
Engineering Service Level Agreements: A Constrained-Domain and
Transformation Approach

Josef Spillner, Stefan Illgen and Alexander Schill
Faculty of Computer Science, Technische Universität Dresden, 01062 Dresden, Germany

{josef.spillner,alexander.schill}@tu-dresden.de, stefan.illgen@mailbox.tu-dresden.de

Keywords: Service Level Agreements, Service Engineering

Abstract: Service Level Agreements (SLAs) are fundamental technical-juridical documents which in their function as
contract govern the rights and obligations between service consumers and providers. In today’s growing
service ecosystems, individually negotiated SLAs have powerful additional roles such as serving as the input
for automated service monitoring and health checking as well as binding service consumers through custom
incentives. These advantages, in turn, require adequate engineering techniques to let service providers express
the conditions under which a service can be consumed. While many SLA languages and tools exist, existing
approaches are either severely limited or too complex to be used by a broad set of providers. Hence, we
present a reduced effort approach based on transformations from existing domain-constrained public service
descriptions. By demonstrating the application thereof in an Infrastructure-as-a-Service scenario, we show
that SLAs can be prepared and improved in a very short time with suitable tools.

1 INTRODUCTION

Services brokered over the Internet, or even de-
livered through the Internet, are one of its most im-
portant functions beside the access to information
and communication channels. Custom mobile ap-
plications, attractive web applications and flexible
enterprise integration systems as human and tech-
nical interfaces to these services are considered the
state of the art. Recently, cloud computing ser-
vices along with on-demand provisioning and pay-
as-you-go billing schemes have further increased the
service utility and have been driving their wide-
scale adoption (Armbrust et al., 2010). Most ser-
vices on the Internet today can be categorised into
one of the two big groups: Free services with no
guarantees at all (called service level objectives, de-
noted as set O) or little best-effort protection and
no compensation (denoted as percentage C) in the
presence of violations (denoted as condition V ), and
paid services with a range from no guarantees to full
compensation and even over-compensation for fail-
ures. Examples include the Hewlett-Packard compute
cloud (O = {availability}, V = {availability≥99%},
Cmax = 30%), Google Apps (O = {uptime}, V =
{uptime≥95%}, Cmax = 50%), the Google search en-
gine (O = /0, C = 0) and the DHL express delivery
(O = {executiontime}, C = 100%). The objectives,

violation rules and compensation levels are captured
as terms in legally binding agreements called Service
Level Agreements (SLAs), sometimes appearing in
the context of Terms of Service (ToS) for both techni-
cal and non-technical services (Mendes and da Silva,
2012). The conditions, monitoring periods and usage
constraints under which the full or partial compen-
sation applies are often manifold (Kotsokalis et al.,
2011; Stantchev and Schröpfer, 2009) so that we omit
their introductory discussion.

Beside these two groups with their fixed binary
policy of either accepting the public SLA or not using
the service, especially in the academic world and in
privileged business contexts individually negotiated
SLAs play a major role. These are often based on
SLA templates (SLATs), either textual with natural
language or of formal structure or a mixture of both,
which are converted into SLA offers (SLAOs) during
the negotiation process. In order to support service
providers to express their fixed SLAs and their nego-
tiable SLATs from the first guarantee plans until the
submission to a web site or an open service market,
SLA languages have been created and basic SLA en-
gineering and processing tools exist (Alhamad et al.,
2010; Kearney et al., 2010). There are also a number
of general methodologies for service engineering and
provisioning in open markets which involve SLAs in
addition to other descriptive and executable service



artefacts (Spillner et al., 2011).
However, up until now, there has been little re-

search on an effective SLA engineering in the context
of open service markets with potentially thousands
of available services. In particular, novice providers
often need many hours to even start modelling their
first SLA due to the complexity of both the languages
and the tools. Even seasoned providers experience
consistency problems between SLA documents and
other information due to the low integration level of
SLA engineering tools and between the tools and mar-
ketplaces. Hence, we propose a much more refined
and guided approach based on functional domain con-
straints and automated transformations which cuts
down the engineering time significantly, while still
being applicable to generic services not specifically
optimised for, and ensures consistency. We evaluate
the approach with an editor which offers many in-
tegration points to reduce the engineering time even
more.

In the next sections, we first describe previous
SLA engineering methodologies in detail, including
existing languages and tools. Then, we present our
approach and focus on the novel aspects of domain
constraints and transformations, as well as on the inte-
gration into engineering and provisioning toolchains
for a reduced time to service markets. Afterwards, we
validate our approach by observing a practical mod-
elling experiment and conclude with remarks about
anticipated future improvements.

2 SLA ENGINEERING
METHODOLOGIES

In order to establish an SLA as a technically valid
and legally binding document between a service con-
sumer and a service provider or a service hoster act-
ing on behalf of the provider, several actions need
to be performed. In the case of fixed public SLAs,
the SLA needs to be expressed as a document for a
certain service or a group of services, then bound to
each service by linking it from a webpage or regis-
tering it in a directory service or on a market. It be-
comes a binding document by the confirmation from
the user. In the case of negotiable SLAs, rules for
the negotiation need to be established including the
option to negotiate manually, and a template for the
SLA with placeholders for the negotiable parts need
to be expressed. The template (SLAT) needs to be
bound to the service and registered just like the SLA
in the fixed case. The non-public SLA is derived in a
negotiation process after which it becomes a binding
document. Afterwards, SLA evaluation and process-

ing actions happen, for instance monitoring, violation
and dependency checking, evolutionary improvement
and feedback. These actions are not subject to this
work; we refer to (Wu and Buyya, 2010) for an exten-
sive survey on overall SLA lifecycle components.

Beside ad-hoc and copy-paste approaches to es-
tablish SLAs, a number of systematic methodologies
to create them from scratch for a certain service have
been proposed in the literature (Spillner et al., 2011).
These methodologies typically suggest a combination
of preferred SLA language, modelling and editing
tools and market integration tools. The SLA engineer-
ing scope as part of a service engineering and provi-
sioning process is shown in Figure 1. In it, a service
engineering environment under the control of a ser-
vice engineer hosts editors for all parts of a service
package, including an SLA editor. The service pack-
age, an abstract model for the purpose of combining
executable and descriptive service artefacts, is then
deployed on an open service platform on the Inter-
net or an in-house test stage platform. The executable
artefacts are then deployed in a service hosting repos-
itory, whereas all descriptive artefacts, among them
SLA templates, will be registered at a service broker.
At runtime, the SLA editor may fetch feedback in-
formation from the broker and incorporate it as part
of an SLA template re-engineering process. All the
languages and tools of relevance for SLA engineering
and provisioning will be briefly presented and then
summarised with a list of shortcomings.

2.1 SLA Languages

An SLA is a time-limited agreement about a specific
service jointly enacted between the service provider
and the service consumer which determines the over-
all usage conditions and the targets for the cost and
quality of service execution and delivery. The com-
plexity of SLA documents motivates the need for cus-
tom languages for the proper formal expression of the
conditions and targets.

Languages to describe SLAs and SLA-related
documents including templates and offers have origi-
nated from the web services and grid computing com-
munities. WSLA (Keller and Ludwig, 2002), WS-
Agreement and its extensions (Andrieux et al., 2007;
Frankova et al., 2006), SLAng (Lamanna et al., 2003),
NextGRID (Mitchell and McKee, 2006) and RBSLA
(Paschke, 2005) are examples for such languages.

The Web Service Level Agreement (WSLA) lan-
guage is an XML-based format specifically designed
for web services. WSLA further defines a negotia-
tion, monitoring and notification framework tightly
coupled to the language. Similar to WSLA, the lan-



Service Engineering Environement (SEE)

Service Platform

1a

1b

1c

8

Service Description

Service ConsumerService Provider

Platform Operator

Service Engineer

Service-
package

Bundler Provisioning
Application

SLA 
Template

Service Broker

Service
Registry

Contract
Management

Service Hosting

MonitoringExecutionAccess
Control

Service
Implementation

Editor

SLA-Editor

Editor

2

1b
10

97

6
2

2 3

4

5

Figure 1: Engineering and provisioning toolchain for services in open markets

guage for Web Service Agreements (WS-Agreement)
is XML-based with a structure defined by XML
Schema. Beyond the language itself, the WS-
Agreement framework defines web service operations
to perform negotiation and monitoring tasks. As
the language is very generic, a number of exten-
sions have been proposed to introduce specialised sets
of guarantees and to improve the negotiation pro-
tocols (Frankova et al., 2006; Jouve et al., 2006).
SLAng is defined on an abstract modelling level in
terms of meta-models in Essential Meta-Object Fa-
cility (EMOF) notation. It applies the Object Con-
straint Language (OCL) to specify quality constraints.
NextGRID’s language is another one defined by an
XML Schema. Such SLAs contain three parts for the
definition of participating parties, the negotiable prop-
erties and fixed statements, respectively. This lan-
guage is heavily influenced by WS-Agreement. RB-
SLA is a declarative rule language which enhances
the XML-serialised RuleML language with useful
constructs to express SLA terminology. An advantage
is that off-the-shelf RuleML engines already exist for
the processing of such SLAs.

Recently, there have also been proposals for a
conceptual SLA model for cloud services (Alhamad
et al., 2010), and one for generic services called SLA?

(Kearney et al., 2010). Nevertheless, for our work
we chose WS-Agreement due to the well-understood
scope and limitations and the existence of extensions
and tooling. This choice, however, doesn’t render
our approach inapplicable with other languages, espe-
cially because most of them are quite similar in their
syntax and semantics.

2.2 SLA Engineering Tools

Tooling around SLAs involves the tasks of SLA and
SLAT creation through modellers and editors, the reg-
istration of these documents at markets, SLA nego-
tiation before using a service, and SLA monitoring,
processing and evaluation at runtime. Our work fo-
cuses purely on the engineering perspective and hence
on the first two tasks. Editing and modelling tools
for SLAs exist mainly for the Eclipse IDE, namely
WSAG Editor for WS-Agreement, PLASTIC SLA
Editor for SLAng, and g-Eclipse as rather generic ap-
proach for grid environments (Spillner et al., 2011;
Bertolino et al., 2007; Gjermundrød et al., 2008).
Web-based tools also exist, namely ADA and Dragon
(Müller et al., 2010; Boissel-Dallier et al., 2009).

The WSAG Editor is an extensible rich client
application to model SLAs, SLATs and SLAOs in



pure and extended WS-Agreement. Each part of the
SLA-related documents can be manipulated with a
dedicated editor component, which is either a de-
fault XML text editor or a more suitable graphical
widget. Due to the binding to XML Schema, the
widgets can be reused for common data types, e.g.
SLA participant addresses or pricing terms. An in-
tegrated help system and a number of wizards make
this editor more user-friendly. The scope of the
PLASTIC SLA Editor is slightly different. It inte-
grates a framework to generate monitors for the ob-
jectives defined in the SLAng language. The edi-
tor part exposes a structural UML modelling tool but
doesn’t offer further graphical support. Model-to-
model and model-to-code transformations are avail-
able. G-Eclipse offers views, editors and wizards to
manage grid resource services. SLAs can be gener-
ically modelled and published. Due to the focus on
grid environments, both a Job Submission Descrip-
tion Language (JSDL) and a NextGRID SLA editing
component are contained in g-Eclipse. A wizard ex-
ists to generate new SLAs based on the service do-
main selection, but it doesn’t import non-functional
properties from a service description. The Agree-
ment Document Analysis (ADA) project has pro-
posed WSAG4People, a human-readable syntax vari-
ant of WS-Agreement, along with a web-based ed-
itor called iAgree which has been implemented in
JavaFX. The editor is however limited to consistency
checks between SLA templates and offers while the
modelling itself requires direct syntax modifications.
Dragon is a SOA governance tool which incorporates
a registry along with contracting tools and editors
for WSDL descriptions and SLA documents. SLAs
are modelled in WS-Agreement which are linked to
WSDL documents. The editor targets administrators
rather than providers, as there is no conceptual differ-
entiation between SLATs and SLAOs.

As mentioned before, sometimes SLA engineer-
ing tools have been anticipated as part of general ser-
vice engineering projects. Representative for these
are a toolchain to connect and orchestrate separate
light-weight modelling tools (Spillner et al., 2011),
an integrated development environment with publish-
ing functionality called the ISE Workbench (Schei-
thauer et al., 2011) and the SeCSE Suite, a repos-
itory of open source instruments to create service-
centric systems (Baresi et al., 2006). In all of these
cases, the guided SLA modelling workflow is very
basic and less sophisticated than in the SLA-centric
approaches mentioned before. For example, SeCSE
assumes the expression of SLA conditions as com-
mercial or QoS facets of a custom service specifica-
tion language without offering specific support for ex-

pressing the facets.
Overall, formalisation and tool support for SLA

engineering is available, but the state of the art is
rather weak. In particular, among the editors, only the
WSAG Editor seems to be maintained and up-to-date
with current Eclipse versions. Furthermore, all of the
editors require significant effort and still expose syn-
tactical structures which make them unsuitable for the
casual or novice service provider. Only the g-Eclipse
editor offers integration with grid or cloud service
hosting facilities. As a result, we choose to take the
WSAG Editor and advance it with user-friendly mod-
elling techniques and seamless service marketplace
integration in order to demonstrate the usefulness of
these techniques.

For the completeness of the tools analysis, it
should be mentioned that a number of SLA frame-
works exist beyond SLA engineering without graph-
ical user interfaces or even no human interfaces at
all, for instance to support negotiation and monitor-
ing. A client-centric negotiation tool as well as the
Akogrimo and SLA@SOI architectures are examples
for such tools which run non-interactively on service
platforms (Rady, 2012; D’Andria et al., 2007; Butler
et al., 2011).

2.3 Limitations

The amount of available SLA engineering method-
ologies, languages and tools analysed in the previous
sections shows that there is a common understanding
of the importance of structured SLAs and the need to
engineer them properly. Nevertheless, certain weak-
nesses could be identified which shall be summarised
here to use them as input for the requirements analysis
leading to a more suitable approach.

Most approaches only offer a generic SLA mod-
elling perspective without taking specialised knowl-
edge about certain domains into account. In reality,
most service providers have a strong domain-specific
background (Gillam et al., 2012). Furthermore, none
of the approaches covered by the analysis strives for
ensured consistency between modelling artefacts. In-
consistencies can become a major problem if service
descriptions and SLA documents do not match or if
there are different versions of them on the engineer’s
side and published on open markets.

3 PROPOSED APPROACH FOR
SLA ENGINEERING

The proposed SLA engineering approach makes
use of functional service domain constraints. Do-



main knowledge is often higher than technical or ju-
ridical knowledge with service providers, for instance
knowledge about the intrinsic priorities in short-term,
time-critical travel planning services or long-term,
safety-critical cloud storage services. It is implied
that the modelling and editing widgets are aware of
domain-specific guarantees and can thus be presented
to the user in a suitable form. The approach also relies
heavily on transformations so that metadata and non-
functional properties, including technical abilities and
business context like pricing information, can be im-
ported from service descriptions in order to speed up
the modelling process. The import function is logi-
cally complemented by an export function which con-
tributes further to the increased consistency and de-
creased modelling time. In the following paragraphs,
the SLA model supported by the approach is speci-
fied, and all three distinct characteristics of the ap-
proach are explained in detail.

3.1 SLA Model

Our engineering approach assumes a flexible model
which is aligned with existing specifications so that
tools and services can be reused. In analogy with
the WS-Agreement specification, an Service Level
Agreement document (SLAT, SLAO or final SLA)
consists of a number of Service Level Objectives
(SLOs) together with auxiliary information about the
agreement participants, the validity and standard legal
terms. As a minimum requirement, the objectives are
described as triples (property, predicate, metric(value,
unit)). The property corresponds to a Non-Functional
Property (NFP) of the service, which may be either
generic or domain-specific. Some SLOs may be sub-
ject to a precondition, a Qualifying Condition (QC),
which are triples referring to environmental properties
in the service execution context and thus are converse
to the objectives which refer to intrinsic service prop-
erties. Furthermore, Business Value Lists (BVLs) are
used to define precise compensation and weighting
among the SLOs. An example for an SLA which con-
tains SLOs, QCs and BVLs is shown in Table 1. The
objective values can be ranges instead of specific val-
ues, which may be flattened to smaller ranges or even
single values during the offer creation (ratio scale).
Alternatively, they can be lists from which a specific
value may be picked (nominal scale). Other scale
types are in between these two and could be modelled
accordingly, although we don’t consider them for our
work.

3.2 Constrained Domains

The approach assumes that all services for which
SLAs should eventually be made available fall into
a functional domain and express this domain through
a description document. Typically, semantic web ser-
vice languages such as the Web Ontology Language
for Services (OWL-S) and the Web Service Modelling
Language (WSML) are used to create these docu-
ments. The Unified Service Description Language
(USDL) also offers vocabulary to specify the service
domain. Domains can be specialised subdomains of
one or more generalised domains.

The ontology set shown in Figure 2 shows how
generic base ontologies and domain-specific ontolo-
gies for cloud computing services can be combined to
yield expressive semantic descriptions. Higher-level
concepts such as cloud storage capacity or compute
cloud burst mode are clearly domain-specific. For
these concepts, an appropriate modelling support can
be visually given by loading appropriate widgets de-
pending on the editor implementation. Whenever no
such widget exists, a generic representation down to
the basic data types present in all ontology languages
is always possible as a fallback. Nine base ontologies
and numerous domain ontologies are contained in
the WSMO4IoS catalogue which focuses especially
on non-functional properties of services from various
classes and domains (Spillner, 2012). Likewise, sim-
ilar catalogues exist for common cloud services as in
IaaS, PaaS and SaaS (Rady, 2012). For instance, if
the provider intends to model an SLA template for a
cloud storage service, the specific properties listed in
Table 2 will be queried and turned into SLOs beyond
generic business, network and service QoS properties.
This avoids the specification of SLOs which are not of
relevance to the particular kind of service.

Table 2: SLOs suitable for a cloud storage service

Property Representation Source Domain
Sign-up privacy Slider (%) Online Account
Capacity Slider (Unit) Storage
Redundancy Slider (%) Storage
Backup Option Storage
Encryption Option Storage

3.3 Transformations

In order to reduce the engineering effort and the po-
tential for inconsistencies to appear, the service level
objective terms in SLAs and SLA templates should be
linked to the corresponding service description doc-
uments. There are two options: A link on the syn-
tactic/interface level to mark which web service oper-



Table 1: Example for an SLA with objectives (SLOs), preconditions (QCs) and weighting (BVLs)

Service Level Objective (SLO) Qualifying Condition (QC) Business Value (BVL)
NFP Predicate Metric NFP Predicate Metric Weight
Domain-independent (Generic)
Availability ≥ 99.9% 5
ResponseTime < 40ms 3
Throughput ≥ 100Mbps NetworkBandwidth ≥ 100 MBps 1
Domain-specific: Cloud Storage
Capacity > 9999GB 1
Redundancy ≥ 200.00% 1

NetworkCloud
Storage

Cloud 
Computation

Domain-
specific
Ontologies
(IaaS)

Base
Ontologies
(generic)

VM Appliance

RemoteQoS
Base

SystemQoS
Base

Contract
Base

Business
Base

Ressource
Base

Context
Base

QoSBase

S3 & EC2 Google Storage Rackspace

Domain-
specific
Service
Descriptions
(IaaS)

Figure 2: WSMO4IoS service models for cloud computing
infrastructure services

ations or resources will be protected, to be defined
in a Web Service Description Language (WSDL)
or Web Application Description Language (WADL)
document, and a link on the semantic/conceptual level
to mark which service concepts, characteristics and
properties will be protected, to be defined by USDL,
WSML or OWL-S as previously outlined. Our trans-
formation work focuses on non-functional property
entries in service descriptions with WSML semantics.

Figure 3 puts all five SLA-related descriptive ser-
vice artefacts and their three transformation options
into perspective. The approach assumes that in order
to transform a service description into an SLA tem-
plate (step 2), a rich service description (SD) exists
which may have been derived from a description tem-
plate (SDT) in the form of base and domain ontolo-
gies beforehand (step 1). Subsequently, the template
can be negotiated into an offer and eventually into a
valid SLA while maintaining the links as annotations
(step 3).

According to the SLA model, each SLO is de-
fined by a variable with a required value and, if dy-
namically added by a service runtime, a current value

Figure 3: Transformations between models and instances
(vertical) and between informational and juridical descrip-
tive service artefacts (horizontal)

as meta-data. The target format of the variables
can follow either an fully contained non-functional
property model or a schema-driven one with ex-
ternal expressions. The Java Expression Language
(JEXL) is a language to define logical statements
with comparison operators over the variables which
are themselves defined according to a model of non-
functional properties such as the one defined by
the Job Submission Description Language (JSDL).
JEXL expressions are rather complex and become
hard to maintain when several of them are used in
an SLA document. The fully contained model de-
fines all values within each of the SLO terms, with-
out using WS-Agreement’s Location element. It
is used by, among others, the Value-Types exten-
sion to WS-Agreement (WSAG+VT). Specifically,
WSAG+VT allows for fixed values, ranges and op-
tions with appropriate comparison operators such as
less-than and out-of-range. Figure 4 shows
how in this context the WSAG+VT extension com-
pares to JEXL expressions. Our approach assumes
an extended WSAG+VT with ontology grounding to
maintain the link to the original service description.
The grounding XML elements extend the SLO vari-
able’s @Metric attribute. A downside of this decision
is that the full conformance to the WS-Agreement
specification is lost, although this is more a theo-
retic concern than a practical one and traded off with
much better support for extensibility without having
to modify schemas. In both cases, WS-Agreement
GuaranteeTerms are used to hold the objectives



while ServiceProperties hold the variables.

Template

Service Properties

Variable

@Name

Guarantee Term

SLO | QC

WSML-(N)FP-Model
(WSMO4IoS)

WSAG+VT

@Metric

Template

Service Properties

Variable

@Name

Guarantee Term

SLO | QC

JEXL

@Metric

Location

Service Description Term

XSD-(N)FP-Model
(JSDL | ...)

JSDL | ...

Approach One Approach Two

Figure 4: Comparison of JEXL and WSAG+VT

Figure 5 contains a rough outline of the trans-
formation rules between a service description ex-
pressed in WSML and the target SLA template ex-
pressed in WS-Agreement. WSML interfaces are
referenced from within SLA documents by WS-
Addressing statements. Monitoring endpoints can
similarly be defined. Non-functional properties
are converted from WSML NFPs into WSAG+VT
SLOs while pricing specifications are considered for
the definition of penalties. For them, a custom
WSAG+Business extension has been defined based
on the WSMO4IoS and USDL pricing models which
include currency and price region concepts. Finally,
further metadata is converted, such as the provider-
side participant address from the WSMO4IoS con-
tract model properties to the corresponding WS-
Agreement element AgreementResponder, while the
AgreementInitiator is filled into negotiated SLAs
at runtime. The transformation quality depends on the
presence of specialised service level meta-properties
in the service description. One kind of meta-property
is the declaration of whether an NFP can be guar-
anteed or not, with the estimated guarantee levels.
Without the meta-properties, a fallback transforma-
tion takes place. Generally, these meta-properties
cause more service description modelling overhead
but have additional advantages, for instance filtering
out services without certain guarantees already in the
service selection phase before attempts to negotiate a
contract.

3.4 Integration

An SLA editor is subject to integration with both
other service modelling tools and with service reg-
istries in open markets. The integration is primarily
document-based, where the documents are descriptive

Web Service

interface i

WSDL Reference

Monitoring Endpoint Reference

Contract Template k 

Service Provider

Guarantee j

QC Assertion

SLO Assertion

Penalty

NFP-Instance n {qos#Quality} 

Main Concept {rqos#RemoteQoS}

Service Plan {bb#BusinessService} k

Metadata

WSML WSAG

SLA Template(i,k)

Context

Monitoring Endpoint Reference

Agreement Responder

Service Terms

Service Reference

Service Property n

Guarantee Term j

QC

SLO

Penalty (BVL)

SDT (Service Plan) 

Service Reference

Figure 5: Transformation rules between WSML service de-
scriptions and WS-Agreement SLA templates

service artefacts consumed or produced by the editor.
The following combinations are useful:

• Import of service description document from tool:
The SLA editor reads the service descriptions,
transforms it into a stub SLA and lets the user per-
form the modelling process.

• Import of service description document from mar-
ket: Similarly, a service description is loaded and
transformed after presenting the user a list of pub-
lished services from a specified registry.

• Import of SLA document from tool: The source of
such SLA documents is supposed to be network-
transparent, which allows for access to both lo-
cal files and files served over HTTP in distributed
tooling environments.

• Import of SLA document from market: The user
selects a registry endpoint and gets a list of public
or owned SLA documents. Each imported docu-
ment is treated as a modified version of the pub-
lished one in order to control the resubmission.

• Export of SLA document to tool: This is useful
if the SLA document should not be published on
its own but rather as part of a tradeable service
package. An editor would spawn the packaging
tool with the document path as its argument.

• Export of SLA document to market: This export
uploads the document to a service registry in an
authenticated session. It needs to be associated to
an existing service entry. The upload can option-
ally lead to the rewriting of existing service de-
scriptions, for instance to update location pointers
to SLA templates.



4 SLA ENGINEERING IN
PRACTICE

We have validated the proposed SLA engineer-
ing approach by extending the former WSAG Editor
with domain constraints, document transformations
and tool and market integration points, and the subse-
quent usage and user testing of the editor on a cloud
storage scenario service as an example of an IaaS of-
fering.

The SLA editor which incorporates the domain-
constrained and transformation-based SLA engineer-
ing approach has been implemented as a standalone
application based on the Eclipse Rich Client Plat-
form (RCP) Java library collection with support-
ing libraries for the service artefact types, for in-
stance WSMO4J and WSAG4J. The editor uses
parametrised XSL transformations to convert WSML
artefacts into SLA documents. During this process,
WSMO4J serialises the WSML artefact into its XML
representation because typically WSML is modelled
in human-readable compact syntax. Each WSML in-
terface leads to the generation of a service level. As
a secondary option, SLA documents can be generated
from WSDL files. In this case, the service level infor-
mation will not be present.

The editor currently contains visual support for
the domain-independent modelling of services, par-
ticipants, value types (for WSAG+VT objectives) and
artefact references. Further visual support is given for
the domain-specific modelling of cloud resource ser-
vice properties. All widgets are dynamically loadable
and could hence be loaded on demand from a dedi-
cated engineering registry which is bound to the SDTs
on a service marketplace.

The initiation of an SLA document through a
graphical wizard is highlighted in Figure 6. Within
the wizard, a source service description can be se-
lected and a transformation can be applied to it.
Once a preliminary SLA document has been cre-
ated, the SLOs can be freely manipulated. Figure 7
shows a screenshot of the crucial editor component
which is responsible for the expression of objectives.
The editor integrates well into engineering environ-
ments through command-line parameters and docu-
ment passing as files. It also retrieves from and pub-
lishes into the ConQo service registry. The editor
menu with access to the integration options is con-
tained in Figure 8.

For the user testing, we have developed a cus-
tom cloud storage service called EasyStorage with a
WSDL and a WSML description. Both the WSAG
Editor and the EasyStorage service have been in-
stalled into SPACEflight, a completely integrated re-

Figure 6: Wizard to generate new SLA documents

Figure 8: Menu of the editor to invoke the wizard to load
and save SLATs and to create new SLATs or transform ex-
isting service descriptions into SLATs

search and education environment with many pre-
configured platforms, tools and scenarios for experi-
encing advances in service sciences and cloud com-
puting (OSSPRI, 2012). SPACEflight is accessible as
a native installation on a desktop or notebook com-
puter, as a virtual machine running in full-screen
mode, or as a remote desktop instance running in the
cloud. This way, the participants could concentrate on
the editor usage instead of being side-tracked by in-
stallation or configuration procedures. We have then
defined a number of modelling tasks which together
with a set of evaluation questions were included in
a survey for user testing. The test methodology in-
cludes a comparison with a previous testing round in
which the former WSAG Editor (version v1) without
any of the characteristics introduced in this work had



Figure 7: Editor component for business and technical SLOs

been evaluated. The participants were assisted with
the new editor’s (version v2) integrated help system
and an SLA expert.

The first modelling task required the modelling of
four SLOs, three of them with QCs. The second task
required service innovation by taking imaginary feed-
back into account to adapt the SLA templates to more
appropriate ones. The third task added the modelling
of an existing commercial cloud storage service. Over
these three tasks, seven subtasks were defined and
measured in terms of how much time was spent on
them. In addition, 16 general usability questions were
asked. Table 3 outlines the central questionnaire per-
formance metrics, including both the time spent on
each task (T) and number of help inquiries with the
expert present during the evaluation (H). Most tasks
were not available with the editor version v1.
Table 3: Performance metrics in the evaluation question-
naire

Task Tv1 Hv1 Tv1 Hv2
Create/Skip transform - -
Create/Simple transform - -
Create/Contract transform - -
Upgrade SLA level - -
Add level, w/ WSML - -
Add level, w/o WSML - -
Custom SLAT

The evaluation was conducted with six partici-
pants. On average, the participants needed 28.17 min-
utes with 2.67 help inquiries for the first three tasks,

15.33 minutes with 1.5 inquiries for the second group
of three, and 10.00 with 1.33 inquiries for the last
task. The highest complexity has been measured with
the modelling of compensation rules in case of SLA
violations, which hints at a potential for improved
presentation and interaction regarding the compensa-
tion strategies. The results are visualised in Figure 9.

Figure 9: Performance comparison of the editing process
between versions v1 and v2 of the editor

In addition to the performance, the efficiency of
filling out all SLAT fields was measured. Without
the transformation support, the users needed on av-
erage 15 minutes at the first time and 10.17 min-
utes for consecutive modelling sessions. The sim-
ple transformation of the SLAT from the service de-
scription with partially pre-filled fields required just
10.17 minutes for the first run and 7.33 for the con-
secutive ones. Finally, the full transformation based
on the WSMO4IoS ContractBase ontology required
2.33 minutes for the first and 1.83 for consecutive ses-
sions. This means that a speed-up factor of 1.38 can
be achieved for simple transformations without any
additional modelling effort, and a factor of 5.55 when
the service descriptions are already enriched with ap-



propriate contract statements. The factors are out-
standing in Figure 10.

Figure 10: Efficiency comparison between the
transformation-less and transformation-supported editing
processes

Due to the nature of performing a user testing
evaluation, all results are subjective and provide little
empirical evidence of the improvements from using
our approach. The initial feedback from the user test-
ing is however highly positive. Participants are able
to better understand the purpose of the SLA contents
and can better express their guarantees compared to
the earlier version of the editor. Hence, we assume
that the approach is a valuable contribution to the field
of service engineering and service management.

5 CONCLUSION

The presented SLA engineering approach brings
significant improvements for service engineers and
providers in service and cloud computing ecosys-
tems. It helps providers to more rapidly achieve the
desired expression of which service levels can be
guaranteed. The three main distinct characteristics
over previous modelling approaches are (1) domain-
constrained service level objective modelling to ac-
knowledge the differences in domain knowledge, (2)
consistency-preserving transformation from service
descriptions to SLA documents to avoid data cura-
tion problems, and (3) publishing and re-engineering
integration with service marketplaces and other en-
gineering tools. The WSAG editor, which has been
extended by the authors of this work to evaluate the
engineering approach, has been made freely available
for download 1 under the auspices of the Open Source
Service Platform Research Initiative to spur its adop-
tion and ensure its long-term availability.

For the future, we see further potential improve-
ments to the approach and the tool support for it.
First, it shall be possible to model multiple SLA levels
in one document with flexible combinations of WS-
Agreement All and ExactlyOne block semantics.

1WSAG editor website: http://serviceplatform.
org/wiki/Service_Engineering

Second, constraints should be bundling so that mul-
tiple non-functional properties can be covered by a
single constraint, as SLO or QC assertions. Third, the
modelling of linear and more complex penalty func-
tions should be supported. Finally, the widgets for
visually supported domain-specific modelling should
be dynamically retrieved from an engineering market-
place.

ACKNOWLEDGEMENTS

This work has received funding under project
number 080949277 by means of the European Re-
gional Development Fund (ERDF), the European So-
cial Fund (ESF) and the German Free State of Saxony.

REFERENCES

Alhamad, M., Dillon, T., and Chang, E. (2010). Conceptual
SLA framework for Cloud Computing. In 4th IEEE
International Conference on Digital Ecosystems and
Technologies (DEST), pages 606–610. Dubai, United
Arab Emirates.

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Lud-
wig, H., Nakata, T., Pruyne, J., Rofrano, J., Tuecke,
S., and Xu, M. (2007). Web Services Agreement
Specification (WS-Agreement). Grid Resource Al-
location Agreement Protocol (GRAAP) WG of the
Open Grid Forum, available online: www.ogf.org/
documents/GFD.107.pdf.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
and und Matei Zaharia, I. S. (2010). A view of cloud
computing. Communications of the ACM, 53(4):50–
58.

Baresi, L., Nitto, E. D., and Ghezzi, C. (2006). Toward
Open-World Software: Issues and Challenges. IEEE
Computer, 39(10):36–43.

Bertolino, A., Bianculli, D., Angelis, G. D., Frantzen, L.,
Kiss, Z. G., Ghezzi, C., Polini, A., Raimondi, F.,
Sabetta, A., Carughi, G. T., and Wolf, A. (2007).
PLASTIC Test Framework: Prototype Implementa-
tion. PLASTIC Deliverable D4.2.

Boissel-Dallier, N., Lorré, J.-P., and Benaben, F. (2009).
Management Tool for Semantic Annotations in
WSDL. In Proceedings of the Confederated Inter-
national Workshops and Posters on On the Move
to Meaningful Internet Systems: Beyond SAWSDL
(OTM), pages 898–906. Vilamoura, Portugal.

Butler, J., Lambea, J., Nolan, M., Theilmann, W., Torelli, F.,
Yahyapour, R., Chiasera, A., and Pistore, M. (2011).
SLAs Empowering Services in the Future Internet. In
The Future Internet – Future Internet Assembly 2011:
Achievements and Technological Promises, number
6656 in Lecture Notes in Computer Science (LNCS),
pages 327–338. Budapest, Hungary.



D’Andria, F., Martrat, J., Kirkham, T., Naqvi, S., Gal-
lop, J., and Arenas, A. (2007). The evolving use of
Service Level Agreements and the influence of Trust
within the support and development of Grids to enable
a next generation of business models. In Proceedings
of Service Oriented Computing: A Look at the Inside
(SOC@Inside’07) at ICSOC.

Frankova, G., Malfatti, D., and Aiello, M. (2006). Seman-
tics and Extensions of WS-Agreement. Journal of
Software, 1(1):23–31.

Gillam, L., Li, B., and O’Loughlin, J. (2012). Adding
Cloud Performance to Service Level Agreements. In
Proceedings of the 2nd International Conference on
Cloud Computing and Services Science (CLOSER),
pages 621–630. Porto, Portugal.

Gjermundrød, H., Dikaiakos, M. D., Stümpert, M., Wol-
niewicz, P., and Kornmayer, H. (2008). g-Eclipse -
an integrated framework to access and maintain Grid
resources. In Proceedings of the 9th IEEE/ACM Inter-
national Conference on Grid Computing (Grid), pages
57–64. Tsukuba, Japan.

Jouve, W., Lancia, J., Consel, C., and Pu, C. (2006). A
Multimedia-Specific Approach to WS-Agreement. In
Proceedings of the European Conference on Web Ser-
vices (ECOWS), pages 44–52. Zürich, Switzerland.

Kearney, K. T., Torelli, F., and Kotsokalis, C. (2010). SLA?:
An Abstract Syntax for Service Level Agreements.
In Proceedings of the 11th IEEE/ACM International
Conference on Grid Computing (GRID), pages 217–
224. Brussels, Belgium.

Keller, A. and Ludwig, H. (2002). The WSLA Framework:
Specifying and Monitoring Service Level Agreements
for Web Services. Technical Report RC22456, IBM
Research.

Kotsokalis, C., Rueda, J. L., Gomez, S. G., and Chi-
meno, A. E. (2011). Penalty Management in the
SLA@SOI Project. In Wieder, P., Butler, J. M., and
und Ramin Yahyapour, W. T., editors, Service Level
Agreements for Cloud Computing, pages 105–121.
Springer New York.

Lamanna, D., Skeene, J., and Emmerich, W. (2003).
Specification Language for Service Level Agreements
(SLAng). TAPAS Deliverable D2.

Mendes, C. and da Silva, M. M. (2012). DEMO-Based Ser-
vice Level Agreements. In Third International Con-
ference on Exploring Service Sciences (IESS), volume
103 of Lecture Notes in Business Information Process-
ing (LNBIP), pages 227–242. Geneva, Switzerland.

Mitchell, B. and McKee, P. (2006). SLAs: A Key Com-
mercial Tool. In Cunningham, P. and Cunningham,

M., editors, Innovation and the Knowledge Economy:
Issues, Applications, Case Studies. IOS Press, Ams-
terdam, Netherlands.

Müller, C., Durán, A., Resinas, M., Ruiz–Cortés, A., and
Martín–Díaz, O. (2010). Experiences from build-
ing a WS–Agreement document analyzer tool (Includ-
ing use cases in WS–Agreement and WSAG4People)
v1.0. Technical Report ISA-10-TR-03, University of
Seville.

OSSPRI (2012). SPACEflight - Live Demonstrator for In-
ternet of Services and Cloud Computing Technolo-
gies. Software appliance, available online: http:
//serviceplatform.org.

Paschke, A. (2005). RBSLA - A declarative Rule-
based Service Level Agreement Language based on
RuleML. In International Conference on Intelli-
gent Agents, Web Technology and Internet Commerce
(IAWTIC), volume 2, pages 308–314. Vienna, Austria.

Rady, M. (2012). Parameters for Service Level Agreements
Generation in Cloud Computing – A Client-Centric
Vision. In Advances in Conceptual Modelling: Third
International Workshop on Conceptual Modelling of
Services (CMS), volume 7518 of Lecture Notes in
Computer Science (LNCS), pages 13–22. Florence,
Italy.

Scheithauer, G., Voigt, K., Winkler, M., Bicer, V., and
Strunk, A. (2011). Integrated Service Engineering
Workbench: Service Engineering for Digital Ecosys-
tems. International Journal of Internet and Enterprise
Management, 9(5):392–413.

Spillner, J. (2012). WSMO4IoS – Ontology concept collec-
tion for the Internet of Services. Specification, avail-
able online: http://serviceplatform.org/spec/
wsmo4ios/.

Spillner, J., Kümpel, A., Uhlig, S., Braun, I., and Schill, A.
(2011). An Integrated Provisioning Toolchain for the
Internet of Services. In Proceedings of the 10th IADIS
International Conference WWW/Internet, pages 566–
570. Rio de Janeiro, Brazil.

Stantchev, V. and Schröpfer, C. (2009). Negotiating and En-
forcing QoS and SLAs in Grid and Cloud Computing.
In Proceedings of the 4th International Conference on
Advances in Grid and Pervasive Computing (GPC),
number 5529 in Lecture Notes in Computer Science
(LNCS), pages 25–35. Geneva, Switzerland.

Wu, L. and Buyya, R. (2010). Service Level Agree-
ment (SLA) in Utility Computing Systems. Techni-
cal Report CLOUDS-TR-2010-5, Cloud Computing
and Distributed Systems Laboratory, The University
of Melbourne, Australia.


