
Towards Dispersed Cloud Computing
Josef Spillner, Alexander Schill

Faculty of Computer Science
Technische Universität Dresden

01062 Dresden, Germany
Email: {josef.spillner,alexander.schill}@tu-dresden.de

Abstract—The growing number of locally and globally con-
nected devices and infrastructure services is symptomatic for
increasing user requirements on convenient, comfortable, fast
and cheap remote computing and access to data. Distributed
computing techniques in combination with on-demand Clouds
help matching the requirements and the offered resources. This
paper evaluates existing distributed computing models according
to their specific code, data and resource handling and defines a
specific one, called dispersed computing, by consolidating existing
research on dispersed data transmission, data storage and code
execution. It furthermore contributes a mapping of the model
to typical Cloud environments. Complementary, we share our
experience with dispersed computing implementations.

I. DISTRIBUTED COMPUTING MODELS BACKGROUND

Computing models serve as foundation for the programming
of software. Historically, computing has evolved from the
single-core architecture, the addition of co-processors, paral-
lel computation on multi-core processors, distributed parallel
computation, hybrid models with heterogenous processors
and finally service-orientation and Clouds which offer more
dynamic environments into which the computing tasks can be
offloaded on demand. Along with the evolving models, appro-
priate programming support has co-evolved through libraries,
toolkits, new languages and infrastructure services [1].

In the following three subsections, we briefly present dis-
tributed computing techniques applied to the commonly used
infrastructure resources: networks for communication, storage
media and processing nodes. Although there are more fine-
grained infrastructure service types in use [2], most of them are
subsumed by these three. We do not claim complete coverage
of all distributed computing fields; instead, we provide suffi-
cient background information for differentiating the dispersed
computing model from other techniques.

A. Distributed Communication

The Internet is a distributed communication system which
offers routing, load balancing and network-embedded services
(IP Multimedia Subsystem (IMS), Information-Centric Net-
working (ICN), Carrier Clouds). Based on these primitives,
the application-level division of client-server traffic flows is
performed through peer-to-peer applications, multipath con-
nections and anonymisation techniques [3].

B. Distributed Storage

Storing data on more than just one drive or other medium
is possible through several techniques. On the block level,

JBOD, RAID and further combinations of local and remote
disks distribute data efficiently and, depending on the configu-
ration, safeguard against performance bottlenecks and failures.
Distributed and global file systems, on the other hand, bring
awareness of the distributed states into the higher layers of
the storage stack. More recently, combined storage service
systems have become popular. Researchers are also looking
into distributed object stores, multiple distributed hash tables,
spatial indexing [4] and other improvements to the manage-
ment and organisation of distributed storage.

C. Distributed Computation

The field of distributed computing is huge. The parallel
flavour includes decentralised volunteer computing, partially
driven by the aim to efficiently use idle resources, but also
centrally controlled nodes such as mobile agents and botnets.
In contrast, the federation flavour is often seen in practice due
to the trade-off between control and convenience. Many In-
ternet services, including the web, are large federated systems
with different degrees of compute or processing services. With
the emerging trend of processing large volumes of data, the
Map-Reduce programming model which parallelises compute
steps by mapping input to output before performing a central
reduction step has become popular. There are several imple-
mentations, such as the popular Hadoop, extensions (e.g. for
relational data structures) and optimisations including YARN
and SailFish [5]. Some approaches also focus on fault tol-
erance and real-time processing, for instance StreamMine3G
[6] which incorporates complex event processing and event
stream processing functionality. Most of these models assume
unrestricted access to all data required for the computation.

II. DISPERSED CLOUD COMPUTING MODEL

Information dispersal algorithms divide data into n frag-
ments, each of the length 1/m, so that any m of them are
sufficient to unify the original data [7]. They are sporadically
implemented in storage and communication networks [8]. With
a growing number of devices, services and data sources, in-
formation dispersal will become more commonplace to protect
against quality issues in distributed systems.

We define Dispersed Computing to be a specific model
of distributed computing in which data is not divided along
the logical unit boundaries, i.e. variables or structures, but
instead the units are divided into subunits in a way that there
is either exactly one or there are multiple inverse divisions



to reconstruct the original units. Dispersed Computing also
implies a set of techniques following the model to perform the
division and reconstruction. Furthermore, we define Dispersed
Cloud Computing as the application of Dispersed Computing
techniques to Cloud environments, primarily on the infrastruc-
ture level with compute, storage and network resources.

In our notion, an unreliable resource is one which can either
fail, or be forcefully deactivated, or be intercepted, or become
slow, or in any other way offers a quality which is lower than
the expectation of the user. Dispersion implies that multiple
similar resources are used in parallel, at least one for each
subunit, in order to protect agains the unreliability. It also
implies a-priori treatment of data at the user’s discretion..

A B C D
(a) (d)

B
C’

D

(e)

(f)

W X Y Z
(b)

A B C* D*
(c)

R

A’

A B C D

A.2

A.1

B.2

B.1

C.2

C.1

D.2

D.1

Fig. 1. Data treatment possibilities on the bit level

Fig. 1 compares the treatment of four data units under the
Dispersed Computing model to other forms of modification.
Each grey rectangle represents one bit. The figure shows the
original data (a), encrypted data (b), redundantly encoded or
compressed data (c), meaningful adapted data (d), chunked
data (e) and dispersed data (f). Both for (e) and (f) the term
splitting can be used. Indeed, both are often combined in order
to disperse large volumes of data or streaming data.

The following subsections describe the specifics when using
this model of distributed computing and describe a mapping
to common infrastructure resources in the Cloud.

A. Dispersed Communication

In dispersed communication, a client node (called sender)
splits the data to on-demand network links and a server node
(called receiver) reconstructs it.

While conventional channel balancers select one transmis-
sion channel per connection request from the application,
a dispersing channel balancer selects a set of transmission
channels per request. Some of these may be redundant, which
implies a continued operation as long as less or equal the
number of permissible channels fail. The selection is based on
multiple factors, among them order (for round-robin selection),
randomness, load (as reported by real-time service monitor-
ing), content of the data and context from the environment.

Dispersed communication can improve some specific trans-
mission metrics, but never all of them at once. The met-
rics are the parallel throughput, the reliability and safety,
the security against eavesdropping and the resilience against
resource changes. One possible application would be mix
cascades which conceal the purpose and origin of traffic flows.

Another one would be channel bonding among several network
interfaces, for instance a wired and a wireless adapter.

Sender Receiver

Channel

Channel

Channel

Channel

Fig. 2. Dispersed communication

Fig. 2 represents a dispersed communication scheme. The
channel itself is considered as unreliable resource here, while
sender and receiver are considered stable and trustworthy.

Dispersed Communication Characteristics: Table I lists
major characteristics of dispersed communication configura-
tions. Of interest is the correspondence between split and
join operations and the resulting theoretic traffic overhead.
In the case of coding, a selected amount of redundancy
is introduced which depends on the encoding scheme, e.g.
Cauchy-Reed-Solomon or AONT-RS for more secure secret
sharing at the cost of full replication. In practice, there may
be additional overhead due to padding, as well as overhead in
other resources, such as the CPU for performing the split and
join operations.

TABLE I
DISPERSED COMMUNICATION CHARACTERISTICS

Mode Split Join Overhead
Parallel Chunking Concatenation 0%
Dispersed Splitting Concatenation 0%
Dispersed Coding Selection, Recod. 0%-100%
Replicated Replication Selection 100%

Example for Dispersed Communication: Two numbers, say
71 and 19, are to be sent across a network with two channels.
With per-unit splits, each number would be sent on one of the
channels. With dispersion, both numbers are split as shown
in Table II. At the receiving end, both transmitted flows are
joined again and the original data is retrieved. This calls
for a synchronisation which can either be done through the
network stack (i.e. all sockets need to have a minimum amount
of readable data) or through the application, which is more
complex but more scalable due to the usually limited network
buffers in operating systems.

TABLE II
TRANSMISSION OF TWO NUMBERS WITHOUT REDUNDANCY

Number (decimal) Number (binary) Fragments
71 01000111 a1: 0100; b1: 0111
19 00010011 a2: 0001; b2: 0011
Transmitted data is a: 01000001; b: 01110011

B. Dispersed Storage

In dispersed storage, a client node splits the data when
storing data onto a server (called target) and reconstructs



it when retrieving it. This offers similar characteristics to
dispersed communication. One advantage is that it works
purely client-side so that it applies to many real-world sce-
narios in which the server side is not fully under the user’s
control. Hence, dispersed storage is often applied to long-
lasting, reliable and secure storage of personal data in the
Cloud. These characteristics in part depend on the technical
and organisational independence of the server nodes.

Client Target

Channel

Channel

Channel

Target

Target

Fig. 3. Dispersed storage

Fig. 3 represents the basic dispersed storage scheme. In
combination with dispersed communication and general data
flow architectures, recent research work calls for user-defined
and user-controlled storage flows.

Example for Dispersed Storage: There are practically no
differences to the previous example on dispersed communi-
cation. However, the same example can be given again with
additional redundancy. The chosen redundancy scheme is a
simple XOR which is suitable for understanding although
rather inflexible in practice. Assuming three storage targets
are available, the dispersion are split as shown in Table III.

TABLE III
STORAGE OF TWO NUMBERS WITH 50% REDUNDANCY

Number (decimal) Number (binary) Fragments
71 01000111 a1: 0100; b1: 0111
19 00010011 a2: 0001; b2: 0011
an XOR bn c1: 0011; c2: 0010
Stored data is a: 01000001; b: 01110011; c: 00110010

C. Dispersed Computation
In dispersed computation, a client node splits the data to be

operated on. Server nodes (called processors) perform their
operations on partial data and return partial results. The client
node then reconstructs the full result. As opposed to working
on chunks of data, dispersed computation either needs to
restrict or to modify the semantics of operations depending
on the dispersion. This is similar to homomorphic encryption
operations which work on encrypted data without distribution.
Dispersed computation is clearly an open research topic as it
presents additional challenges.

A suitable taxonomy of dispersed computation is driven
by the types of data to be worked on. These encompass
mathematical formulas for numeric types, string operations,
and more complex ones such as split objects in which not all
methods or member variables are available on each node.

Fig. 4 represents the scheme behind dispersed computation.
Similar to the Map-Reduce model, the client’s task is to

Client Processor

Channel

Channel

Channel

Processor

Processor

Fig. 4. Dispersed computation

recombine the partial results from the distributed proces-
sors. This makes the client likely the bottleneck. However,
as opposed to large-scale distributed chunks, dispersion is
frequently used with rather modest numbers of fragments
due to the small size of primitive data types. Therefore, this
restriction is clearly less severe. On the other hand, the overall
performance of the computation will be negatively impacted
by the communication and coordination overhead.

Example for Dispersed Computation: Table IV gives a
simple example of a dispersed addition operation. A carry bit
may occur in the output of each node which needs to be taken
into account when designing the data type sizes. Already for
multiplication, a two-node distribution will not work in all
cases anymore.

TABLE IV
ADDITION OF TWO NUMBERS WITHOUT REDUNDANCY

Number (decimal) Number (binary) Fragments
71 01000111 a1: 0100; b1: 0111
19 00010011 a2: 0001; b2: 0011
71+19=90 01011010
Partial results are a1+a2: 0101; b1+b2: 1010
Computed result is (a1+a2 « 4) + b1+b2: 01011010 ∧

= 90

D. Combined Use with Infrastructure Services

While dispersed computation is subject to heavy perfor-
mance penalties, the combined use of dispersed storage and
computation offsets this by exploiting the crucial issue of
data locality. For instance, Cloud providers often offer both
compute and attached local storage services. This allows for
distributed calculations over redundantly dispersed data. Even
in the case of service failures, the results can still be safely
retrieved. Conventional fault tolerance mechanisms which rely
on checkpointing and restarts in operations over chunked data
can only achieve the same level of reliability with a higher
code complexity and with less autonomy over the data.

Fig. 5 visualises the combined use of dispersed computation
schemes in a typical cross-provider Cloud application scenario.

III. SOFTWARE IMPLEMENTATIONS

Dispersed computing is not yet a dominant paradigm even in
Cloud environments where most of its advantages apply. There
are however a number of research prototypes and production
tools available. In this section, we give an overview with initial
evaluation but without comparison or rating of the software.



Storage

service

Client

Compute

service

Network

service

Network

service

Network

service

Compute

service

Compute

service

Storage

service

Storage

service

Network

service

Network A

Network B

Cloud C

Cloud D

Cloud R

Fig. 5. Combination of partially dispersed communication (A/B) with 0%
redundancy as well as fully dispersed storage and computation (C/D) with
50% redundancy (R) in a typical Cloud environment

A. Dispersed Communication Software

Sender: netcat

(client mode)

Receiver: netcat

localhost:10000

Proxy: morebalance

localhost:10004

Proxy: morebalance

localhost:10001

no proxy

direct proxy

Proxy: morebalance

localhost:10003

Proxy: morebalance

localhost:10002

dispersing proxy

chain

Client ServerNetwork

Fig. 6. Traffic forwarding choices with MoreBalance

In order to get a software which can serve as entry node,
intermediary node and exit node of a dispersal communication
resource, we have extended MoreBalance. It is a decade-old
traffic forwarding and load balancing software written in
C1. Each link can be a TCP stream or a UDP datagram
destination, encrypted with TLS and compressed according
to port modifiers in the configuration. Each listening link
can be restricted to local interfaces. We have extended the
software into a MIMO-Proxy (multiple inputs, multiple
outputs) which are multiplexed internally for traffic flows
in both directions. The setup is shown in Fig. 6. The
corresponding configuration syntax reads: 10001:local
use localhost as 10002 and localhost as
10003 with dispersion; 10002:local and
10003:local use localhost as 10004 with
dispersion. The dispersion implementation currently
performs simple bit splitting. Alternatively, chunking and
replication are already implemented.

In order to find out possible performance hits when using
dispersed communication, we transmitted all-zero data blocks

1MoreBalance proxy: http://morebalance.coolprojects.org/

 0

 100

 200

 300

 400

 500

 600

 700

1 4 16 64 256 1024 2048 4096

Tr
a
n
sm

is
si

o
n
 s

p
e
e
d

 (
M

B
/s

)

Data size (MB)

Traffic Forwarding Performance

Direct
Forward

Dispersion

Fig. 7. MoreBalance traffic forwarding performance

of varying sizes with the standard utility netcat running
in both client and server mode. In Fig. 7, the resulting
performance graphs for proxy-less transmission, direct proxy
and dispersed proxy are shown. It can be inferred that for
smaller amounts of data, the proxy overhead can be ignored
whereas for larger amounts there is a distinct, although not
practically limiting, performance overhead of about 6.3% for
just fowarding and 40.9% for the entire dispersion chain. The
latter results can be optimised when considering the currently
performed per-byte splitting into bitfields.

B. Dispersed Storage Software

An overview about multi-target storage controllers is given
in [9]. It concentrates on Cloud storage services although many
implementations also work with other targets including local
media.

In our previous work, we have designed and implemented
NubiSave, a distributed storage controller2. NubiSave works
in dynamic Cloud environments by evaluating storage service
descriptions and defining optimal placement strategies for
dispersed data fragments based on the non-functional property
specifications within the descriptions. Its implementation is
based on chains of filesystem modules through which the data
flows with content-agnostic modifications such as compression
or encryption. Now, we are working on an event stream
processing module with filesystem interface which inspects
the data and makes on-the-fly calculations and correlations
possible, assuming the presence of dispersed computation
software.

C. Dispersed Computation Software

We are not currently aware of any software which specifi-
cally performs calculations and other operations over dispersed
data. Therefore, we have created a prototypical implementation
of both string search and integer addition algorithms. The
implementations use Python and consists of a number of
algorithm-specific modules and a rather generic client/server
combination which uses the remote procedure call framework

2NubiSave storage controller: http://nubisave.org/



Processor/

Reducer:

mpolo-

concentrator

Processor 2:

mpoloworker

Client ServerNetwork

Processor 1:

mpoloworker

simple search

dispersed search

Fig. 8. Dispersed search with a specific text corpus and application

Pyro. As a search task, represented by Fig. 8, we have defined
to look up the word Polo in Jules Verne’s book I Viaggi di
Marco Polo. Fig. 9 compares the function call performance
of Python’s native string search with the overall performance
(including network transmission) of dispersed search which
handles multiple data sets either serially or, through a config-
uration switch, in parallel with multithreading. The connection
between client and server was changed from a local loopback
device to a 1000 Mb/s Ethernet LAN, a 150 Mb/s WLAN
network and a 2 Mb/s DSL WAN connection. The server
tools were running on a virtual Linux machine with four Intel
Xeon E5620 CPUs clocked at 2.40 GHz. It is interesting
to observe that as the connection becomes the bottleneck,
the inherent performance degradation of the dispersed search
implementation becomes relatively minor due to not having
to perform a full data transfer as with a conventional search.
With larger datasets and optimised algorithms, this gap can
become smaller and may even reverse.

 0

 50

 100

 150

 200

 250

 300

 350

Local LAN WLAN WAN

C
o
m

p
u
te

 t
im

e
 (

s)

Search Function Performance

Simple
Dispersed

Dispersed/MT

Fig. 9. Distributed search performance with and without dispersion

In Fig. 10, we would like to point out the statistical variety
of the measurement results, taking the wireless connection as
example. More divergence can be expected depending on the
resources provided to the virtual machine, which is generally
hard to predict in Cloud environments.

IV. RESEARCH OUTLOOK

Dispersed Cloud Computing is a promising new paradigm
which enriches the varieties of parallel and distributed com-

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 2 3 4 5 6 7 8 9 10

C
o
m

p
u
te

 t
im

e
 (

s)

Measurement run

Search Function Performance Distribution

Simple
Dispersed

Dispersed/MT

Fig. 10. Performance measurement stability: WLAN

puting. It is suitable for the major infrastructure services
offered today, including compute, storage and communica-
tion services. Flexible generic software implementations are
already available for both storage and communication, but so
far only specialised software for dispersed compute services
exists. The prototypes allow for future experiments with more
complex scenarios which together with more useful compute
abstractions at the programming level can be considered the
most interesting path for further research.

ACKNOWLEDGEMENTS

This work has been partially funded by the German Re-
search Foundation (DFG) under project agreement SCHI
402/11-1.

REFERENCES

[1] S. Jha and D. S. Katz, Applications for Distributed Applications and
Systems: A Computational Science Perspective, ser. Wiley Series on
Parallel and Distributed Computing, 2014, no. 1.

[2] S. Kächele, C. Spann, F. J. Hauck, and J. Domaschka, “Beyond IaaS
and PaaS: An Extended Cloud Taxonomy for Computation, Storage and
Networking,” in 2013 IEEE/ACM 6th International Conference on Utility
and Cloud Computing, December 2013, pp. 75–82, Dresden, Germany.

[3] D. Kelly, “A Taxonomy for and Analysis of Anonymous Communication
Networks,” Ph.D. dissertation, Air Force Institute of Technology, March
2009.

[4] M. Malensek, S. Pallickara, and S. Pallickara, “Polygon-Based Query
Evaluation over Geospatial Data Using Distributed Hash Tables,” in 2013
IEEE/ACM 6th International Conference on Utility and Cloud Computing,
December 2013, pp. 219–226, Dresden, Germany.

[5] S. Rao, R. Ramakrishnan, A. Silberstein, M. Ovsiannikov, and D. Reeves,
“Sailfish: A Framework For Large Scale Data Processing,” in Proceedings
of the Third ACM Symposium on Cloud Computing (SoCC), no. 4,
October 2012, San Jose, California, USA.

[6] A. Brito, A. Martin, C. Fetzer, I. Rocha, and T. Nóbrega, “StreamMine3G
OneClick - Deploy & Monitor ESP Applications With A Single Click,”
in Fourth International Workshop on Parallel Software Tools and Tool
Infrastructures (PSTI), October 2013, pp. 1014–1019, Lyon, France.

[7] M. O. Rabin, “Efficient Dispersal of Information for Security, Load
Balancing, and Fault Tolerance,” Journal of the ACM, vol. 36, no. 2,
pp. 335–348, April 1989.

[8] Y.-D. Lyuu, Information Dispersal and Parallel Computation, ser. Cam-
bridge International Series on Parallel Computation, 2004, no. 3.

[9] D. Slamanig and C. Hanser, “On cloud storage and the cloud of clouds
approach,” in The 7th International Conference for Internet Technology
and Secured Transactions (ICITST), December 2012, pp. 649–655, Lon-
don, United Kingdom.


