Information Dispersion over Redundant Arrays of
Optimal Cloud Storage for Desktop Users

Josef Spillner, Gerd Bombach, Steffen Matthischke, Johannes Miiller, Rico Tzschichholz, Alexander Schill
Faculty of Computer Science
Technische Universitidt Dresden
01062 Dresden, Germany
Email: {josef.spillner,alexander.schill } @tu-dresden.de

Abstract—Data storage in cloud computing centres is gaining
popularity for personal and institutional data backups as well
as for highly scalable access from software applications run-
ning on attached compute servers. The data is usually access-
protected, encrypted and replicated depending on the security
and scalability needs. Despite the advances in technology, the
practical usefulness and longevity of so-called cloud storage is
limited in today’s systems which severely impacts the acceptance
and adoption rates. Therefore, we introduce a novel cloud storage
management architecture which combines storage resources from
multiple providers so that redundancy, security and other non-
functional properties can be adjusted adequately to the needs
of the user. Furthermore, we present NubiSave, a user-friendly
implementation with configurable adequate overhead which runs
on and integrates into contemporary desktop systems. Finally,
a brief analysis of measurements performed by us shows how
well the system performs in a real distributed cloud storage
environment.

I. INTRODUCTION

Service providers on the Internet are always faced with
the question of scaling their systems according to the usage
patterns resulting from the service behaviour and popularity.
Cloud computing has been introduced as paradigm to provide
elasticity to software provided as a service. From a consumer
perspective, the cloud also refers to giving up control of
data processing in return for comfortable and social usage of
Internet applications. A survey and taxonomy of selected cloud
computing systems can be found in [1].

Reversing the renunciation of control is not easily possible
for generic services in the cloud. However, in the case of cloud
data storage, the consumer is able to apply the techniques
from vendor relationship management [2], [3]. This means
that the consumer gains the tools to enter and leave relations
with cloud storage providers dynamically while still being able
to rely on having the data safely stored in the cloud. One
promising realisation in this context is applying the concept
of redundant combined storage areas into a larger logical layer
over which the data is dispersed across provider boundaries.

We argue that having such a system running on the devices
of consumers increases the flexibility and safety of data storage
in the cloud. The results of our work show that this realisation
is feasible and practical even for average desktop users.

The remainder of this paper is structured as follows: First,
we summarise the development towards cloud storage and

existing cloud storage management systems. Then, we analyse
remaining weaknesses and derive a more flexible and practical
architecture for such a system. The remaining sections present
our desktop-integrated prototype NubiSave, the results of per-
formance experiments with it, and a conclusive summary with
an outlook on how to integrate cloud storage with information
dispersion into personal cloud control systems.

II. EXISTING CLOUD STORAGE MANAGEMENT
APPROACHES

Over two decades ago, the introduction of Redundant Arrays
of Inexpensive Disks (RAID) made the case to combine
several local disks in ways which balance cost, data safety
and performance [4]. The RAID levels allow for mirroring data
on disks or partitions of identical size, striping physical disks
independent of their size into a logical one, or a combination
thereof with an optional disk for storing checksums. Later, this
concept was extended to the combination of network block
devices across servers [5]. This research focused more on
highly-available storage and therefore on mirroring techniques.
Both local and network RAID setups still assume experienced
users or administrators for a proper setup and maintenance in
case of disk failures.

Since about the appearance of network storage redundancy,
personal online storage has been increasingly offered by
commercial providers, often backed by RAID storage at the
provider’s discretion. Typically, a proprietary web access or
standardised protocols such as WebDAV and a storage area of
fixed size have been included in the offers. More recently,
cloud computing has brought its own flavour called cloud
storage. In this model, the storage area increases on demand
and its usage is billed accordingly. In addition, the concern
of high availability is covered by many of these offers by
providing redundancy over geographically distributed data
centres. Furthermore, new protocols based on Web Services
have been emerging to ensure that only high-level file access is
possible as opposed to low-level filesystem or partition access.
Setting up a RAID over these storage providers as network
block devices is hence not possible.

A disadvantage of cloud storage from a single provider is
that despite the guaranteed high availability, the operation and
organisation of the storage area is still subject to the provider’s
policies. For example, despite claims to use RAID, total data

losses occurred in the past !. Despite claims to protect the
access to the data, total data losses might have occurred in the
presence of an attacker?. These issues represent both a trust
and acceptance problem as well as a potential safety problem.

Systems for dispersing information over an array of cloud
storage providers have thus been suggested as RAIC systems
in analogy to RAID for local disks. Similar to how RAID
works, there is a software controller (independent from the
storage providers) with varying placement and redundancy
strategies, and there are a variety of RAIC levels depending
on the requirements of the user. There are filesystems like
CORNEFS [6] which store their contents redundantly on the
file-level into multiple storage providers, following a RAID-
1 (mirroring) approach. They protect against data loss, but
not against full access with subsequent decryption attempts.
Therefore, partially replicated data blocks are the preferred
redundancy approach. The redundancy is achieved by ex-
ecuting information dispersal algorithms (IDA), sometimes
colloquially referred to as obfuscation algorithms, which build
on the theory of secret sharing [7]. Well-known IDAs are
(in increasing order of efficiency) Cauchy Reed-Solomon [8],
Row-Diagonal Parity or RAID-6 Liberation Codes [9].

One such information-dispersing RAIC system has recently
been implemented and evaluated [10]. It runs as a web portal
and disperses its data through the Liberation algorithm. The
dispersed data is however not encrypted.

Another RAIC information dispersal system has recently
been proposed for use within enterprises [11]. It runs as a
central proxy connected to several cloud storage providers, and
offers transparent integration with enterprise client systems
through the common remote filesystem protocol CIFS. The
dispersal algorithms encompass Blaum-Roth and Liberation
coding implemented by the jErasure library [12], and encryp-
tion of the resulting blocks is performed by an AES algorithm
implemented by the Bouncy Castle library.

Both approaches spread all of their data across remote cloud
storage providers, while others retain one (relatively small)
part on the client side, for instance on a removable device.
Likewise, both approaches use erasure codes which resembles
the RAIC-5 setup, as opposed to simple RAIC-0/1 setups.

However, despite representing a major step forward with
increasing potential for widespread use and commercialisa-
tion®, there are still shortcomings in the currently available
information-dispersing RAIC systems. They implement a fixed
set of algorithms, functionality and topology without config-
urable extensibility. They typically don’t take arbitrary non-
functional properties into account when selecting a storage
provider. Furthermore, they don’t support a semi-automatic
inclusion of new providers into the storage pool and instead

IThe Amazon EC2 service irreversibly lost customer data in a widely
publicised incident on April 21, 2011.

2The Dropbox service accounts were publicly accessible for several hours
on June 21, 2011.

3Commercially available dispersing RAIC offerings include the Fraunhofer
FOKUS/eGovCD application TrustedSafe and the Academic dsNet initiative
from Cleversafe.

still require a manual signup with potential providers. Finally,
they don’t yet provide an easy-to-use interface to desktop users
who are one of the biggest target groups for cloud computing
offerings.

III. OPTIMAL CLOUD STORAGE MANAGEMENT CONCEPT
AND ARCHITECTURE

This section introduces the conceptual extension of RAIC
towards optimal storage arrays called RAOC. A generic cloud
storage controller architecture is proposed to utilise this ex-
tended concept for overcoming the shortcomings identified in
the previous section.

A. Concept for Optimal Cloud Storage

By leveraging research on non-functional property speci-
fications from the research communities around Component-
Based System Engineering (CBSE) and the Internet of Ser-
vices (IoS), the concept of RAIC can be extended to a
weighted combination of arbitrary quality and context prop-
erties beyond inexpensiveness [13]. This makes it possible
to consider both subjective metrics like trust in a storage
provider and objective metrics like offered bandwidth, access
restrictions and geographical location. The weights express
weak and strong priorities. Strong priorities can be used to
mandate the inclusion or exclusion of providers with certain
properties, whereas weak priorities are used to sort the remain-
ing set of providers. This follows the mathematical concept of
a restricted optimisation function with auxiliary constraints.
When all quality parameters match the user’s expectations,
the outcome is a RAOC — a Redundant Array of Optimal
Cloud Storage Providers. This implies the availability of a
configuration mechanism to let the user or a person on the
user’s behalf (such as a system administrator) specify the
preferences over non-functional properties representing the
user’s expectations.

To give the configuring person the choice among otherwise
functionally similar providers, a storage service directory
is assumed to be available. Currently, no uniform service
description language exists which is capable to express all
technical protocol and non-technical distinction aspects of
heterogeneous storage systems alike. However, for most in-
formation about functional and non-functional properties, rich
description languages including the semantic Web Services
Modelling Language (WSML) [14] and the Unified Service
Description Languages (USDL) [15] are suitable candidates.
We expect that domain-specific vocabulary will be made
available by ongoing research efforts at some point in the near
future. In addition to publicly available service descriptions,
negotiated service usage contracts ranging from granted logins
to sophisticated service level agreements will be needed to
parametrise the access of the transport to the storage cloud re-
sources. Meta-information about where and when to negotiate
and configure the parameters should be taken from the public
service description file, whereas the parameters themselves
will be subject to a private meta-data store managed by the
storage controller.

B. Layered Architecture for Optimal Cloud Storage

The design of an improved system to make information
dispersion over arrays of optimal cloud storage providers
available to users follows a layered architecture. The system
itself is considered to be placed between data-processing
applications, such as backup or data sharing software, and the
storage cloud. It consists of an upper interface layer which
offers access to the applications, a middle layer for the logic
needed to disperse and reassemble the data, and a lower layer
to transport the dispersed data to the storage servers.

A high-level architecture of the cloud management system
and its association to the storage service directory is shown
in Fig. 1. The next paragraphs explain each layer in greater
detail from the bottom to the top.

* data processing
clients

v

integration layer
(virtual file system)
preprocessing layer metadata
(dispersion algorithm) Rg registry
transport layer contract
(cloud storage abstraction) > registry
T
v |
.~ cloudstorage = description
__ providers J a registry

Fig. 1. Abstract architecture of cloud storage management attached to a
storage service directory

Attached to the cloud storage providers is the transport
layer. Beside delegating the data to the storage interface
routines, it is also responsible for maintaining access efficiency
through an optional cache. Furthermore, if required, a full local
write-through copy of the data can be kept. This design has
implications on the use of the storage services with several
clients, which are not subject to the current work.

preprocessing layer
e

transport layer

caching

local persistence

storage provider(s)

Fig. 2. Inner architecture of the transport layer

The data processing pipeline within the preprocessing layer
consists of a single dispersal routine to split data streams into
blocks, with possibly multiple splitter implementations to se-
lect from, and a set of pipe-combineable routines which work
above the splitter on the file level or below it directly on the
block level, as shown in 3. All block-level functions can also

be applied to the file level, although this might be impractical,
e.g. when hiding very large files by steganographic means.
The inverse assumption is not necessarily feasible, since many
algorithms such as media adaptation (image scaling, audio
quality reduction) require a full stream of data or blocks of
sizes unknown to generic splitters. The rationale for offering
choice among splitters is the ongoing research and progress
in terms of IDA efficiency and implementation efficiency like
multiprocessor support for parallel IDA calls.

integration layer
A

preprocessing layer

file-level transformations

(adaptivity, compression)

dispersal routine ‘ ‘ dispersal routine

block-level transformations

(encryption, steganography)

I 2
transport layer

Fig. 3. Inner architecture of the preprocessing layer

On top of the preprocessing layer, user-level and system-
level applications make use of the uniform file-level interface
for accessing and manipulating the data. A version control
layer can be inserted for transparent storage of multiple
versioned copies of the files. At the topmost level, a variety
of applications and application-integrated filesystem protocols
exist as entry point for humans. Fig. 4 shows the integration
layer structure.

integration layer

distributed web web file
file system access manager
version control
processing layer
Fig. 4. Inner architecture of the integration layer

The proposed layers allow flexible setups and connection
topologies, ranging from single-user desktop backup applica-
tions and automated server backup stores with and without
multiple providers to enterprise-wide cloud storage controller
proxies with high redundancy. A generalised view is given in
Fig. 5.

| Local | Controller
| Virtual File |
) System |
| Remote |
p Virtual File
| System |
User
Remote
Physical File
System(s)
Fig. 5. Generalised topologies of a cloud storage controller

IV. NUBISAVE - DISPERSED CLOUD STORAGE FOR THE
DESKTOP

In this section, we will present our realisation of the
previously presented concepts. We start with an explanation
of the software architecture and modular extensibility thereof,
proceed with an explanation of the storage provider server
descriptions and contracts as well as their configuration, and
round up with a discussion of the limitations resulting from
the chosen architecture and implementation technologies.

A. NubiSave Architecture and Implementation

The NubiSave architecture consists of three major compo-
nents, following the proposed layered approach.

The bottom layer represents a simple data transport abstrac-
tion for each cloud storage protocol. The component is imple-
mented in Python with pluggable transport modules for the
providers. Transport modules are available for the commercial
service operators SugarSync and DropBox. All transport mod-
ules implement the Linux Filesystem in Userspace (FUSE)
interface, hence there is an increasing choice of additional
providers available from the FUSE community, like davfs2
(WebDAV) and s3fs (Amazon S3)*. In particular, there is
support for configurable SSH-accessible hosts (using SSHFS),
as shown in Fig. 6. The component is named CloudFusion for
both its implementation technology and its ability to fuse cloud
storage with local storage areas which are accessed through
the regular (kernel-space) filesystem for reduced overhead. The
inclusion of local filesystems enables keeping one or more
of the storage parts under the direct control of the user, for
instance on a USB pen drive. CloudFusion is based on the
fuse.py module. Its extension is supported through popular
Python frameworks, namely the Nose unit testing framework
and Sphinx-generated documentation.

A caching module is available as well; its activation reduces
the storage latency considerably at the expense of potential
versioning conflicts when accessing the storage area from
multiple clients.

4About 60 FUSE remote filesystem modules are listed at
http://sf.net/apps/mediawiki/fuse/index.php?title=NetworkFileSystems.

processing layer - nubisavecore

v configuration:
transport layer - cloudfusion
I
SSHFS/ Sugar DropBox ?oeneir:a
others Sync P [9ging
transport

cache: ~/.cache/$module/pN

, L N e 7 L ; local
7 local sugar dropbox olca
sync [| file
server | L~ .com
.com system
Fig. 6. Available transport modules within the NubiSave prototype

For each transport module there is an INI-style configuration
file containing both generic attributes (hostname, access pro-
tocol, user/password, API key) and provider-specific attributes
(folder configuration). In addition, a logging configuration
determines the verbosity and placement of log messages.

The middle layer implements the provider selection, data
splitting and distribution optimisation logic and is paired
with the user configuration. At the core, a switchable splitter
module is responsible for the assembly and disassembly of &
data blocks with m redundant blocks for n = m+k providers.
Two splitters exist in NubiSave, and one more is scheduled for
implementation:

« A simple splitter chops the data blocks without providing

redundancy.

o A Jigsaw Distributed File System (JigDFS)-based splitter
implemented in Java is also available. It already contains
encryption routines to enable plausible deniability [16].

o Finally, a fast splitter is being realised as a Vala li-
brary compiled to executable machine code. Its code
contains an implementation of the Cauchy Reed-Solomon
algorithm for information dispersal [8] adapted from the
Cleversafe Java library.

In addition to the splitter, which performs the 1 : k and k : n
data block transformations, a number of plugins offer functions
to be invoked on each block for an 1 : 1 transformation with
varying additional redundancy as a side effect. An encryption
plugin is available to encrypt and decrypt data blocks with
a symmetric key which is recommended to guarantee confi-
dentiality even in the event of an attacker getting access to
all relevant k£ provider storage areas. Another plugin can be
activated to hide the data blocks into media such as photos and
songs by applying steganographic routines from the Stepic tool
[17]. This won’t add any guarantees but is still recommended
to lower the risk of attracting attackers into brute-forcing the
decryption in the absence of the key. A compression plugin
reduces the storage requirements transparently by applying
Huffman coding over LZ77 sliding window compression [18],
implemented by the deflate algorithm of gzip. The processing
layer subarchitecture is shown in Fig. 7.

The candidate storage services for the dispersal are deter-
mined from the list of previously user-selected and contract-

Virtual folder
~/.nubisave

processing layer - nubisavecore

NUbiSaveFUSE configuration:
Splitters:)
Simple, Vala, jErasure | | ____ providers
metadata
Plugins:
Encrypt, Stego, Adapt

transport layer - cloudfusion

Fig. 7. Processing and available splitter and file/block transformation modules

bound services. Their activation follows a round-robin strategy.
By evaluating the non-functional properties, a more sophisti-
cated scheduling algorithm could be realised in the future.

The upper layer exports the aggregate view on the cloud
storage into the user’s file system as a virtual partition. It is
again implemented as a userspace filesystem (FUSE) module
which makes it portable across Linux systems, easy to install
and stackable with other FUSE modules for partition-level
encryption or versioning [19]. The filesystem API allows
direct access by all applications with local access semantics,
hence offering a superset of proxy controller approaches.
An advantageous side effect of this design is that users no
longer need to rely on the existence of clients offered by the
providers>.

Upon the upper layer, applications make use of the exported
virtual partition to realise data management and versioning, if
not already intrinsic to the specific setup of stacked overlay
file systems. Storage functionality such as backup represents
the highest level in the architecture, as shown in Fig. 8.
Furthermore, a configuration tool implemented in Java using
the Swing user interface library is available, and a status
notification applet is a planned addition. Both tools require
access to the configuration file beside the virtual partition.

| Backup |
777777777 =1 . . . |
| Version ! :appllcatlon | | Document !
| control ! (rsync) | | manager !
| gty ~ T [7° N ‘(owncloud) !
I | I

1 Desktop Config-

| status applet ! Virtual folder uration

}7 : f?l?fnja} o ~/.nubisave dialogue
Fig. 8. Integration use cases for NubiSave

3SugarSync doesn’t offer a native Linux client, DropBox only offers one
for read-only access.

B. Extensibility Considerations

While storage provider and transport extensibility is an
inherent feature of the service selection process and the Cloud-
Fusion FUSE module integration, the processing extensibility
requires custom development until the creation of a global
module registry turns this requirement into a choice between
installation and programming. The interface for additional
processing modules consists of two functions, one for reading
and one for writing. Both functions take and return one data
block for the 1 : 1 transformation. No assumption is made
about the size of the blocks. There is however the assumption
that the functions are mutually inverse to each other and can
be invoked as an idempotent function pair without noticeable
side effects.

The listing 1 exemplifies the development of an extension
through a Python module for data compression.

Listing 1. NubiSave extension module for data compression

from util import linux
import tempfile
def decode (data) :
open ("gzipfs.gz", "w").write (data)
return linux.pipe_with_input_file([’gunzip -
c $IN’"], "gzipfs.gz")
def encode(data, path):
open ("gzipfs.gz", "w").write (data)
return linux.pipe_with_input_file([’gzip -
cf9 $IN’'], "gzipfs.gz")

C. Storage Provider Descriptions

Service descriptions for the cloud storage providers exist in
the form of WSML ontologies [14] as instances derived from
a storage domain ontology which in turn uses base ontologies
(for QoS, context, prices and other non-technical proper-
ties) from the ConQo matchmaker [20]. The descriptions
are publicly hosted and maintained by either the providers
themselves or by third parties. They can also be complemented
or substituted with local files maintained by the user, which is
a necessity especially for arbitrary local storage areas accessed
through SSHFS. An abbreviated form of the storage provider
concepts is shown in Listing 2.

Listing 2. Storage ontology

wsmlvariant "wsml-flight"
namespace {gos "congo:QoSBase.wsml"}
ontology CloudQoS importsOntology "congo:
QoSBase.wsml"

nonFunctionalProperties

gosdefinition hasValue "Cloud Storage"
endNonFunctionalProperties
concept MaxDownTime subConceptOf {gos#quality,

gos#LowerBetter}

gos#unit impliesType gos#TimeUnit

concept CloudStorage

NubiSave installs descriptions for six services: Amazon S3,
DropBox, Google Storage, HiDrive, SkyDrive and SugarSync.
It should be noted that many providers offer several service
profiles, for instance to complement a prepaid all-inclusive

service with a free, temporally or spatially limited offering.
For example, SkyDrive offers 25 GB of storage space to
all users for free whereas Amazon S3 offers 5 GB for one
year in its free incentive offer for new users and unlimited
space in a successive pay-per-use offer. Such constellations
can be modelled in WSML by using multiple interfaces within
one file and a shared section on general provider description.
Listing 3 shows an instance of the storage ontology for the
SkyDrive service.

Listing 3. Concrete storage description

wsmlvariant "wsml-flight"
namespace {gos "congo:QoSBase.wsml"}
webService SkyDrive importsOntology "congo:
CloudQoS.wsml"
interface SkyDriveFree importsOntology {Sky}
ontology Sky importsOntology "congo:CloudQoS.
wsml"
instance MaxDownTime memberOf {cloud#
MaxDownTime, gos#ServiceSpec}
gos#value hasValue 15
gos#unit hasValue gos#MilliSecond

D. Configuration

The choice of suitable storage providers is the task of
an administrator with proxy controllers, but is left to the
users for desktop controllers. Therefore, NubiSave includes
a configuration user interface. It requests preferences over
non-functional service properties, generates a WSML goal
description from them and matches it against the (pre-
configured) registry of storage providers which could be a
global or domain-specific infrastructure-as-a-service service
marketplace in addition to the locally installed matchmaker
instance containing the WSML service descriptions. The result
list indicates the ratio of requested and deliverable properties.
Matching services without an appropriate transport module are
automatically marked as not applicable. The user bookmarks
candidate services from the filtered list. The selection dialogue
is shown in Fig. 9.

NubiSave Provider Selection

Property Value Unit Prio
Price per -
uro

data block |:| m
Maximum

S e o
downtime
Service Price Downtime Avail.
e k) % ()
DropBox @
SkyDrive @ @

(Cancel) (Add Service>

Fig. 9. Graphical user interface layout for the provider selection

In the next step, the user then creates the service provider set
of n storage services and configures it accordingly. Typically,
providers require the creation of an account with username
and password. They might as well require the negotiation
of an individual service level agreement unless a stock one
is used. Both configuration aspects have been implemented
in the Contract Wizard platform service [21] and are thus
available to NubiSave by querying the service for negoti-
ated agreements and filled configuration files. This implies
a prior registration of agreement and configuration templates
alongside the WSML descriptions in the ConQo matchmaker.
In contrast to the descriptions and templates, the resulting
agreements and configuration files are not public but shared
between the matchmaker and the clients which created them.
This implies an initial account setup at the matchmaker site.
Hence, for privacy-sensitive setups running a local instance of
the Contract Wizard is recommended. Fig. 10 represents the
configuration dialogue.

NubiSave Configuration N
Service Use Account Contract
SugarSync X Config
DropBox X (Config)
SkyDrive (Config)
(Cancel) (Save Configuration >

Fig. 10. Layout for the configuration of the provider set

E. Remaining limitations of NubiSave

Compared to the analysis of limitations found in existing
approaches, NubiSave shows clear advantages through its
flexible architecture. The prototype however reveals some
remaining limitations to which solutions are out of scope for
this work. We list the remaining issues together with medium-
term suggestions for overcoming them in future work.

Static provider configuration. While in most use cases a
static configuration of storage providers is a sensible choice,
future needs for safely dispersed long-term storage require a
zero-maintenance addition of new providers. This is especially
true for anticipated or actual failures of storage providers
which could be masked by allocating new storage areas and
rebuilding the array ahead of time. We assume that the most
suitable solution is the configuration of one or multiple direc-
tory services with user-recommended or otherwise trusted dy-
namic additions aligned with the preferences on non-functional
properties configured in NubiSave. We envision the uptake
of spot markets for cloud resource and utility services and
just-in-time clouds over low-scale resources which increases
the orientation of offerings along consumer preferences [22].
Manual provider signup. In addition to having to search and
add providers to the configuration, the user is required to
manually create accounts for them in an out-of-band process,
for instance through signup at their webpages. We assume that
automated signup wizards can be developed and used when not

prohibited by the terms of service. Single-user, single-device
operation. Currently, the use cases for NubiSave evolve around
single-user and single-device operation, especially backup.
The addition of multi-user capabilities with selective sharing
would need advanced asymmetric key exchange methods or
entirely different cryptographic techniques. The use of ho-
momorphic encryption, as proposed in a policy-based non-
dispersing RAIC controller [23], appears to be the most sen-
sible concept for sharing dispersed data. Gaining multi-device
support would require the synchronisation of the privately held
configuration.

V. PERFORMANCE MEASUREMENTS AND ANALYSIS

The evaluation of the NubiSave prototype has focused
on the quantitative results from performance measurements,
leaving formal correctness considerations (beyond random
inspection) and usability tests for future work. The overall
performance is influenced by many factors. Four important
contributors to this metric are the degree of redundancy (n = 0
to 2k), the throughput of the splitter module as determined
by parallel invocation, the use of the cache (for both metadata
and files), and the maximum achievable network throughput as
determined by the choice of distribution of storage providers.
In practice, though, the outbound network connection will
almost always be the limiting factor for desktop users due
to it being low-bandwidth, relative to the high-bandwidth
computing centre connections used by most commercial and
institutional storage providers. The test setup consisted of a
virtual Ubuntu Maverick 64bit machine with 2.9 GB of RAM
using 2 Intel Core i5 760 processors with 2.80 GHz frequency
each, running on VirtualBox 4.0.8.

The performance of the splitter has been measured with
deactivated cache for both write and consecutive read perfor-
mance. The results are visualised in the diagrams 11 and 12,
respectively. As expected, the splitting process performs better
for larger block sizes.

35000
30000

25000

[KB/s 20000
15000

10000

5000

0

Fig. 11.

Splitter write performance

In a full-redundancy experimental setup consisting of k£ = 3
blocks over n = 6 storage clouds (IxLocal, 1xSugarSync,
4xDropBox) with caching enabled, the maximum used band-
width reached 4111.68 kB/s, hinting at a per-account throttling
rather than a per-connection one for the DropBox storage.
In a minimal-redundancy setup of & = 5 blocks for the

6000
5000
4000
3000
2000
1000

KB/s

Size KB 5
262744

Fig. 12. Splitter read performance

same providers, which works significantly faster at the cost
of providing less availability, further distinguishing differences
can be seen depending on the use of the cache.

Write and consecutive read performance are visualised for
both disabled cache (Figures 13, 14) and enabled triple-cache
(Figures 15, 16).

Fig. 13. Minimal-redundancy transport write performance without cache

Fig. 14. Minimal-redundancy transport read performance without cache

The results suggest that future research is needed to find
the best combinations of 1 : k parallel splitting, £ : n
block mappings, n : m logical to physical provider mappings
and intelligent use of caching. Due to space constraints,
only selected statistics are included here, excluding further
aspects like re-write/re-read rounds. We offer our experiment
recipes, environment description, input data, data generation
scripts and comparative output numbers at a public research
result comparison site to encourage authors of dispersing

Fig. 15. Minimal-redundancy transport write performance with cache

3500
3000
2500

KB/9000
1500
1000

500

Fig. 16. Minimal-redundancy transport read performance with cache

RAIC/RAOQOC systems to produce corresponding statistics and
graphs®.

VI. SUMMARY AND OUTLOOK

By presenting recent research on data dispersion via cloud
storage providers, we have first presented an overview about
existing techniques and identified weaknesses. Building upon
this analysis, we have created a more generic and extensible
architecture which serves as blueprint for building optimal
cloud storage controllers encompassing a superset of the most
important existing features. Our prototype NubiSave, which
is freely available’, implements most of these RAOC con-
cepts and encourages researchers to overcome the remaining
limitations by following our suggestions. In the near future,
we plan to merge the natively compiled IDA implementation
from SecCSIE [11] to gain performance, and its enterprise
integration features to gain a versatile personal desktop/central
proxy topology choice for hosting the controller. In addition,
we plan to add checksums for higher robustness, dynamic
prioritisation of higher-performing providers and recovery.

ACKNOWLEDGEMENTS

This work has received funding under project number
080949277 by means of the European Regional Development
Fund (ERDF), the European Social Fund (ESF) and the Ger-
man Free State of Saxony. The information in this document
is provided as is, and no guarantee or warranty is given that
the information is fit for any particular purpose.

6Research result datasets shared at
http://areca.co/?q=dispersal.

"NubiSave webpage: http:/nubisave.org

comparison are

[1]

[2]
[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]
[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

B. P. Rimal, E. Choi, and I. Lumb, “A Taxonomy and Survey of Cloud
Computing Systems,” in Proc. of the Fifth Intl. Joint Conference on
Networked Computing, Advanced Information Management and Ser-
vices, and Digital Content, Multimedia Technology and its Applications
(NCM), August 2009, Seoul, Korea.

D. Searls et al., “Project VRM,” http://cyber.law.harvard.edu/research/
projectvrm, 2011.

R. Fisk, “A Customer Liberation Manifesto,” Service Science, vol. 1,
no. 3, pp. 135-141, 2009.

D. A. Patterson, G. Gibson, and R. H. Katz, “A Case for Redundant
Arrays of Inexpensive Disks (RAID),” EECS Department, University of
California, Berkeley, Tech. Rep. CB/CSD-87-391, December 1987.

P. Reisner, “DRBD - Distributed Replicated Block Device,” 9th Linux
System Technology Conference, September 2002, Cologne, Germany.
I. C. Blenke, “CORNFS,” FUSE module software project available from
fuse.sf.net, 2005.

A. Shamir, “How to Share a Secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612-613, November 1979.

J. S. Plank and L. Xu, “Optimizing Cauchy Reed-Solomon Codes for
Fault-Tolerant Network Storage Applications,” in 5th IEEE International
Symposium on Network Computing Applications (NCA), July 2006,
Cambridge, Massachusetts, USA.

J. S. Plank, “The RAID-6 Liberation codes,” in Proceedings of the 6th
USENIX Conference on File and Storage Technologies (FAST), February
2008, pp. 97-110, San José, California, USA.

M. Schnjakin and C. Meinel, “Plattform zur Bereitstellung sicherer
und hochverfiigbarer Speicherressourcen in der Cloud,” in Sicher in
die digitale Welt von morgen — 12. Dt. IT-Sicherheitskongress des BSI.
SecuMedia Verlag, May 2011, Bonn, Germany.

R. Seiger, S. Grof, and A. Schill, “SecCSIE: A Secure Cloud Storage
Integrator for Enterprises,” in Appears in: International Workshop on
Clouds for Enterprises, September 2011, Luxembourg, Luxembourg.

J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A Library in
C/C++ Facilitating Erasure Coding for Storage Applications,” University
of Tennessee, Knoxville, Tennessee, USA, Tech. Rep. UT-CS-08-627,
August 2008.

Y. Badr, A. Abraham, F. Biennier, and C. Grosan, “Enhancing Web
Service Selection by User Preferences of Non-Functional Features,” in
Proceedings of the 4th International Conference on Next Generation
Web Services Practices, October 2008, Seoul, South Korea.

C. Feier, D. Roman, A. Polleres, J. Domingue, M. Stollberg, and
D. Fensel, “Towards Intelligent Web Services: Web Service Modeling
Ontology (WSMO),” in Proceedings of the International Conference on
Intelligent Computing (ICIC), August 2005, Hefei, China.

J. Cardoso, M. Winkler, and K. Voigt, “A Service Description Language
for the Internet of Services,” in Proceedings First International Sympo-
sium on Services Science (ISSS), March 2009, Leipzig, Germany.

J. Bian and R. Seker, “JigDFS: A secure distributed file system,” in [EEE
Symposium on Computational Intelligence in Cyber Security (CICS),
April 2009, pp. 76-82, Nashville, Tennessee, USA.

N. Provos and P. Honeyman, “Hide and Seek: An Introduction to
Steganography,” IEEE Security and Privacy, vol. 1, no. 3, May 2003.
L. P. Deutsch, “DEFLATE Compressed Data Format Specification
version 1.3,” IETF Request for Comments 1951, May 1996.

P. A. D. Brian Cornell and F. E. Bustamante, “Wayback: A User-
level Versioning File System for Linux,” in USENIX Annual Technical
Conference, 2004, Boston, Massachusetts, USA.

G. Stoyanova, B. Buder, A. Strunk, and I. Braun, “ConQo — A Context-
and QoS-Aware Service Discovery,” in Proceedings of IADIS Intl.
Conference WWW/Internet, October 2008, Freiburg, Germany.

J. Spillner, B. Buder, T. Schiefer, and A. Schill, “Contract Services for
Post-Discovery Guarantee Management,” in INSTICC-Tagungsband: 4th
International Conference on Software and Data Technologies/Special
Session on ACT4SOC and e-Health Services, vol. 2, July 2009, pp. 369—
375, Sofia, Bulgaria.

R. Costa, F. Brasileiro, G. L. de Souza Filho, and D. M. Sousa, “Just
in Time Clouds: Enabling Highly-Elastic Public Clouds over Low Scale
Amortized Resources,” Federal University of Campina Grande / Federal
University of Paraiba, Brazil, Tech. Rep. TR-3, 2010.

M. Mowbray, S. Pearson, and Y. Shen, “Enhancing privacy in cloud
computing via policy-based obfuscation,” The Journal of Supercomput-
ing, vol. 51, no. 3, pp. 1-25, March 2010.

