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Abstract—The future, in which mobile robots and human
beings intermingle in industrial complexes, shopping malls,
airports, and similar areas, is not far. The condition, how-
ever, requires the realization of several features, including self-
localization, self-navigation, identification and avoidance of ob-
stacles, and dynamic route discovery. Indoor localization has
been the subject of interest for over two decades, most recent
advances attempting to take advantage of freely available signals
from a plethora of indoor sources. As far as the estimation
task is concerned, most of the models employ extended kalman
filters and particle filters. Each technique has its own merits
and demerits, as well as a set of assumptions. The purpose of
this paper to identify the most significant components of these
techniques and to closely examine the prevailing assumptions
underlying the selection process of indoor localization techniques.
Moreover, the paper experimentally demonstrates the error
modeling process in kalman and particle filters.

Index Terms—Indoor localization, IMU, UWB, mobile robots,
recursive filters, Kalman filter, particle filter, Bayesian Estima-
tion, Importance Sampling

I. INTRODUCTION

A future in which mobile robots and human beings intermin-

gle inside industrial complexes, shopping malls, airports, and

similar spaces, with the robots carrying out many everyday

tasks unassisted, is not far off. This scenario, however, is

dependent on the realization of several features, including self-

localization, self-navigation, identification and avoidance of

obstacles, and dynamic route discovery.

Indoor localization has been the subject of interest for over

two decades, with the most recent advances attempting to take

advantage of (1) freely available signals from a plethora of

indoor sources, (2) the availability of cloud/edge resources

enabling the computation of a vast amount of data, and (3) a

wide range of libraries implementing several recursive filters

as well as unsupervised/deep learning algorithms.

Nevertheless, the success of indoor localization depends

on various factors, including the underlying assumptions as

regards the movement pattern and speed of the mobile robots

and the sources delivering the raw data and their statistical

dependence. The most widely employed estimation techniques

are recursive filters whose foundation is to be found on

Bayesian Estimation. One of their advantages is the ease with

which they combine evidence. The purpose of this paper is to

closely examine the theoretical basis of these approaches, the

underlying assumptions they make as regards the raw data, and

the most important model parameters and where they come

from. Throughout this paper, where it is not stated explicitly,

the underlying context is the localization of mobile robots.

The remaining part of the paper is organized as follows:

In Section II, we discuss the most important assumptions

in employing recursive filters. In Section III, we discuss the

reduction of uncertainty being one of the prevailing goals of

any estimation assignment. In Section IV, we discuss the the-

oretical basis of recursive filters and highlight their similarities

and differences. In Section V, we discuss the significance of

model parameters and illustrate how they can be produced.

In Section VI, we demonstrate how self-navigation can be

realized by combining prediction and measurement using a

Kalman filter. In Section VII, we review related work. Finally,

in Section VIII, we provide concluding remarks and outline

future work.

II. ASSUMPTIONS

The actual position of the robot we wish to localize cannot

be known in a deterministic sense. Therefore, we have to begin

the estimation process with a set of assumptions. From the

outset, this task is bound by two opposing conditions. On the

one hand, the more liberal we are with our assumptions, the

simpler is the task, but the bigger will be our uncertainty. On

the other hand, the stricter our assumptions, the more complex

will be the mathematical expressions describing the estimation

process. At this point one may ask: If the actual position of the

robot is hidden from our sight, how can we ever known that

our estimation is good enough? The answer to this question

makes up the first fundamental assumption. We assume that

there is a reference measurement system in place with respect

to which we can measure the accuracy of our estimation. For

example, in determining the robot’s position, we can take a

simple ruler as the reference measurement system.

The next two assumptions without which no estimation can

be made are the following:

• The robot does not make arbitrary movements. In other

words, there is a correlation between its past, present,

and future locations. The significance of this assumption

is that predictions can be made as regards its future

locations. We depict this as a random variable, xp(t).
• The measurement we make reflects to a certain extent the

actual position of the robot. We say “to a certain extent”

because of the inherent imperfection of the measurement

apparatus or setup as a result of which there is some



error associated with it. Hence, the measurement, too, is

regarded as a random variable, xm(t).

Since xp(t) and xm(t) are random variables, we need

their probability density functions to fully describe them. In

Section V, we shall illustrate how they can be established.

There is a one-to-one correspondence between a random

variable and its probability density function (pdf). Therefore,

reasoning about a random variable amounts to reasoning

about its probability density, and vice versa. In probabilistic

estimation, it is easier to begin with the pdf. The location with

the highest probability is taken to be the location of the robot.

The fourth assumption is that xp(t) and xm(t) are statisti-

cally independent. This is because the prediction made prior to

t is unaffected by the measurement taken at time t. Similarly,

at time t, one can pick any measurement device, so that the

measurement is not influenced by the prediction made prior to

t. The usefulness of this observation is that in the probability

space, the probability that the two random variables point to

one and the same location can be expressed as:

p (xp(t), xm(t)) = p (xp(t)) p (xm(t)) (1)

Suppose xp(t) and xm(t) are both normally distributed ran-

dom variables, centered at the actual location of the robot,

say, θ. Furthermore, suppose also that the two have the

same variance (this assumption is made only for the sake of

illustration). Thus, we have,

p (xp(t)) =
1√
2πσ2

e−(xp(t)−θ)2/2σ2

(2)

Likewise,

p (xm(t)) =
1√
2πσ2

e−(xm(t)−θ)2/2σ2

(3)

The joint density function is:

p (xp(t), xm(t)) =
1

(2πσ2)
e
−

2∑

i=1
((xi(t)−θ)2/2σ2)

(4)

where x1(t) = xp(t) and x2(t) = xm(t). Having the joint

density function in place, we can now determine the best

estimation strategy by differentiating Equation 4 with respect

to θ, because we are interested in the value of θ which results

in the highest probability. Alternatively, we can differentiate

the logarithmic value of Equation 4 (due to the linearity

property of logarithm). Thus, we have:

ln {p (xp(t), xm(t))} = ln
(
2πσ2

)− 2∑
i=1

(xi(t)− θ)
2

2σ2
(5)

Differentiating Equation 5 with respect to θ and setting the

result to zero yields:

θ̂(t) =
1

2

2∑
i=1

xi(t) (6)

From Equation 6, we see that the assumptions of statistical

independence and normal distributions lead to a linear estima-

tion.

Type Source Time invariant?

er Driving setup error No
em Measurement setup error No
ep(t) Prediction error Yes
e(t) Overall estimation error Yes

TABLE I
SUMMARY OF THE ESTIMATION ERRORS

III. UNCERTAINTY

In our endeavor to estimate the actual position of a robot,

we are confronted with different types of uncertainties. The

first arises from the imperfection of the robot’s driving setup.

If, for example, we configure the robot to travel at a speed of

1.5m s−1 along the x-axis, it travels neither at this speed nor

along the x-axis precisely. Therefore, in expressing the future

position in terms of the present, we have to add an uncertainty

term in the form of a random variable:

x(t+ 1) = Φx(t) + er (7)

The term Φ, which, for our case is 1.5m s−1, is a connecting

term and is not a probabilistic term. It is important to remark

that er has nothing to do with the quality of the estimation

technique.

The second type of uncertainty is due to the error introduced

by the measurement setup:

xm(t) = x(t) + em (8)

This error, too, has nothing to do with the estimation tech-

nique. The third uncertainty, however, arises from the fact that

we make estimation of x(t) and all future predictions based

on uncertain inputs and a set of assumptions which guide the

selection of the estimation technique. Thus, we have:

xp(t) = x(t) + ep(t) (9)

and,

x̂(t) = x(t) + e(t) (10)

where x̂(t) = f(xp(t), xm(t)) is the best estimation we have

of x(t) and its accuracy and precision depend on the quality

of the estimation technique. Notice that er and em are not

functions of time, because the former depends on the robot’s

driving setup whereas the latter depends on the measurement

setup. Table I summarizes all the errors one deals with during

estimation.

A. Estimation Uncertainty

The aim of any estimation endeavor is to achieve two goals:

• To approach the true value; and,

• in doing so, to reduce the associated estimation variance.

These two aspects are often expressed in terms of accuracy

and precision. The first goal is achieved when the expected

value of our estimation aligns with the true value. The second

goal is achieved by reducing the variance of the estimated

random variable. Consider Equation 6. Whereas we started off

by saying that the actual position of the robot at time t is θ,

a fixed value, where we arrived at is, however, θ̂(t), which is



a random variable. This is because the inputs we used for our

estimation are random variables and any function of a random

variable is by definition a random variable.

One way of evaluating whether our estimation endeavor

has been successful is to quantify the extent to which these

two goals are achieved. Equation 6, for example, fulfills these

goals, because:

E
[
θ̂(t)

]
=

1

2
E

[
2∑

i=1

xi(t)

]
=

1

2

2∑
i=1

E [xi(t)] = θ (11)

Similarly, the variance of θ̂(t) can be determined as follows:

σ2
θ = E

[(
θ̂(t)− θ

)2
]
=

1

4
E

⎡
⎣
(

2∑
i=1

(xi(t)− θ)

)2
⎤
⎦ (12)

Notice that in order to include θ into the summation term, we

have to divide it by 2 because it will be added 2 times as

a part of the summation term. The square of the summation

term yields the following:

σ2
θ =

1

4

2∑
i=1

E
[
(xi(t)− θ)2

]
+

1

4

2∑
i=1

2∑
j=1,j �=i

E [xi(t)− θ]E [xj(t)− θ]

The last term of the above expression is zero, because xp(t)
and xm(t) are independent. Therefore, we conclude that:

σ2
θ =

1

4

2∑
i=1

E
[
(xi(t)− θ)

2
]
=

1

4

2∑
i=1

σ2
i (13)

Given the assumption that both inputs have the same variance:

σ2
θ̂
=

1

4

2∑
i=1

σ2 =
σ2

2
(14)

As can be seen, as a result of the linear combination, we

reduced our uncertainty by half. In general, if we have n
independent sources,

lim
n→∞ =

1

n2

n∑
i=1

σ2 = 0 (15)

B. The Role of Variance in Estimation

The variance of an input random variable encodes our un-

certainty in the random variable. Therefore, our confidence in

the random variable should be inversely proportional to it. But

confidence is a relative term. If two or more inputs are being

considered during an estimation, the weight we attach to each

input should also reflect the relative aspect of our confidence

(often in the form of a normalization term). Suppose xp(t)
and xm(t) have different variances in Equations 2 and 3. In

which case, our best estimation can be expressed as:

θ̂(t) =

[
σ2
m

σ2
p + σ2

m

]
xp(t) +

[
σ2
p

σ2
p + σ2

m

]
xm(t) (16)

provided that: [
σ2
m

σ2
p + σ2

m

]
+

[
σ2
p

σ2
p + σ2

m

]
= 1 (17)

The linear combination reflects the confidence we attach to

the two inputs. If σ2
p is larger than σ2

m, then we should give

more weight to xm(t) and vice versa. Since:

σ2
m

σ2
p + σ2

m

= 1− σ2
p

σ2
p + σ2

m

Equation 16 can be reformulated as:

θ̂(t) = xp(t) +K [xm(t)− xp(t)] (18)

where:

K =
σ2
p

σ2
p + σ2

m

(19)

Equation 19 is the fundamental expression of the kalman filter

[1]. Logically, we can interpret it as follows: At first the robot

has only xp(t) to rely on, because the prediction was made at

time t−1. When, however, the measurement arrives, it doesn’t

have to do the estimation all over again; instead, it takes the

difference between xm(t) and xp(t), scales this difference

appropriately, and adds it to its existing knowledge. If there is

no difference between these two, the robot trusts its prediction

more and more in the future by updating its scaling factor, K.

IV. RECURSIVE ESTIMATION

Most existing indoor localization techniques mix xp(t) and

xm(t) recursively. Besides reducing the computation cost, this

approach enables to establish xp(t) from the best available

evidence at t−1. As we have demonstrated in Equation 1, the

independence assumption enables to mix the two in the prob-

ability domain. In this case, establishing the joint probability

density function is the primary goal of recursive estimations.

If, on the other hand, further assumptions can be plausibly

made, then the raw measurements can be mixed directly.

For example, statistics pertaining to the measurement setup

can be established and verified independent of the estimation

technique. More often than not, measurement devices (sensors)

have zero mean, normally distributed errors. The kalman

filter and its variants mix xp(t) and xm(t) directly by first

determining the optimal mixing coefficient, K(t), whereas

other techniques, such as particle filters and Hidden Markov

Models mix evidence in the probability domain.

A. Kalman Filter

In our initial derivation of the kalman filter (Equation 18),

we expressed the scaling factor K as if it were independent

of time, whereas xp(t) and xm(t) are functions of time.

Particularly, the error contained in xp(t) accumulates over time

and this aspect should be reflected in K. Hence, the mean

square cumulative error at time t is expressed as:

C(t) = E
[
e2(t)

]
(20)



Variable Explanation

K(t) The Kalman constant for t
xm(t) Measurement
xp(t) Prediction
x(t) Hidden (unknown) variable
x̂(t) The best estimation of x(t)
Φ Factor connecting x(t) and x(t+1)

P (t) E
[
(x(t)− xp(t))

2
]

R E
[
e2m

]
Q E

[
e2r

]

C(t) E
[
(x(t)− x̂(t))2

]

TABLE II
SUMMARY OF THE KALMAN FILTER FORMULATION

Expressing the estimated position in terms of the predicted
and measured positions and substituting xm(t) with x(t)−em
yields:

C(t) = [1−K(t)]2 E
[
(x(t)− xp(t))

2]−K2(t)E
[
e2
m

]
(21)

The term E
[
(x(t)− xp(t))

2
]

is the variance of xp(t). We

denote it with P (t), so that Equation 21 can be expressed in

terms of it:

C(t) = (1−K(t))
2
P (t) +K2(t)R (22)

where R = E
[
e2m

]
.

We are now in a position to choose the optimal K(t) that

minimizes our uncertainty – as discussed in Section III – at

time t. This can be done by differentiating Equation 22 with

respect to K(t) and setting the result to zero. The result is:

K(t) =
P (t)

P (t) +R
(23)

Equation 23 is similar to Equation 18, the only difference

is that the prediction error covariance is expressed as a

function of time. We will appreciate the significance of this

shortly. Substituting Equation 23 into Equation 22 reduces the

expression for C(t) into:

C(t) = (1−K(t))P (t) (24)

Our prediction of the robot’s future position should include all

the uncertainties accumulated thus far, namely,

x(t+ 1) = Φx(t) + er (25)

xp(t+ 1) = Φx̂(t)

Thus, the prediction error for t+ 1 is given as,

ep (t+ 1) =x(t+ 1)− xp(t+ 1) (26)

=Φx(t) + er − Φx̂(t)

=Φe(t) + er

The mean square prediction error for time t+ 1 is:

P (t+ 1) = Φ2E
[
e2(t)

]
+ E

[
e2r

]
= Φ2C(t) +Q (27)

where Q = E
[
e2r

]
. With P (t), C(t), and P (t+1) the Kalman

Filter connects the past, the present, and the future. Tab. II

summaries the most important Kalman notations.

B. Bayesian Estimation

The Baye’s theorem, one of the most profound theorems in

probability, is analogs to the inverse relation in mathematics.

In Section II, we assumed that xp(t) and xm(t) are causally

related with the hidden variable x(t). This means that the

converse is also true. Using Baye’s theorem this can be

expressed as:

p (x(t)|xm(t), xp(t)) =
p (x(t), xp(t), xm(t))

p (xp(t), xm(t))
(28)

Considering the statistical independence, Equation 28 can be
simplified into:

p (x(t)|xm(t), xp(t)) = p (xp(t)|x(t)) p (xm(t)|x(t)) p(n(t)) (29)

where:

p (n(t)) =

[
p (x(t))

p (xp(t)) p (xm(t))

]

Equation 29 is in essence the same as Equation 1. To

appreciate the difference, though, suppose we observed a

robot moving along the x-axis, taking off from x0 and be-

ing at the locations x1, x2, ..., xt−1, xt at the time instances

1, 2, ..., t− 1, t, respectively. The probability of observing the

robot in this sequence can be described by the joint probability

density function:

p (X0:t) = p (x0, x1, ...xt) (30)

Equation 30 can be simplified using conditional probability.

If we assume that the location of the robot at time t is

independent of all its past locations save the location at t− 1,

we rewrite Equation 30 as:

p (X0:t) =
t∏

i=1

p (xi|xi−1) (31)

where x0 is the initial position of the robot having a pdf of

p(x0). As can be seen, Equation 31 establishes the basis for

making predictions, for it says that the robot’s transition from

xt−1 to xt is governed by the conditional probability density

function p(xt|xt−1). Similarly, the measurement probability

density function associated with x(t) can be expressed as

a conditional probability: p(z(t)|x(t)) or more simply as

p(zt|xt). This probability density is independent of both past

and future measurements as well as locations.

With these in place the Bayesian Estimation expresses the

probability of the robot having been at locations X0:k given

all the evidence thus far as:

p (X0:t|Dt) =
p (Dt|X0:t) p (X0:t)

p (Dt)
(32)

where Dt = (z1, z2, ..., zt). Taking advantage of the expres-

sion:

p (Dt|X0:t) = p (zt, Dt−1|X0:t)

and expressing it conditionally as

p (zt, Dt−1|X0:t) = p (zt|Dt−1, X0:t) p (Dt−1|X0:t)



Because of independence:

p (zt, Dt−1|X0:t) = p (zt|xt) p (Dt−1|X0:t−1) (33)

Putting everything together, we have:

p (X0:t|Dt) =
p (zt|xt) p (xt|xt−1)

p (zt|Dt−1)

p (Dt−1|X0:t−1) p (X0:t−1)

p (Dt−1)
(34)

But the last expression is p (X0:t−1|Dt−1) so that we can

rewrite Equation 34 as:

p (X0:t|Dt) =
p (zt|xt) p (xt|xt−1)

p (zt|Dt−1)
p (X0:t−1|Dt−1) (35)

Equation 35 gives expression to all the evidence we have up

to time t, namely, to

• the freshly available measurement in the form of p(zt|xt).
• the prediction in terms of p(xt|xt−1); and,

• the best evidence we had up to time t − 1 in terms of

p(X0:t−1|Dt−1).

Furthermore, it does not make any assumption as to the nature

of these probability density functions.

Alternatively, we can limit our interest only to the current

location of the robot given all the evidence we have so far,

namely, to p (xt|Dt):

p (xt|Dt) =
p (Dt|xt) p (xt)

p (Dt)
(36)

We can express p (Dt|xt) as p (zt, Dt−1|xt) or as

p (zt|Dt−1, xt) p (Dt−1|xt)

Taking advantage of independence, the above expression re-

duces to:

p (Dt|xt) = p (zt|xt) p (Dt−1) (37)

Similarly, we can express p (xt) as:

p (xt) =

∫
p (xt|xt−1) p (xt−1) dxt−1 (38)

Equation 38 says that the robot may arrive at xt coming from

infinite previous locations and each previous location has its

own probability. In other words, Equation 38 is a prediction

term. We can label it as p (xt|Dt−1). Combining Equations 37

and 38 yields:

p (xt|Dt) =
p (zt|xt) p (xt|Dt−1)

p (zt|Dt−1)
(39)

Equation 39 says that the current location of the robot can

be expressed in terms of the freshly available measurement –

p (zt|xt) and the prediction components.

C. Particle Filter

Nevertheless, Equations 35 and 39 are difficult to evaluate.

For instance, in Section III, we mentioned that one way of

evaluating whether our estimation endeavor is successful is

to examine the expected value and the variance of the best

estimation, x̂(t), both of which require the integration of a

probability density function. So, if we take Equation 39 to

Variable Explanation

Dt A sequence of measurements up to t
Dt = (z1, ..., zt)

x0:t A sequence of hidden states (locations)
x0:t = (x0, x1, ..., xt)

p(Dt) p(z1, z2, ..., zt)
P (x0:t|Dt) posterior pdf associated with x̂
p(zt|xt) Measurement probability – p (xm(t))

p(xt|Dt−1) Prediction pdf
p(xt|xt−1) Transition pdf

TABLE III
SUMMARY OF THE BAYESIAN ESTIMATION FORMULATION

be our probability density function, the mean of our best

estimation is:

E [x̂t] =

∫
xtp (xt|Dt) dxt (40)

For most practical purposes, it suffices to approximate the

integration by summation, by drawing a large number of

samples from p (xt|Dt) using the Monte Carlo approximation

[2], [3]:

E [x̂t] =
1

N

N∑
i=1

xi
t (41)

Where xi
t is the i-th sample taken from p (xt|Dt). However,

taking samples will be difficult – if not impossible, indeed,

if p (xt|Dt) is a complex function, which is most likely the

case. This process can be simplified by applying Importance

Sampling [4], [5], which is the essential aspect of particle

filters. The idea is as follows, we write Equation 40 as:

Ep [x̂t] =

∫
xtp (xt|Dt)

q (xt|Dt)

q (xt|Dt)
dxt (42)

Apparently, q (xt|Dt) /q (xt|Dt) is one and it does not matter

what it is. Yet it plays a significant role inside the integration,

for now we can compute the expected value with respect to

q (xt|Dt) as opposed to p (xt|Dt):

Eq [x̂t] =

∫
wtxtq (xt|Dt) dxt (43)

where

wt =
p (xt|Dt)

q (xt|Dt)
(44)

so that,

Ep [x̂t] = Eq [wtx̂t] (45)

The significance of Equation 43 is this: We can choose a

suitable q (xt|Dt) from which we can take N representative

samples. Since we choose q, sampling should be possible1.

Once we have the samples, we can instantiate wi
t by evaluating

p (xt|Dt) for each xi
t and use Monte Carlo approximation to

1Having said this, q cannot be chosen arbitrarily. To begin with, both q and
p should have the same domain. Secondly, q should be chosen in such a way
that more samples are obtained from ‘important’ regions of p (in other words,
p and q should be as similar as possible). Thirdly, p/q should be bounded.
For more on this, we refer the reader to [5], [4], [6].



compute the expected value. The posterior probability itself

can be approximated as follows:

p (xt|Dt) =
N∑
i=1

wi
tδ

(
xt − xi

t

)
(46)

where δ(xt − xi
t) is the Dirac delta function yielding every-

where zero except where xt = xi
t.

D. Sequential Importance Sampling

We wish to know whether it is possible to write Equation 44

recursively. Consider Equation 35. There, as in every Baye’s

expression, the denominator is a normalization factor and its

significance is to ensure that the integration of the posterior

distribution yields a unit area. This is one of the requirements

of a valid probability density function. In our examination of

the posterior distribution, we are mainly interested in mak-

ing comparison of different probabilities signifying different

possibilities, in which case we can ignore the normalization

factor. Thus, the weight we attache to the t-th iteration during

importance sampling can be expressed as:

wi
t =

p (X0:t|Dt)

q (X0:t|Dt)
(47)

Since the denominator can also be written as q (xt, X0:t−1|Dt)
using conditional probability, it can be expressed as:

q (X0:t|Dt) = q (xt|xt−1, Dt) q (X0:t−1|Dt−1) (48)

This is because, the past state (location) of the robot does not

depend on the future measurement, so that:

q (X0:t−1|Dt) = q (X0:t−1|Dt−1)

Consequently, if we take the ratio of the numerator of Equa-

tion 35 and the above expression, the weigh we attache to the

i-th sample of the t-th iteration, can be expressed as:

wi
t = wi

t−1

p (zt|xt) p (xt|xt−1)

q (xt|xt−1, Dt−1)
(49)

Earlier we have asserted that we choose q during importance

sampling. If we choose the denominator to be:

q (xt|xt−1, Dt−1) = p (xt|xt−1) (50)

then, Equation 49 reduces to:

wi
t = wi

t−1p (zt|xt) (51)

V. MODEL PARAMETERS

In Section IV we put the mathematical foundations of

recursive estimation. In the literature some variants of these

may exist, but the essential features remain the same. What

distinguishes a particular indoor localization system from all

other systems is mainly the underlying sensing setup and the

way it establishes its model parameters (we shall give a review

of these in Section VII). The latter is rather a crucial step

because the estimation error depends on it to a great extent.

Hence, besides the quality of the sensors, there should be

adequate statistics to model the errors listed in Table I.

Fig. 1. Using a laser-based distance sensor as a reference to determine
measurement statistics

The purpose of this section is to demonstrate how model

parameters can be established. We employ two complementary

sensing mechanisms to localize a mobile robot inside our lab.

In the first, we use an inertial measurement unit consisting of

a 3D accelerometer and a 3D gyroscope. The second setup

consists of four static ultra-wide band (UWB) sensor nodes

attached on the four walls of the lab and an additional node

carried by the mobile robot. The static nodes periodically emit

beacons and the mobile node calculates the difference in the

time-of-arrival [7] of these beacons to determine its relative

location in the room. As a reference system to measure the

actual location of the robot, we employ a Bosch laser-based

distance measuring device having an accuracy of ±1.5mm,

as shown in Fig. 1 in both cases.

A. Process Error

The process error, which is an inherent aspect of the

driving setup of the robot, is independent of the underlying

sensing infrastructure. To obtain the statistics of this error

we conditioned the robot to move in a straight line (along

the x-axis) and at a constant velocity between two sampling

(decision) intervals (ref. to Fig. 2). A deviation from this path

in the y-axis and a deviation in the distance traveled in a fixed

time along the x-axis constitute the process error statistics, er.

The process error varies with the speed of the robot and the

distance it traveled. Hence, in order to establish representative

statistics, one needs to repeat the experiment several times,

considering different speed and distance. The speed of our

robot can vary from 0.5 to 1.2m s−1. We varied the robot’s

speed at 0.2m s−1 interval and for each configuration we

repeated the experiment twenty times. We then merge the

data from all the experiments to establish the process error

statistics. Fig. 3 displays the resulting process error statistics

for one of the dimensions (the x-axis, the primary dimension

of movement).

B. Transition Probability Density Function

One of the strengths of the Bayesian Estimation (Equa-

tion 35) is its inclusion of the transition probability density.



Fig. 2. The setup for establishing the process error.

Fig. 3. The forward movement (x-axis) process error statistics.

Theoretically, it is the prediction component of the estimation.

Practically, however, its implementation as well as application

is not always straightforward. This is because the uncertainty

in the present location of the robot arises from the uncer-

tainty associated with not only its past location but also the

speed with which it traveled in the time interval [t− 1, t] –

p (xt|xt−1, vt−1). On the other hand, the transition probability

connects only the present and the past locations, p (xt|xt−1).
This said, once a decision is made as regards the robot’s

location at t − 1, then the uncertainty associated with its

location at t is a function of the uncertainty associated with

the speed of travel, in which case, this uncertainty reduces to

er, which is the process error.

Fig. 4. Establishing the measurement and prediction statistics of inertial
measurement units using a polar coordinate system.

C. Inertial Measurement Units

The employment of a 3D gyroscope and a 3D accelerometer

enables to measure linear displacement and angular accel-

erations (turns) simultaneously. This, in turn, simplifies the

mapping of a moving (local) frame of reference onto a static

(global) frame of reference. The static frame of reference can

be rectangular (Cartesian) or polar, but we chose a polar frame

of reference, as shown in Fig. 4, because it is easier to model

the measurement error. The radius of the most outer circle

in Fig. 4 is 0.5m. If the robot sets off from the most outer

circle and travels in a straight line, it should have traveled

0.5m by the time it reaches at the center. When at the

center, the position of the robot is estimated by evaluating

the acceleration reading (the difference in time between points

of acceleration -when the robot sets off – and deceleration –

when the robots arrives at the center – of the IMU). To obtain

the measurement statistics of the gyroscope, at the center, the

robot follows one of the dashed lines to travel to the outer

circle. The measurement error is the difference between the

actual angle and the angle read by the gyroscope. Figure 5

show the measurement errors statistics established this way

for the accelerometer and the gyroscope. As can be seen, the

accelerometer introduces a significant uncertainty.

D. Ultra-Wide Band Radio

The accuracy of the UWB radio greatly depends on the lo-

cation of the robot with respect to the anchor nodes. Therefore,

in order to establish sufficient statistics, sample points repre-

senting the dimension of the entire area of mobility should

be selected and repeated measurement should be taken from

each point. Our lab has a dimension of 8.692×5.866 m2. We

identified 5× 5 = 25 such points and took 100 measurements

from each point. Fig. 6 shows the measurement statistics

we established accordingly. The statistics suggest a normally

distributed measurement error, but the density is not centered

at zero, as can be seen.
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Fig. 5. Estimated measurement error statistics corresponding to the linear
and angular accelerations.

Fig. 6. The measurement error statistics (x-axis, in meter) corresponding to
the UWB setup.

Fig. 7. The trajectory for a mobile robot in a polar coordinate system for
self-navigation.

Fig. 8. The actual (ideal) and real (estimated) trajectories of the mobile robot.
The real trajectory was established using a Kalman Filter.

VI. SELF-NAVIGATION

The model parameters we established in the previous section

suggest that the process and measurement errors statistics have

normal distributions. Hence, with the proper calibration of

the parameters, it is possible to employ the kalman filter

to self-localize the robot in our lab. In this section, we

illustrate how we employed the IMU setup to estimate the

trajectory (Fig. 7) along which the mobile robot navigated.

The robot self-navigated using a QR code scanner. In parallel,

the kalman filter estimated the trajectory. In order to reduce

the accumulation of error during the conversion of the linear

acceleration to position, the IMU was reset between any two

decision (sampling) points. We considered two different values

for the speed of the robot: In the first –Fig. 8 (left) – the robot

was moving at a velocity of 1m s−1 whereas in the second

(right), it was moving at 0.5m s−1, since during the setup of

the model parameters, we have observed that fast movements

are better for estimation than slow movements. This is because

differentiating between the noise arising outside of the estima-

tion setup and the error inherent to it is easier when there is

a distinct acceleration. This observation seem to be consistent

Fig. 8.

VII. RELATED WORK

In the past decade, several researchers have attempted to

employ a plethora of freely available sources for indoor local-

ization. In [8], the authors noted that modern WiFi Network

Interface Cards (NICs), such as the Intel Link 5300, provide

multiple antennas and a rich set of Channel State Information

for each received packet (up to 30 distinct CSI can be extracted

from OFDM-based WiFi setting from each antenna). The

authors apply this information to a fine-grained indoor local-

ization using offline fingerprinting. A neural network with four

hidden layers is used to train the system, and a probabilistic

online algorithm is used for mapping the outputs of the three

antennas to a location on a two-dimensional map. The authors

tested their prototype in a living room and a university lab to



report remarkable results (achieving an estimation accuracy of

less than 1m in certain places).

In [9], the authors exploit the richness of bandwidth and

high bit rate in UWB settings to localize nodes. The proposed

approach employs Differentiated Time-of-Arrival (DTOA)

[10] and consists of three types of nodes: anchor nodes, a

reference node, and a Tag. The latter is a node whose location

is unknown and to be determined. The reference node and the

anchor nodes, which are located at static and known positions,

coordinate packet transmission, so that the Tag node can apply

DTOA to localize its position. Thus, first the reference node

sends an INIT message, thereby triggering the anchor nodes

to respond with a RESP message after a predefined delay. The

delay time has two components: a common delay component,

ΔR, and an anchor specific component, δn. The latter, in the

range of nanoseconds, is introduced to ensure that collision

does not occur on the RESP packets. Furthermore, it has the

additional benefit of identifying responses and discerning them

from strong multi-path effects.

In [11], the authors combine time-difference-of-arrival with

spectral discrimination to localize a node in the presence of

multi-path scattering and shadowing. A node broadcasts a

packet to multiple access points, each of which calculates

the time-of-arrival to produce a local hyperbolic locus. More-

over, in order to remove the effect of multi-path scattering

and non-line-of-sight transmission, it analyzes the spectral

characteristics of the received packet and either filters the

dominant component (suggesting line-of-sight) or combines

multiple dominant components to compensate for multi-path

travel time. Finally, it transmits the local hyperbolic locus

back to the node. The mobile node calculates the difference

in distance to estimate its position. The authors report an

estimation accuracy of below 90 cm in an office environment

using 4 access points. The authors also claim that the proposed

approach was robust to signal shadowing, even in the presence

of a wall standing between the access points and a mobile

node. The proposed approach works well in an UWB Wi-

Fi environment in order to enable fine-grained estimation of

time-of-arrival and to obtain sufficient spectral insight in a

very short time.

In [12], the authors combine fingerprinting with an inertial

calibration system for a 3D indoor localization. The finger-

printing is based on the evaluation of Bluetooth Low En-

ergy (BLE) beacons. The proposed approach, which employs

particle filters, assigns a probability to each particle at time

t conditioned by the decision made at time t− 1 and the

signal strength of a local reference signal for the time t. An

internal state machine continuously monitors the consistency

of the fingerprinting outcomes with an inference made by the

inertial system. The outcomes of the inertial system are, in

turn, combined with the outcomes of a barometric pressure

sensor to infer upward and downward movements, which is

the basis for 3D localization. A maximum likelihood estimate

combines the outputs of the three sources, namely, the BLE

beacons, the inertial sensors, and the barometric pressure

sensor, to estimate the most likely location of a smartphone.

The proposed approach was tested inside a 21000 square metre

mall by visually impaired shoppers who could freely navigate

the mall using a prototype implementation.

In [13], the authors fuse information from a magnetometer

sensor, a gyroscope, and a WiFi using an augmented particle

filter. The samples taken from these sources form vectors

which are then mapped to a probability distribution on the

basis of which the value of a particle is estimated. The

particles, which correspond to pixels in a 2D map, in turn,

signify a step, the length of a step, a direction, or a turn.

Finally, the values of the particles are compared with offline-

produced fingerprints. The proposed approach was tested in

various locations: supermarket, parking garage, and office.

The authors claim to have achieved an impressive accuracy

for each place and for each combination of sources, but the

paper also withholds vital information as regards the actual

features extracted from the sensors, the mapping from the raw

data to the probability distribution, the connection between the

features and the higher-level contexts, and the specific steps

taken to produce the offline fingerprints.

Indoor localization based on Inertial Measurement Units

(IMUs) – i.e., 3D accelerometers, 3D gyroscope, and 3D mag-

netometers – belongs to the most popular approaches, because

it requires minimum infrastructural support and is relatively

robust to environmental dynamics. A significant portion of

the proposed approaches focuses on localizing human beings

using smartphones [14], though interest in localizing mobile

robots is also growing.

In [15], the authors employ a particle filter to estimate the

current walking length and direction of a person based on

several input parameters: RSSI values from a WiFi access

point, samples of IMU, and knowledge of the previous position

(dead reckoning). These inputs are used to generate weighted

“particles” on the basis of which the posterior distribution

of the whereabouts of the person is estimated. Occasionally,

the filter calibrates itself using strategically placed beacons.

The authors tested their model in a big building complex

at Berkeley campus, University of California, and reported

remarkable results (an estimation accuracy in the order of tens

of centimeters).

Indoor localization of mobile robots, in addition to IMUs,

can take advantage of several locally available sensors includ-

ing 3d cameras, depth and proximity sensors (laser, infrared,

and ultrasound), and QR code scanners [16]. Thus, in [17],

the authors employ data from a thermal camera (long-wave

infrared camera ) and IMU to set up an extended Kalman filter

which performs an odometer estimation. In [18], the authors

express indoor localization as an optimization problem. A

combination of odometer and gyroscope data describe the

independent variables (the measurements) and position and

heading, the dependent variables. The optimization problem

is solved using extended H∞. Sporadically available QR code

scanners are used to fine-tune model parameters and as a

feedback mechanism.



VIII. CONCLUSION

In this paper we closely examined the scope and usefulness

of recursive estimation in indoor localization of mobile robots.

We discussed the different types of errors and the assumptions

guiding the estimation assignment. Any estimation assignment

has two goals, namely, (1) to align the mean of the estimated

random variable with the actual location of the robot; and

(2) to minimize the variance of the estimated random vari-

able (our uncertainty). We showed that recursive estimation

techniques combine prediction and measurement components.

In a kalman filter, the prediction component is expressed in

abstract, whereas in a Bayesian Estimation and a particle

filter, it is concrete, being expressed as a transition probability,

p(xt|xt−1). Yet we also showed that the transition probability

often arises from the error in the driving setup of the robot

which is encoded as a process error in the Kalman filter

formulation.

We highlighted that whether or not an estimation assignment

is successful greatly depends on the model parameters and the

adequacy of the statistics which represent them. We demon-

strated how process, measurement, and prediction statistics

can be established for two different sensing setups: Inertial

Measurement Units (IMU) and ultra-wide-band technology

(UWB).

In this paper we have not quantitatively evaluated the overall

navigation error. Our next goal will be to do this for different

configurations: a kalman filter with IMU vs UWB setup; a

particle filter with IMU vs UWB setup; and a 2D navigation

vs a 3D navigation.
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