with high

accuracy should be regarded as an end in itself for the success

of wireless electrocardiograms.

B. The Detection of P and T Waveforms

Figure 5 displays the plots of the fifth component of U for

the same regions shown in Figure 3 (the original measurement

belong to the skipping activity). Clearly, the SVD component

refers to the P and T waveforms. It has attempted to suppress

all the other signals save these two waveforms. Unfortunately,

the ease with which these waveforms can be detected from

the U matrix greatly varies from movement to movement. Our

observation suggests that as long as there is some degree of

regularity in the movement, SVD manages to encode them

uniquely, but when the movement is random, SVD poorly

discriminates between the two desirable waveforms and the

motion artefacts. To highlight this statement, we shall make

a comparison between climbing up a staircase (Figure 1) and

skipping (Figure 6).

The degree of regularity in the first movement is very low

because the person performed complex and “non-linear” steps

within a short period of time (ref. to Figure 7). Therefore,
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Fig. 4. The reconstruction of the QRS complex using SVD.
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Fig. 5. One of the components of the U matrix encodes the P and T
waveforms whilst suppressing the QRS complex.
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Fig. 6. Measurements taken from a wireless electrocardiogram and one of
the axes of a 3D accelerometer whilst a person was skipping.

0 2000 4000 6000 8000 10000

−6
−2

2
4

6

0 2000 4000 6000 8000 10000

−2
0

2
4

6

0 2000 4000 6000 8000 10000

−4
−2

0
2

Fig. 7. A snapshot of the measurement sets taken from the three axes of
an accelerometer while the person was climbing up a staircase. Uncorrelated
measurements make it difficult to recognise P and T waveforms during SVD.

establishing temporal and spatial correlations between the

measurement sets was difficult, which resulted in poor recog-

nition accuracy. By contrast, in the second case (skipping), the

movement was regular and generated sufficient temporal and

spatial correlations between the measurement sets, resulting in

a higher recognition accuracy.

Two additional and related phenomena contribute to the

difficulty of detecting these two waveforms with reliable

accuracy. Firstly, when the movement is fast, these waves tend

to vanish, particularly, the P waves, because now the heart

beats fast. In this case, the inertial measurements dominate

significantly. Secondly, there is a delay in the heart’s response

to a physical exertion, in which case, the inertial measurements

tend to be out of synch with ECG measurements (i.e., the

spatial correlation is now disturbed). These two effects tend

to produce spurious beats in the U matrix.

C. The Contribution of Inertial Sensors

How much role do the inertial sensors play in removing

motion artefacts? Despite the fact that they were not embedded
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Fig. 8. Comparison of the reconstruction of the ECG waveforms using SVD
and with and without the inclusion of the inertial measurement sets.

in the ECG electrodes, so that they could directly measure

the motion affecting the electrodes, their contribution was,

nevertheless, appreciable. To highlight this fact, we decom-

posed two different matrices, the first without the inclusion of

the measurements obtained with the inertial sensors and the

second with the inclusion of the inertial measurements. For

the comparison, we employed the measurement sets obtained

when the subject was jumping.

The top plots in Figure 8 correspond to the row measure-

ments from the LL-RA and LA-RA channels whereas the

plots at the bottom correspond to the first components of

the U matrices. In these snapshots, the row measurements

are both affected by the motion artefacts and, therefore, the

decomposition of the X matrix which did not contain the

inertial measurements did not make any improvement. By

contrast, the decomposition of the matrix which included the

inertial measurements managed to reconstruct the QRS wave

complex.

V. CONCLUSION

In this paper we modelled and reasoned about motion arte-

facts in the measurement sets of a wireless electrocardiogram.

The Shimmer platform offered us nine degrees-of-freedom

for this task by availing two 3-dimensional inertial sensors

(accelerometer and gyroscope) and three ECG channels. This

enabled us to establish “spatial” and temporal correlations.

We segmented the row sensor data into subsets of correlated

movements, normalised the data to avoid bias, and arranged

the inertial and ECG measurement sets into matrices for our

analysis. Then we applied singular value decomposition to

uncover hidden uncorrelated features which might have given

rise to the original measurement sets.

The premises for our approach are the following: Firstly, the

motion artefacts are results of motion and, hence, it makes

sense to employ motion or inertial sensors to capture this

motion and correlate it with the motion artefacts. Secondly, the

motion artefacts are either uncorrelated or poorly correlated

with the useful ECG signal (although, strong motions affect

the heart’s beat rhythms to some extent). In the absence of

any reference signal or statistics, establishing direct corre-

lation between the motion artefacts embedded in the ECG

measurements and the inertial measurements can only be

made poorly. Consequently, we opted to employ singular value

decomposition which replies solely on the measurement sets.
SVD yielded consistent and reliable performance in detect-

ing the QRS wave complex in all the movement types we con-

sidered. Likewise, SVD was able to produce a reliable result in

detecting the T wave, which is the second largest waveform in

an electrocardiogram record, for most of the movement types

we considered. However, SVD performance in detecting the P
and the T waveforms when the movement types entailed fast

and complex steps, such as climbing up a staircase and riding

a bicycle was consistently poor. Indeed, in these movements,

the inertial measurements often dominated (not necessarily in

magnitude, however, rather in their temporal structure) during

the decomposition process, so that the SVD results were worse

than the original noisy ECG measurements.
In future, we are aiming to extend our analysis to higher di-

mension decomposition techniques, such as tensor decomposi-

tion. This necessitates the inclusion of frequency component in

the decomposition process. Therefore, we are planning to first

wavelet transform the row data coming from each channel and

put all the measurement sets together into a multi-dimensional

array (tensor). Then we shall apply high-dimensional de-

compositions such as CANDECOMP/PARAFAC [32] and

TUCKER [33] decompositions.
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[4] F. Massé, M. V. Bussel, A. Serteyn, J. Arends, and J. Penders, “Miniatur-
ized wireless ecg monitor for real-time detection of epileptic seizures,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 12,
no. 4, p. 102, 2013.

[5] A. Burns, B. R. Greene, M. J. McGrath, T. J. O’Shea, B. Kuris, S. M.
Ayer, F. Stroiescu, and V. Cionca, “Shimmer–a wireless sensor platform
for noninvasive biomedical research,” IEEE Sensors Journal, vol. 10,
no. 9, pp. 1527–1534, 2010.

[6] A. K. Belchandan, K. Deshmukh, and J. Kumar, “Removal of noises
in ecg signal by using digital fir-iir filter in vhdl,” Digital Signal
Processing, vol. 8, no. 5, pp. 135–139, 2016.

[7] K. Chinchkhede, G. S. Yadav, S. Hirekhan, and D. Solanke, “On the
implementation of fir filter with various windows for enhancement of ecg
signal,” International Journal of Engineering Science and Technology
(IJEST), vol. 3, no. 3, pp. 2031–2040, 2011.



[8] R. Martinek, R. Kahankova, H. Nazeran, J. Konecny, J. Jezewski,
P. Janku, P. Bilik, J. Zidek, J. Nedoma, and M. Fajkus, “Non-invasive
fetal monitoring: A maternal surface ecg electrode placement-based
novel approach for optimization of adaptive filter control parameters
using the lms and rls algorithms,” Sensors, vol. 17, no. 5, p. 1154,
2017.

[9] Y. Ye, Y. Cheng, W. He, M. Hou, and Z. Zhang, “Combining nonlinear
adaptive filtering and signal decomposition for motion artifact removal in
wearable photoplethysmography,” IEEE Sensors Journal, vol. 16, no. 19,
pp. 7133–7141, 2016.

[10] A. C. Mugdha, F. S. Rawnaque, and M. U. Ahmed, “A study of
recursive least squares (rls) adaptive filter algorithm in noise removal
from ecg signals,” in Informatics, Electronics & Vision (ICIEV), 2015
International Conference on, pp. 1–6, IEEE, 2015.

[11] S. Abbaspour, M. Lindén, and H. Gholamhosseini, “Ecg artifact removal
from surface emg signal using an automated method based on wavelet-
ica.,” in pHealth, pp. 91–97, 2015.

[12] M. B. Hamaneh, N. Chitravas, K. Kaiboriboon, S. D. Lhatoo, and K. A.
Loparo, “Automated removal of ekg artifact from eeg data using in-
dependent component analysis and continuous wavelet transformation,”
IEEE Transactions on Biomedical Engineering, vol. 61, no. 6, pp. 1634–
1641, 2014.

[13] R. M. Rangayyan, Biomedical signal analysis, vol. 33. John Wiley &
Sons, 2015.

[14] I. Romero, T. Berset, D. Buxi, L. Brown, J. Pernder, S. Kim,
N. Van Helleputte, H. Kim, C. Van Hoof, and F. Yazicioglu, “Motion
artifact reduction in ambulatory ecg monitoring: An integrated system
approach,” in Proceedings of Wireless Health, (San Diego, CA, USA),
2011.

[15] D. Tong, K. Bartels, and K. Honeyager, “Adaptive reduction of motion
artifact in the electrocardiogram,” in EMBS/BMES Conference, (Hous-
ton, TX, USA), 2002.

[16] J. E. Kline, H. J. Huang, K. L. Snyder, and D. P. Ferris, “Isolating
gait-related movement artifacts in electroencephalography during human
walking,” Journal of neural engineering, vol. 12, no. 4, p. 046022, 2015.

[17] G. Goovaerts, B. Vandenberk, R. Willems, and S. Van Huffel, “Au-
tomatic detection of t wave alternans using tensor decompositions in
multilead ecg signals,” Physiological measurement, vol. 38, no. 8,
p. 1513, 2017.

[18] K. K. Patro and P. R. Kumar, “De-noising of ecg raw signal by cascaded
window based digital filters configuration,” in Power, Communication
and Information Technology Conference (PCITC), 2015 IEEE, pp. 120–
124, IEEE, 2015.
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