
UDC 621.377

AN ENVIRONMENT FOR EDUCATIONAL SERVICE
COMMUNITIES

Josef Spillner

Technische Universität Dresden, Germany

In most global economies, there is a strong trend from agriculture and manufacturing towards service-orientation and
tertiarisation: Services, products with value-added service solutions and, more recently, automated Internet service offerings
seamlessly delivered through on-demand elastic cloud computing resources. In the affected societies, education is recognised
to be a key factor for maintaining the competitiveness. Specialised education about services is broadly available, but tool
support for hands-on learning and testing of how services can be produced, offered, delivered and improved is missing. We
aim to close this gap between theory and application by proposing an integrated environment for educational service
communities such as service engineering classes. The initial results of our work show that the environment, which supports
both auto-didactic learning and team-based competitive and collaborative learning-by-doing throughout the service lifecycle,
motivates students and increases their practical knowledge about services.

Introduction

Two lines of development are pushing for a new
paradigm of globally tradeable services: One the one
hand, economic tendencies point towards the bundling
of products and services into integrated solutions [1], on
the other hand, advanced techniques emerge for the cre-
ation, description, composition and delivery of auto-
mated service offerings such as web services [2]. Such
services are completely self-descriptive and therefore
interoperably tradeable on different marketplaces, while
the provider retains the souvereignty about the descrip-
tions, usage agreement templates and other service arte-
facts. These developments supports the migration of
services to more suitable hosting and cloud environ-
ments and the customisation and bundling of services
towards value-added solutions, including seamlessly
woven manual and automated service executions. To
realise this vision, a profound education of service en-
gineers and service providers is essential. Looking from
the angle of technically executable services in service-
oriented architectures, this requirement is narrowed
down to web service engineers who understand the
whole service lifecycle. Only through the availability of
vast high-quality offers, the critical mass of tradeable
services to turn the vision broadly into reality can be
reached.

We contribute to this techno-economic transfor-
mation by proposing, to our knowledge, the first inte-
grated environment for educational service communi-
ties. It combines e-learning techniques with state-of-
the-art service platforms and frameworks. The envi-
ronment guides future web service engineers through

the processes of collaborative development, testing,
provisioning, search, preparation, usage and rating of
services. To complete the service lifecycle, the envi-
ronment can be connected with the work and develop-
ment environments on the client computers of students.

There are, of course, alternative e-learning ap-
proaches to software and service engineering available,
but none of them provides an integrated learning-by-
doing experience [3]. An established system for educa-
tional software engineering tasks is Praktomat [4]. We
have borrowed ideas from it, however, its focus on ob-
ject-oriented development positions it as rather com-
plementary to service engineering. Furthermore, it is
limited to Java artefacts, which according to our experi-
ence is unsuitable for the language and framework curi-
osity of future service developers. A recent system for
collaboration and e-learning is CloudIA [5]. It fits well
into modern XaaS software stacks and is therefore suit-
able for being operated in intranets or private clouds.
Our proposed interactive learning environment offers
similar characteristics, but is optimised for hands-on
service learning, development and testing along a well-
defined lifecycle.

The article is structured as follows: First, we derive
requirements on the amount of information technology
support for the environment itself and for each phase of
the lifecycle of services. Then, we design an
appropriate environment with learning and testing
capabilities according to these requirements. Finally,
we discuss our experience with the actual use of the
environment in the context of a university course about
web services and conclude the article with suggestions
for future work.

Requirements Analysis

The design and realisation of an environment for ed-
ucational service communities is primarily driven by
the needs of the students and the investable efforts of
the teachers on the requirements side, and the technical
capabilities of available implementation components on
the offers side.

We have determined the following six generic re-
quirements which apply to any domain-agnostic learn-
ing-by-doing environments:

1. Multi-instantiation and Multi-tenancy: The envi-

ronment should be easy to set up for both public and
private use. Each installation should support multi-
ple virtual environment, for instance targeting paral-
lel classes of students or periodically repeated cours-
es.

2. Guided collaboration: The environment should sup-
port teamwork, selective cooperation among team
members and between teams, communication along
the cooperation axes and with the teachers, as well
as competitive elements such as result ratings and
incentives with virtual currencies. Collaborative
tools should cover all phases of the service lifecycle,
including the design and development of description
and implementation artefacts, and the provisioning
on marketplaces.

3. Transparent Safety: Students should be given the
possibility to make mistakes in a safe sandboxed en-
vironment and learn from them. Consistent version-
ing of contributed artefacts with the possibility to
backtrack to a previous version, isolated testbeds for
the results and intuitive status and progress infor-
mation should therefore be supported by the envi-
ronment.

4. Alignment: The environment functions should relate
to the tasks which depend on the learning progress
according to the course contents.

5. Automation: In order to reduce the efforts by the
teachers, the degree of automation should be as high
as possible. This includes checks for obvious mis-
takes and success notifications, as well as support
material and documentation for auto-didactic learn-
ing by doing.

6. Integration: The learning environment should inte-
grate into the students' typical digital client envi-
ronments such as desktops, applications and
smartphones to minimise barriers.

Further requirements result from the domain-

dependent focus on service engineering and brokerage,
following the research and teaching vocabulary of Ser-

vice-oriented Architectures (SOA), Internet of Services
(IoS) for the vision of tradeable services and more dy-
namic SOAs, Everything-as-a-Service (XaaS) popular
with cloud computing researchers, and service science
for the relevant intersections with business procedures.
According to the IoS notion [6], we distinguish four
main phases in the service lifecycle, each with their
own phase-specific requirements:

1. Creation: Students need tools to develop generic

service descriptions (for functional and non-
functional aspects such as pricing and location), web
service implementations, and service interaction
frontends (clients). Furthermore, they need tools to
package, test and offer the services to the appropri-
ate service community in the environment. Finally,
resulting from the feedback phase described below,
they need tools to update and maintain their contri-
butions to be able to react on feedback from the
community.

2. Preparation: Students need a way to test and learn
from services of their peers. Therefore, they need
ways to find and select services, negotiate usage
terms and find suitable interaction frontends.

3. Usage: Students and teachers need to be able to use
the selected services easily, without any installation
effort, through an assistive service platform.

4. Feedback: After using any service, students need to
be able to comment on and to criticise what they
have experienced. Likewise, they need to gather the
comments from other students and from teachers.

The six generic requirements and the four domain-

specific requirements deeply influence the design and
realisation of the environment.

Environment Design

Following the rough categorisation of the generic
and phase-specific requirements on environments for
educational service communities, we structure and sub-
divide the design of the environment into its software
architecture (automation, integration, transparent safety,
multi-instantiation, multi-tenancy), the workflows asso-
ciated with the service lifecycle, and educational con-
cerns targeting students as future producers and con-
sumers of services (alignment, guided collaboration).

Architecture Concept

We propose to connect the ubiquitous communica-
tion structures of digital social networks with the tech-
nical characteristics of service packages according to
the Tradeable Services Model [7]. This means that the
executable and descriptive artefacts of a service are rep-

resented as commercial service portfolio of an enter-
prise in a social business network, and as free service
portfolio of a group in a community-focused social
network. Service frontends (clients) and other applica-
tions logically belonging to a service are, in analogy,
offered as downloads and represented as products in the
network. Fig. 1 shows this mapping. It generalises en-
terprises and groups into virtual organisations with ser-
vice offerings being mapped to tradeable web services.
A social service network is created this way, which is
applicable beyond educational service communities, for
instance for service science experiments [8]. The spe-
cialisation on educational social service communities
happens by limiting the users to students and teaching
staff and the addition of learning support tools which
will be described in the next section.

Fig. 1. Mapping of service structures (entities and relations)
onto social network content structures (following [7]).

Social service networks encourage students to navi-
gate from the very beginning in a software landscape to
which they will eventually contribute by themselves
with their service offers. Various service technologies
can be tried by accessing the web service interfaces of-
fered by the social network and the service platform

handling the tradeable services. By carefully choosing
software components for its implementation, the envi-
ronment is conceived to operate in autarky as self-
sufficient system. Thus, it can be used in universities,
business training and continuous education institutes as
dedicated instances.

On the functional side, the environment shall consist
of multiple distributable platform services, each with its
proper web service interface.

Workflow Concept

As discussed before, environments for educational
service communities should be aligned with course
tasks which are attuned to one another corresponding to
the lifecycle of services. Our concept relates this re-
quirement to workflows within the environment. We
distinguish between three workflows for the service
creation phase, namely development, testing and provi-
sioning, two workflows for the service preparation
phase, namely search and configuration, and one work-
flow for each of the remaining phases of usage and
feedback.

Service development workflow: Students develop
their service artefacts through a version control system
which serves as both a backup facility and a way to re-
vert to previous versions of artefacts in the case of de-
tected problems. Artefacts include web service imple-
mentation source code, service description files, data
models and associated service frontends. Artefact-
specific tooling is provided, for instance, Java and
WSDL editors. Students also review their software
through code review tools. This strengthens the collabo-
rative approach and reduces the lifetime of manifested
mistakes. The development of features is driven by a set
of tasks defined by the teachers. Hence, students have
an incentive to fulfil the functional and non-functional
requirements as described by the tasks.

Service testing workflow: In order to test a service
within the environment, apart from local testing on the
students' development computers, each virtual service-
offering organisation receives an isolated and volatile
sandbox within the environment. This workflow is oth-
erwise identical to the service provisioning.

Service provisioning workflow: Once students are
confident that their service is reasonably complete to be
evaluated and tested, they bundle it into a service pack-
age and submit it to the repository of the environment.
This workflow follows the Internet of Services
toolchain approach [9]. The service platform connected
to the social network takes over both the service im-
plementation, which is installed into an appropriate
runtime environment, and the descriptive service arte-
facts, which are installed into a publicly accessible ser-

vice registry. Furthermore, the service is added to the
virtual organisation's portfolio, and as such is subject to
portfolio management such as updates and deletions.
The portfolio is mirrored back to the social network.
Each service appears with its most important metadata
as an offer in the network and can be found and selected
through its user interface.

Service search workflow: Finding a suitable service
for a given problem always requires a precise problem
specification first. Both the interactive graphical user
interface of the social network and the programmatic
interface of the service platform are supposed to sup-
port specifying the problem through full-text search,
category browsing and filters over functional and non-
functional service properties. Once a service or set of
services has been found, the result set is marked for se-
lection and the configuration of the services starts.

Service configuration workflow: Before a service
can be used, a configuration is required in many cases.
This includes the negotiation of service level agree-
ments, the definition of account data and service-
specific parameters, and, depending on the technology,
a configuration or allocation run inside the runtime en-
vironment of the service. For example, a photo storage
service hosted in the cloud will need a certain amount
of storage resources according to the maximum amount
of photos the consumer has configured.

Service usage workflow: The outcome of the service
configuration is a permission to use the service, and a
set of choices on how to use the service. These include
a web service endpoint for the programmatic invoca-
tion, for instance as part of a service composition, a link
to dynamic user interface generators, and custom
frontends suitable for the consumer's client environ-
ment. Each service invocation takes place through a
proxy running at the service platform. This way, the
agreements can be checked and the virtual currency
accounts of the invoking student and the invoked stu-
dent organisation can be adjusted with the service invo-
cation price. Furthermore, the service execution can be
monitored to find faults in the usage agreement or the
templates which led to it during the negotiation. A so-
called cross-testing can be introduced for educational
reasons in which student teams of functionally equiva-
lent services test the respective other services and rate
them based on compatibility and other experience.

Service feedback workflow: After having used a ser-
vice, a student rates it on a linear scale. The service
platform ensures that the average rating is represented
as a non-functional service property so that suboptimal
services can automatically be excluded during the suc-
cessive searches. Furthermore, bad ratings can also in-
fluence the reengineering of services in an iterative de-

velopment setting.

Educational Concept

The educational aspects are introduced into the envi-
ronment through the communication channels of the
social network and the task management with partially
automated solution checks.

Educational communication functions of social net-
works: Beside the service trading capabilities, the envi-
ronment offers all communication channels known from
typical social networks. The web interface offers vari-
ous ways for creating personal, organisational or com-
munity-bound articles and blogs. Furthermore, galleries
can be created, for instance to show detailed screen-
shots of realised service frontends. In addition, forums
can be created for the knowledge exchange among par-
ticipating students. Beside these web-based channels,
real-time channels such as instant messaging for direct
support queries to other students and teachers can be
integrated.

Partially automated solution checks: The manual
check of all delivered student solutions is a time-
consuming effort. Web services need to be checked for
functional correctness, robustness, matching service
description, conforming packaging and overall
tradeability. Therefore, a technique for automating at
least some of these teacher duties is sought. The envi-
ronment therefore offers at least rule-based complete-
ness checks over the submitted service packages, and
integrates existing web-based tools such as WS-
Interoperability checks over the WSDL service descrip-
tions.

Experience Discussion

The realisation of an environment for educational
service communities depends heavily on the technolo-
gies en-vogue at the time of the realisation. We intro-
duce Servomat, a mixture of both custom and slightly
customised off-the-shelf software frameworks, as versa-
tile and yet easily installable and maintainable envi-
ronment, to validate our approach. Furthermore, we
discuss our experience with using Servomat in an actual
university service engineering course.

Servomat, a social environment for educational ser-
vice communities

Servomat is a learning-by-doing environment for all
matters of the service lifecycle. It lets its users offer.
select and execute services. Servomat is designed to
fulfil most of the requirements on information technol-
ogy support for service communities. Its primary user
interface consists of a typical web-based social net-
work, for which the Noosfero framework [8] has been

chosen due to its pre-existing support for product offers
in virtual organisations and due to its rich customisation
and communication features, including instant messag-
ing through Jabber. Several extensions result from the
requirements, including a virtual currency account for
each student and a centralised account management at-
tached to the university information system (jExam)
which synchronises login information between the het-
erogeneous components.

The service lifecycle is handled by the Service Plat-
form Architecture for Contracting and Execution
(SPACE) [10], an open-source, modular service mid-
dleware with brokering and unified hosting capabilities.
The SPACE platform services are attached to the ap-
propriate actions in the social network. The provider
profile modification and service offers happen through
the Provider Wizard platform service, tradeable service
and product search through the ConQo discovery plat-
form service, and the billing of service invocations
through the Access Gate proxy platform service which
is in turn integrated with the ServBank component.
With optimisations such as incremental paginated web
service synchronisation of the databases between
SPACE and Noosfero applied to reduce the on-demand
access waiting times [11], the integrated architecture
shown in Fig. 2 is derived.

Fig. 2. Integration between the service platform SPACE and
the social network framework Noosfero, representing a con-
crete Social Service Network. Users (1) interact with existing
social network functions like people (2a), communities (2b)
and content (2c). These are blended with platform features
like services (3a), own service offers (3b) and finances (3c).
The service database (4) is synchronized (S) with an update
tool (5) from the platform’s registry (6) which can be queried
(Q). Contracts are negotiated (N) in a negotiation wizard (7)
based on SLA templates registered by a provisioning tool (8).
This tool also installs (I) executable artefacts into a runtime

container (9). Finally, a service invocation proxy (10) checks
the caller’s contract-based authorization and a transaction
tool (11) bills (B) the user’s financial account (12) according-
ly.

For the collaborative development, the version con-
trol system Subversion has been chosen in combination
with the web-based ReviewBoard software. Finally,
tasks and checks are implemented as a custom software
tool. The overall environment architecture can be seen
in Fig. 3. It highlights the direct involvement of stu-
dents through SPACEflight [10], a virtualisable live
demonstrator of the SPACE service platform and,
among other tools, an Internet of Service service engi-
neering and provisioning toolchain, as alternative to
manual installation of tools on conventional student
desktops [9].

Fig. 3. Architecture of the Servomat environment, consisting
of a service platform (1a) with database (1b) and hosting con-
tainers (1c), a Social Service Network (2a) with its own data-
base (2b), network engineering tools, communication ser-
vices (2c) and attached student clients (7). Student accounts
and repositories (2f, 3c) are created by a tool (4a) by query-
ing a central student registry (5) and notifying the students by
e-mail (4b). Task and review tools (3a, 3b) operate directly on
the repositories. Students generate content interactively in the
social network (2e) or programmatically by providing service
packages (1d). The Social Service Network (2a) contains all
the extensions from Fig. 2 as well as an API and a custom
theme and site-specific configuration. A firewall and proxy
subsystem (6) ensures that only authorized students can par-
ticipate.

The Servomat environment is itself service-oriented.
The SPACE platform services, the Noosfero API and
other remote interfaces allow students to tinker not just
with their peers' services, but also with the environment
itself in order to gain experience and knowledge on the
advantages and disadvantages of different web service

protocols, description formats and tool support.A de-
tailed manual containing the Servomat background,
functionality description, installation instructions and
operation guidelines in German language is available
for interested parties [12] in order to increase the
likeliyhood of adoption by other course or lab exercise
designers.

Experiences from using Servomat

The Servomat software has been developed and ex-
perimentally used for two consecutive semesters in a
lecture on the design of distributed systems based on
service-oriented architectures at Technische Universität
Dresden in Germany. The environment runs at
http://servomat.inf.tu-dresden.de. The first time,
domain-specific flight booking services were created,
whereas the second time this limit was lifted. Both in
the lecture and in other experimental setups with other
user groups, a number of user surveys were performed
to get information about the acceptance, the suitability
and the general impression of such supportive environ-
ments. The majority of students finds Servomat helpful
and makes use of the provided documentation and
communication channels. The choice of letting students
navigate in a social network considerably lowers the
barrier between their leisure time activities and study-
related obligations.

In one particular survey, 44 students were invited to
enter into the service lifecycle with the search work-
flow. 13 students immediately managed to find and con-
figure the service. Of these, 5 students then transitioned
through the usage phase by invoking the service suc-
cessfully. Nevertheless, these results suggest future
improvements.

Conclusions and Future Work

The article has motivated the need of introducing as-
sistive environments for educational service communi-
ties in order to advance the techno-economic transfor-
mation of societies. Both generic and service lifecycle-
specific requirements have been extracted and used for
the proposal of an architecture of a social and collabora-
tive environment and seven distinct workflows therein.
Furthermore, the proposals were validated with an envi-
ronment implementation and its usage in a university
course setting. In order to maintain the alignment of the
learning-by-doing effect of the environment, future
work will have to introduce new technologies such as
dynamic platform-as-a-service coupling for the service
hosting. To increase the digital inclusion of students, a
global environment acting as distributed social net-
working aggregator for multiple environment installa-
tions would be useful.

References

1. S. Montresor, G. V. Marzetti: The deindustrialisa-
tion/tertiarisation hypothesis reconsidered: a subsystem ap-
plication to the OECD7. Cambridge Journal of Economics,
Oxford University Press, vol. 35(2), pp. 401-421, 2011.

2. A. Barros, M. Allgaier, A. Charfi, M. Heller, U. Kylau,
B. Schmeling, M. Stollberg: Diversified Service Provisioning
in Global Business Networks. Proceedings of the SRII Global
Conference, pp. 716-728, April 2011.

3. F. Chesani, A. Ciampolini, P. Mello: E-Learning by
Doing with Computational Logic. Proceedings of Knowledge
Construction in E-Learning Context, Cesena, Italy, Septem-
ber 1-2, 2008.

4. A. Zeller: Making Students Read and Review Code.
Proceedings of the 5th ACM SIGCSE/SIGCUE Annual Con-
ference on Innovation and Technology in Computer Science
Education, Helsinki, Finland, July 11-13, 2000.

5. F. Doelitzscher, A. Sulistio, C. Reich, H. Kuijs, D.
Wolf: Private cloud for collaboration and e-Learning ser-
vices:from IaaS to SaaS. Computing vol. 91, pp. 23-42, 2011.

6. A. Kabzeva, M. Hillenbrand, P. Müller, R. Steinmetz:
Towards an Architecture for the Internet of Services. Pro-
ceedings of the 35th EUROMICRO Conference on Software
Engineering and Advanced Applications, Greece, 2009.

7. J. Spillner: Methodik und Referenzarchitektur zur
inkrementellen Verbesserung der Metaqualität einer
vertragsgebundenen, heterogenen und verteilten
Dienstausführung. Dissertation, Technische Universität
Dresden, September 2010.

8. J. Spillner, A. Caceres, B. Buder, R. Kursawe, L.S.
Globa, A. Schill: Extending Social Networks with Service
Delivery Capabilities for User-Centric Service Trading. In
Proceedings of the 10th International Conference on Modern
Problems of Radio Engineering, Telecommunications and
Computer Science (TCSET), Lviv-Slavske, Ukraine,
February 2010.

9. J. Spillner, A. Kümpel, S. Uhlig, I. Braun, A. Schill:
An Integrated Provisioning Toolchain for the Internet of Ser-
vices. 10th IADIS International Conference WWW/Internet,
Rio de Janeiro, Brazil, November 2011.

10. J. Spillner: SPACEflight - A Versatile Live Demon-
strator and Teaching System for Advanced Service-Oriented
Technologies. In Proceedings of the 21st International Cri-
mean Conference on Microwave and Telecommunication
Technology (CriMiCo/КрыМиКо), vol. 1, p. 455-456, Sevas-
topol, Crimea - Ukraine, September 2011.

11. T. Muckwar: Optimierung der Skalierbarkeit einer
Dienstplattform durch Einsatz performanter Web-Service-
Techniken. Diploma thesis, Technische Universität Dresden,
August 2011.

12. J. Spillner: Servomat - Soziale Dienstleistungs-
netzwerke für angehende Web-Service-Ingenieure und -
Anbieter. Manual, online: http://servomat.inf.tu-
dresden.de/, November 2011.

Received in final form May 10, 2012

