
Towards Unified Treatment of Security and Other
Non-Functional Properties ∗

Elke Franz Christoph Pohl
Institute for System Architecture

TU Dresden, Germany

{ef1|cp6}@inf.tu-dresden.de

ABSTRACT
With the increasing popularity of Component-Based Soft-
ware Engineering, considering non-functional properties like
QoS and security becomes an ever-important challenge.
Both issues are crosscutting concerns that benefit from a
separated consideration as aspects. The interference of both
is a non-trivial problem that has to be dealt with at various
levels from specification at design time to runtime support.
This paper tackles these problems by examining existing
approaches for describing QoS and security properties, fol-
lowed by an attempt to unify concepts from both worlds.

1. INTRODUCTION
Component-based software engineering has attracted in-

creasing attention in the last years. Despite the fact that
it is not trivial to compose working applications from dif-
ferent, independently developed software components, the
fulfillment of non-functional requirements is of great inter-
est for a variety of applications. Considering and enforc-
ing non-functional properties in component-based applica-
tions is a current research field, which is closely related
to Aspect-Oriented Software Development: Aspect-oriented
approaches bear the potential to capture arbitrary non-func-
tional requirements and properties as single aspects, thus
allowing for better separation of concerns.

The Comquad project focuses on these topics. Non-func-
tional properties include both quality of service (QoS) prop-
erties like response time or throughput, as well as security
requirements, e.g., confidentiality, integrity, or availability.
These properties are crosscutting concerns indeed, as they
affect a wide range of system functions. Consequentially,
we handle them as aspects. The specification and runtime
support for these aspects is part of our component model
[4].

∗This work is part of the DFG-funded research group 428
“Comquad – Components with Quantitative properties
and Adaptivity” at Dresden University of Technology. See
http://www.comquad.org/.

Dealing with non-functional properties requires the spec-
ification of these properties as well as their enforcement at
runtime. Aagedal introduced the Component Quality Mod-
eling Language (CQML) [1] as a component-based specifica-
tion language for non-functional properties of service offers
and their corresponding requirements. He states in his thesis
that security properties could also be described by CQML
but he concentrates on quantitative properties only. Within
the Comquad project, this language has been extended to
CQML+ [8] by adding a resource clause to capture the re-
quirements for sufficient computational resources to fulfill
quantitative demands.

The description of security properties is subject of an ar-
ticle by Khan and Han [5]. They introduce a framework
for the specification of security properties for components,
considering the protection of input and output data as an
example. Components are provided with a description of
required and ensured security properties, which are derived
directly from special security functions. Different security
requirements like confidentiality and accountability may be
covered by one description. An active interface compares se-
curity properties of components before they are connected.
Mismatches between security descriptions are detected but
can be ignored.

Multilateral security aims at enabling all parties to ex-
press and enforce their protection goals, while only minimal
trust in other parties is required. Wolf and Pfitzmann [10]
propose possibilities for realizing these objectives. Their de-
scription of security requirements concentrates on the nego-
tiation between participants. Users only specify their per-
sonal weighting of protection goals, which are treated sep-
arately. Enforcement of protection goals by cryptographic
functions is hard coded within the system, while users can
specify their preference of concrete mechanisms by them-
selves. We have decided to use this approach within our
architecture, because it takes care of negotiation, which is
necessary to deal with potentially conflicting requirements.
Security conflicts are detected, leading to the negotiation of
compromises. If negotiation fails, a connection between ser-
vice provider and user cannot be established. Furthermore,
the approach is flexible w.r.t. specification, i.e., the means of
enforcement can be changed without the necessity to alter
the description of security requirements.

The approaches cited above do not consider the joint
treatment of security and quantitative properties. There
is not only a need for unified treatment, implying a uni-
fied specification, but also the necessity to capture the in-
terference of these aspects, which is commonly referred to

http://www.comquad.org/


Video Server

Client

C

E

BA

Bank Server

D

Name 

+ Title Æ

Å Video

Title Æ

Å Video + Price

Name Æ

Å Card #

Card # 

+ Price Æ

Å Ack

Figure 1: Distributed video on demand service sce-
nario

as feature interaction [6]. Protection goals usually imply
the employment of security mechanisms, which increases re-
source requirements. This in turn reduces the amount of
resources available for other computational tasks, thus in-
fluencing other non-functional properties like the achievable
QoS.

We handle security properties as aspects, which are mod-
elled by special system components for various security
mechanisms. These components are dynamically inserted
by our runtime environment into component networks for
servicing client requests during contract negotiation phase.
Users may weigh their preferences for certain mechanisms
and security goals, thus controlling contract negotiation ac-
tively. The details of contract negotiation are subject of
another publication [3].

In this paper, our first goal is to investigate possibilities for
a unified specification of quantitative and security require-
ments. As we will show, CQML+ is not expressive enough
for the specification of security requirements as proposed
in [10]. Furthermore, trade-offs between conflicts of both
quantitative and security demands have to be considered.

The remainder of this article is organized as follows: Sec-
tion 2 introduces suitable current approaches for describing
QoS and security properties using a simple example. The
semantic for negotiating protection goals is then extended to
deal with potential conflicts with quantitative requirements
in Sect. 3, followed by a discussion in Sect. 4 why secu-
rity requirements still cannot simply be described by the
same means as quantitative requirements. Starting points
for possible solutions are presented in Sect. 5 before we fi-
nally conclude with a short outlook.

2. EXISTING APPROACHES FOR DE-
SCRIBING NON-FUNCTIONAL PROP-
ERTIES

Before we go deeper into the discussion of existing ap-
proaches to the issue of declarative description of non-func-
tional properties, let us take a closer look at a small exam-
ple application, which we will use to explain our concepts.
Fig. 1 shows a simple video on demand (VoD) service with
three involved parties: a client node, a video server hosting
the actual service, and a bank server acting as a payment
provider.

Five software components are acting together in this sce-
nario: The client application (A) transmits a customer
name and movie title to the booking interface (B) to receive
a video stream. (B) requests the title from movie database

Component

Implementation
Profile

n

Quality

Statement

n

uses

n

provides

n

resources Quality

Characteristicn

Constraints

profile

quality

n

Figure 2: Simplified model of CQML+

(C) and gets a video stream for client (A) and the corre-
sponding price. (B) also queries the customer database (E)
for name’s credit card], which can be used to settle debts
with payment provider (D).

2.1 Quality of Service and Quantitative Prop-
erties

The use of CQML+ [8] for describing quantitative non-
functional properties of component implementations has
been anticipated introductorily. We will give a short
overview of its underlying concepts and explain how it can
be used to model typical QoS-related properties, such as
timeliness or accuracy.

Fig. 2 depicts the basic elements of the CQML+ lan-
guage: Component implementations feature one ore more
QoS profiles, i.e., operating modes consisting of a number
of quality statements, which describe what qualities the im-
plementation provides for its exported interfaces and what
it uses from imported interfaces of its collaborating compo-
nents. Furthermore, resources clauses can be used to de-
clare the amount of needed resources. Each of these quality
statements constrains a certain quality_characteristic in
its value range. Assuming for the example from Fig. 1 that
the quality statements low_delay, fast_response, and
fast_network have already been defined before for a set
corresponding set of quality_characteristics, we could
write for instance:

profile videoBinding for B {

provides low_delay (B.booking.getVideo);

uses fast_response (C.outvideo.getVideo);

resources fast_network (network);

}

This simply means a videoBinding can be provided for com-
ponent B, which provides a low delay for the getVideo op-
eration of the booking interface port booking if the run-
time environment guarantees fast response times for com-
ponent C’s getVideo operation at port outvideo and if a
fast network resource is available. Of course, the example
is oversimplified and incomplete for the sake of clarity.

Quality statements and characteristics are usually pack-
aged in CQML+ libraries categorized in domains for which
the corresponding semantic is well agreed upon. An in-depth
discussion of all concepts and features of CQML+ [8] would
go beyond the scope of this paper. However, our short ex-
ample should have been detailed enough to demonstrate the
“look and feel” of describing non-functional properties with
this kind modeling languages.

2.2 Security Requirements
Security requirements of users are usually described by

protection goals. There is a variety of possible protection



goals which can be classified into confidentiality, integrity,
and availability goals. Depending on the object of protec-
tion, we can describe more specific goals like anonymity as
confidentiality of communication circumstances.

An important difference to quantitative properties is the
fact that there may be conflicting security interests, espe-
cially in case of protection goals with individual perspectives
of involved stakeholders [10]. An example is the accountabil-
ity of messages: One of the communication partners agrees
to be accountable. Depending on the scenario, one of the
participants gets an advantage over the other one. In con-
trast, fulfilling quantitative requirements mainly depends on
the availability of computational resources of the executing
machine; involved parties usually take no critical advantages
over others. Because we do not only consider protection
goals but also quantitative demands, security requirements
of a user may be additionally influenced by conditions of his
system, e.g., available CPU time, memory etc. A system
providing multilateral security has to consider conflicting
interests. Because the approach in [10] explicitly aims at
providing multilateral security, we investigate possibilities
to apply it in our scenario.

As an example, let us discuss confidentiality of communi-
cation in the video server scenario (Fig. 1) for the use case
“get video stream”. Actually, this is a protection goal about
which the participants share a common perspective: They
want to protect the content of their communication against
possible eavesdroppers in the unsecure communication net-
work. The participants may have different weightings for
this protection goal. The server is strongly interested in pro-
tecting the content of the video stream, because he wants
to prevent attackers to get the video data without payment.
The user is less interested in encrypting the video stream,
moreover, required computing costs may be undesirable to
him. But he would agree to use encryption if the video
server insists.

To reduce potential conflicts during nego-
tiation, [10] introduces a five level gradation
(unconditional, if_possible, dont_care, if_necessary,
on_no_condition) to express protection demands. The
negotiation results in a “yes” or “no” decision whether a
protection goal is to be enforced. Only the combination
of the weightings unconditional and on_no_condition

will produce a conflict that requires interaction. If both
participants use dont_care, the system can automatically
decide to enforce the protection goal by default.

In the example described above, the user weighs the pro-
tection goal as follows:

communication_confidentiality = if_necessary

The provider of the video server, however, uses the weighting

communication_confidentiality = unconditional

Negotiation between user and video server results in the
decision “yes”. The use of a concrete encryption mecha-
nism is determined by a comparison of the preference lists of
user and video server. Mechanisms are not directly specified
along with protection goals in order to increase flexibility of
choice.

3. ADJUSTING SECURITY NEGOTIA-
TION FOR COMPONENTS

The description of security properties introduced above
considers only use cases of single applications. In
component-oriented architecture however, there are no
monolithic applications. Different components are involved
in processing use cases. It would be desirable to associate
security requirements of use cases to the components they
are assigned to, because this would allow the migration of
components between hosts without the necessity to change
security descriptions.

Because it may become impossible to fulfill both quanti-
tative and security requirements, we need a strategy in case
of conflicts. In case of insufficient resources, either quanti-
tative or security demands have to be reduced. A first step
in this direction is to extend the semantics of the weighting
described above. The extension is based on the assumption
that participants willing to reduce their security require-
ments in case of conflicts with requirements of others would
also be willing to reduce them in case of insufficient compu-
tational power. The extended semantic, according to [7], is
as follows:

unconditional: The protection goal has to be enforced.

if possible: The protection goal is enforced unless the
communication partner wants to prevent this by all
means (on_no_condition) or in case of insufficient re-
sources even after reducing quantitative requirements.

dont care: The protection goal is enforced according to the
communication partner’s preferences. If resources are
insufficient, security demands are reduced first.

if necessary: The protection goal is enforced only if the
communication partner requires it and if there is
enough computational power.

on no condition: The protection goal must not to be en-
forced.

Due to the fact that further negotiations may become nec-
essary if components migrate or have to use services of other
components, the result of negotiation should reflect the com-
ponent’s original weighting. Table 1 describes the extended
negotiation matrix, which allows the use of negotiation re-
sults for further negotiation:

Table 1: Extended Negotiation Matrix

re
q
u
ir

em
en

ts

o
n
_
n
o
_
c
o
n
d
i
t
i
o
n

i
f
_
n
e
c
e
s
s
a
r
y

d
o
n
t
_
c
a
r
e

i
f
_
p
o
s
s
i
b
l
e

u
n
c
o
n
d
i
t
i
o
n
a
l

on_no_condition on no condition conflict

if_necessary if necessary

dont_care dont_care

if_possible if possible

unconditional conflict unconditional

Despite these adjustments, describing security require-
ments in CQML+ raises some new problems, which are
pointed out in the next section.



4. PROBLEMS OF EXISTING AP-
PROACHES

It would be desirable to use existing techniques for quan-
titative properties to describe security properties in order to
simplify unified treatment.

However, there are some problems if we try to describe se-
curity requirements with CQML+. A closer look at descrip-
tions of QoS-related and security properties reveals some
important differences. First of all, the approaches for quan-
titative properties inherently describe the semantic of these
properties. If the user demands low_delay for the video
stream, this can be expressed directly by response times on
a lower abstraction level. The requirements on other com-
ponents (fast_response) as well as the requirements on the
resources (fast_network) can be directly derived. In con-
trast, descriptions of security requirements considered here
capture the weighting of users but not the semantic of secu-
rity properties themselves.

Furthermore, QoS-related properties are in principal han-
dled as supply and demand. The necessity for negotiation is
obvious for security properties but also necessary for QoS-
related properties. Especially in case of conflicting require-
ments it is necessary to define the preference of requirements
in order to make a decision.

We have to decide at which level security requirements
shall be described. There are different meta-levels of com-
ponents [2]: specification, implementation, installation, and
instantiation. As described in Sect. 2.1, QoS-related prop-
erties are usually assigned to implementations. Profiles de-
scribe different operating modes that can be chosen depend-
ing on demands. However, security requirements should not
explicitly depend on the operating mode of a component.
Therefore, we suggest to assign security requirements to the
specification of a component.

Further security demands of users or others, e.g., the
server providers themselves, may result in requirements on
the container itself or on all components equally [9]. So it
is likely that a system provider wants to execute only “orig-
inal” components, which are not modified by others than
the component providers. Components have to be signed
by their providers to allow to test their integrity and ac-
countability upon initialization. CQML+ does not directly
consider such global requirements. Therefore, they need to
be forwarded by uses/provides clauses. But these are in
fact rather inappropriate for this purpose. It would be more
desirable to let the container make global demands.

If we try to use CQML+ to describe security require-
ments, we also have to solve the question of which clauses
to use for expressing requirements. We could either use
uses/provides or resources clauses. Specifying security as
resources is generally unsuitable. A resource is demanded
for and can be provided by the system or not. It would be
semantically curious to specify that a resource must not be
used.

Therefore, we had a look at uses/provides clauses. How-
ever, these are dedicated for specifying supply and demand.
To enable negotiation, we would have to introduce cyclic
specifications. For an interface, each component has to spec-
ify its demands, but it also has to receive demands of other
components it wants to use.

Resulting problems are pointed out in [7] and shall be
summarized in the following. Let us assume that the com-

ponent B of the example in section 2 provides function
getVideo as part of BookingInterface exposed as port
booking:

interface BookingInterface {

VideoStream getVideo(String title, String name);

}

component A{

uses BookingInterface myPort;

}

component B{

provides BookingInterface booking;

}

As stated in section 2.2, the user (component A) wants
confidentiality only if necessary, while the video server (com-
ponent B) unconditionally demands confidentiality. To en-
able a successful negotiation, the interval of the provides

clause has to be part of the uses clause’s interval of accept-
able values [1].Therefore, [7] introduces a number of quality
statements to express proper provides clauses for possible
security requirements. For our example, we need a suitable
provides description for if_necessary and unconditional:

// for if_necessary:

quality confidentiality_all (op:operation)

{

confidentiality(op) = on_no_condition or

confidentiality(op) = if_necessary or

confidentiality(op) = dont_care or

confidentiality(op) = if_possible or

confidentiality(op) = unconditional;

}

// for unconditional:

quality confidentiality_all_but_on_no_condition

(op:operation)

{

confidentiality(op) = if_necessary or

confidentiality(op) = dont_care or

confidentiality(op) = if_possible or

confidentiality(op) = unconditional;

}

Using these specifications, we can express components’
requirements as follows:

profile confidentiality_if_necessary for A {

uses confidentiality_if_necessary

(myPort.getVideo);

provides confidentiality_all

(myPort.getVideo);

}

profile confidentiality_unconditional for B {

uses confidentiality_unconditional

(booking.getVideo);

provides confidentiality_all_but_on_no_condition

(booking.getVideo);

}

However, the semantic of uses/provides in CQML+ can-
not be met. Actually, for QoS-related properties the “nego-
tiation” may restrict the uses interval of acceptable values.



That is the reason why the provides interval must be part
of the uses interval as cited above, e.g., [10..12] would be a
permissible restriction of [10..15] but [9..11] would not. A
successful negotiation w.r.t. QoS-related properties would
yield exactly the value specified in the uses clause regard-
less of any restrictions, e.g., simply the value 10 out of the
interval [10..12] above. This is not problematic at all be-
cause the uses clause just means that the using component
is able to process all possible input data of the specified do-
main. The fact that the used component does not accept all
possible values of this interval has no effect on processing.

In case of negotiation, however, each weighting specifies
a certain negotiation strategy. Therefore, valid results of
a negotiation have to be a acceptable weightings for both
components—as one can conclude, it has to be the stronger
weighting. The negotiation specified in the uses clause is
only the result of negotiation when two components with
identical demands are connected. So negotiation in the
example above results in unconditional. Even if both
if_necessary and unconditional would lead to enforc-
ing the protection goal, we have to prevent the stronger
weighting for further negotiations. Therefore, instead of
if_necessary as specified in the uses clause, negotiation
has to yield unconditional.

5. PROPOSED SOLUTIONS
First of all, we need two stages for unified treatment of se-

curity and other non-functional properties: (i) negotiation
of concurring requirements and (ii) enforcement of require-
ments.

At the first stage, there has to be a negotiation between
different requirements. We have to specify strategies for
conflicting situations as already sketched for the extended
semantic of security requirements. However, we will need
more comprehensive language features if we want to de-
scribe further preferences. To give an example: Users also
want to specify which of the security requirements may be
reduced first, e.g., whether confidentiality is more important
for them than accountability. We have not yet considered
trade-offs between conflicting quantitative demands like per-
formance and quality of the data. Until now, we have not
yet been able to implement a convenient way to negotiate
quantitative properties between different nodes as well.

For a real negotiation we need a new semantic. As we have
seen in the example above, it is inappropriate to just allow
reducing the provides domain for a real negotiation. This
is only sufficient for supply and demand. Instead, we need a
language feature that allows results of negotiations to differ
from values specified by uses clauses. The resulting value
must not conflict with requirements of participants. The
existing uses/provides clauses are inappropriate for this
purpose. At the moment, we use an XML-based descrip-
tion format to specify the weighting for negotiation. The
following code snippet shows the server provider’s security
demands for the booking component B’s booking port as an
example:

<negotiation_settings>

<preference>

confidentiality, integrity,

accountability, quality

</preference>

<demand

component_spec="B"

interface="booking"

confidentiality="unconditional"

integrity="if_necessary"

accountability="if_possible"

preference="confidentiality,

accountability, delay"/>

</negotiation_settings>

Potentially conflicting requirements are listed as single
items within the demand element, together with their weight-
ing. An explicit preference list can describe the ordering
in which single requirements may be reduced if they are not
weighted as unconditional. These preferences can be de-
clared globally for all demands or overridden per demand.
We currently align the XML-binding of CQML+ for better
interoperability with the negotation settings format.

The components’ runtime environment has to provide a
set of rules to support comprehensive negotiation. Careful
study of interferences between single properties is necessary
for this. First of all, a plausibility test for requirements of
single components is necessary. Second, the runtime envi-
ronment has to negotiate the resulting requirements on the
application. Participants have to be informed in case of con-
flicts.

At the second stage, the runtime environment tries to en-
force the requirements. Now the system tries to connect
components by processing CQML+ statements. The strat-
egy of restricting requirements is predetermined by the re-
sult of the first stage. The result of the second stage is sent
to the other participants. Because they have negotiated a
valid strategy for reducing, each result of the second stage
is acceptable for them. Therefore, both use the result with
less demands for computational power, i.e., the configura-
tion both can fulfill. The current prototype of our model
[4, 3] performs negotiation by iteratively aligning conflicting
demands, but we will also try to find an analytical solution
to this optimization problem.

To provide multilateral security, we have to enable the
participants to set their requirements. That means that the
descriptor which defines the negotiation settings is not writ-
ten only by the component provider. The server provider as
well has to be enabled to configure his preferences and, if
necessary, to overwrite requirements suggested by the com-
ponent provider.

6. SUMMARY AND OUTLOOK
In this paper, we have discussed possible steps towards a

unified treatment of security and other non-functional prop-
erties. We have mainly considered the issues of negotiat-
ing between potentially conflicting requirements and how
to raise the semantic of existing approaches to the level of
components. Our current solution uses different languages
to describe negotiation preferences and quantitative proper-
ties. Even if these different languages are used at different
levels, we need clear interfaces between these levels. There-
fore, a unified specification language is desirable. There are
two possible ways: A new specification language covering
both negotiation and description of quantitative properties
on one hand. On the other hand, the existing CQML+ can
be extended to allow to control the negotiation as sketched
in Sect. 5. To reuse existing solutions as far as possible, we
are currently investigating the latter alternative. A unifica-



tion of concepts and descriptions would however provide a
cleaner solution.

Existing CQML+ requires consideration of further de-
mands, e.g., a suitable description for the semantic and the
enforcement of security properties would be needed. Ad-
ditional means for describing global (security) requirements
would also become necessary in contrast to the current prac-
tice of attaching all requirements to components.

Summarizing the problems pointed out with existing lan-
guages, the model has to be extended to support all compo-
nent meta-levels in a unified manner and global requirements
on the runtime environment.

7. REFERENCES
[1] J. Ø. Aagedal. Quality of Service Support in

Development of Distributed Systems. PhD thesis,
University of Oslo, 9 Mar. 2001.

[2] J. Cheesman and J. Daniels. UML Components: A
Simple Process for Specifying Component-Based
Software. Addison Wesley Longman, Inc., 2001.

[3] S. Göbel, C. Pohl, R. Aigner, M. Pohlack, S. Röttger,
and S. Zschaler. The COMQUAD container
architecture. Submitted for publication., Feb. 2004.

[4] S. Göbel, C. Pohl, S. Röttger, and S. Zschaler. The
COMQUAD component model – enabling dynamic
selection of implementations by weaving
non-functional aspects. In International Conference on
Aspect-Oriented Software Development (AOSD’04),
Lancaster, UK, 22–26 Mar. 2004. ACM. To appear.

[5] K. M. Khan and J. Han. Composing security-aware
software. IEEE Software, 19(1):34–41, 2002.

[6] E. Pulvermüller, A. Speck, M. D’Hondt,
W. DeMeuter, and J. O. Coplien. Feature interaction
in composed systems, ECOOP 2001 Workshop
Proceedings. Technical Report 2001-14, Universität
Karlsruhe, Sep 2001.

[7] M. Reiche. Unterstützung von mehrseitiger Sicherheit
und Dienstgüte in komponentenbasierten Systemen.
Diplomarbeit, Dresden University of Technology, Sept.
2003. In German. English title: Support for
multilateral security and QoS in component-based
systems.

[8] S. Röttger and S. Zschaler. CQML+: Enhancements
to CQML. In J.-M. Bruel, editor, 1st Intl. Workshop
on Quality of Service in Component-Based Software
Engineering, pages 43–56, Toulouse, France, June
2003. Cépaduès-Éditions.

[9] U. Wappler. Sicherung der Integrität von
Softwarekomponenten. Großer Beleg (term paper),
Dresden University of Technology, 15 Oct. 2003. In
German. English title: Securing integrity of software
components.

[10] G. Wolf and A. Pfitzmann. Empowering users to set
their protection goals. In K. Rannenberg and
G. Müller, editors, Multilateral Security in
Communications – Technology, Infrastructure,
Economy, volume 3 of Informationssicherheit, pages
113–135. Addison-Wesley, München, July 1999.


	Introduction
	Existing Approaches for Describing Non-functional Properties
	Quality of Service and Quantitative Properties
	Security Requirements

	Adjusting Security Negotiation for Components
	Problems of Existing Approaches
	Proposed Solutions
	Summary and Outlook
	REFERENCES -9pt 

